
CS 451 Programming Paradigms, Spring 2004 1

Homework 2 — ML core language — assigned Tuesday 27 January — due
Wednesday 4 February

Reading assignment

Read Chapters 1, 2, and 3 of ML for the Working Programmer.

2.1 Integers (5pts)

Define a function called cube, of type int → int, which returns the integer which is the cube of the integer
it is applied to.

2.2 List types (5pts)

Write a function swapl that takes a list of pairs as argument and returns a list of pairs in which the
elements of each pair are swapped. Specify its type.

2.3 List types and higher-order functions (5pts)

Write a function map2 that applies a function to all elements in all element lists in a list of lists. Specify
its type.

2.4 Using lists for arithmetic: writing recursive functions over lists (40pts)

Numerals can be represented as lists of integers. For instance, decimal numerals can be expressed as
lists of integers from 0 to 9. In this representation, the integer 12345678901234567890 would be rep-
resented as the ML list [1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8,
9, 0]: int list.

Write the following functions:

• (10pts) makeLongInt: int -> int -> int list, such that makeLongInt r n com-
putes the list representation of the integer n in radix r. You can assume that n ≥ 0, and that r > 1.
For example, makeLongInt 10 123 should evaluate to [1,2,3].

• (10pts) evaluateLongInt: int -> int list -> int, such that evaluateLongInt
r l computes an integer corresponding to the value of list l, which uses radix r. You can assume
that l is a valid list for radix r, and the value of the list is small enough to fit into an ML int. For
example, evaluateLongInt 10 [1,2,3] should evaluate to 123.

• (20pts) addLongInts: int -> (int list * int list) -> int list, such that
addLongInts r (a,b) computes the sum of the nonnegative integers given by lists a and b; all
three lists use radix r. For example, addLongInts 10 ([1,2,3], [1]) should evaluate
to [1,2,4]. Important: the argument lists a and b can represent arbitrarily large integers.



CS 451 Programming Paradigms, Spring 2004 2

Hint: you need to learn how to control the top level of SML/NJ so that it does not truncate very long lists
when it prints them.

2.5 Drawing: writing recursive functions over lists; manipulating strings (45pts)

In this exercise, we develop some simple tools for drawing.

A drawing is just a line drawing consisting of some number of polygons. A polygon is given as a list of
vertices, and a vertex is simply a pair of real numbers for the x and y coordinates.

For instance,

[[(100.0,100.0),(100.0,200.0),(200.0,100.0)],
[(150.0,150.0),(150.0,200.0),(200.0,200.0),(200.0,150.0)]]

is an internal representation in ML of a drawing consisting of a triangle and a square.

Your task is to convert such a representation of a drawing into a simple page description in the PostScript
language. Specifically, you are to write an ML function makeCommand: (real * real) list
list -> string.

The result returned by makeCommand is an ML value of type string, which must contain valid PostScript
commands for drawing the given polygons. When the SML/NJ top level prints this result, paste it by hand
into a file result.ps, and then display it by running GhostScript: gs result.ps.

For instance, the expression

makeCommand [[(100.0,100.0),(100.0,200.0),(200.0,100.0)],
[(150.0,150.0),(150.0,200.0),(200.0,200.0),(200.0,150.0)]]

should evaluate to the string:

%!PS-Adobe-3.0 EPSF-3.0
%%BoundingBox: 100.0 100.0 200.0 200.0

100.0 100.0 moveto
100.0 200.0 lineto
200.0 100.0 lineto
closepath
stroke

150.0 150.0 moveto
150.0 200.0 lineto
200.0 200.0 lineto
200.0 150.0 lineto
closepath
stroke

showpage
%%EOF



CS 451 Programming Paradigms, Spring 2004 3

which will be displayed as the following figure:

Note that the bounding box is the smallest upright rectangle such that no points of the drawing lie outside
it; it is specified by giving the coordinates of its lower left and upper right corners, in our example
(100.0,100.0) and (200.0,200.0).

The example shown here entirely suffices as a pattern to follow; however, if you would like to learn more
about the PostScript language you can follow the links on the course web page.

Hint: you need to learn how to control the top level of SML/NJ so that it does not truncate very long
strings when it prints them.



CS 451 Programming Paradigms, Spring 2004 4

How to turn in

Make sure that you have thoroughly tested your code, and include all your test runs!

Turn in your code by running

˜clint/handin your-file

on a regular UNM CS machine. You should use whatever filename is appropriate in place of your-file.

Include the following statement with your submission, signed and dated:
I pledge my honor that in the preparation of this assignment I have complied with the University of New
Mexico Board of Regents’ Policy Manual, including Section 4.8, Academic Dishonesty.


