
CS 451 Programming Paradigms, Spring 2005 1

Homework 2 — ML core language — assigned Sunday 6 February — due
Wednesday 16 February

Reading assignment

Read Chapters 1, 2, and 3 ofML for the Working Programmer.

2.1 Using lists for arithmetic: writing recursive functions over lists (30pts)

Numerals can be represented as lists of integers. For instance, decimal numerals can be expressed as
lists of integers from 0 to 9. In this representation, the integer 12345678901234567890 would be rep-
resented as the ML list[1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0]:

int list.

Write the following functions:

• (10pts)makeLongInt: int -> int -> int list, such thatmakeLongInt r n computes the
list representation of the integern in radix r. You can assume thatn ≥ 0, and thatr > 1. For
example,makeLongInt 10 123 should evaluate to[1,2,3].

• (10pts)evaluateLongInt: int -> int list -> int, such thatevaluateLongInt r l com-
putes an integer corresponding to the value of listl , which uses radixr. You can assume thatl is a
valid list for radix r, and the value of the list is small enough to fit into an MLint. For example,
evaluateLongInt 10 [1,2,3] should evaluate to123: int.

• (10pts)addLongInts: int -> (int list * int list) -> int list, such that
addLongInts r (a,b) computes the sum of the nonnegative integers given by listsa andb; all three
lists use radixr. For example,addLongInts 10 ([1,2,3], [1]) should evaluate to[1,2,4]:
int list. Important: the argument listsa andb can represent arbitrarily large integers, unlike
ML’s built-in int type.

Carefully state all preconditions for all function arguments. Make sure that your tests cover the space of
permissible argument values well.

2.2 Drawing: writing recursive functions over lists; manipulating strings (15pts)

In this exercise, we develop some simple tools for drawing.

A drawing is just a line drawing consisting of some number of polygons. A polygon is given as a list of
vertices, and a vertex is simply a pair of real numbers for thex andy coordinates.

For instance,

[[(100.0,100.0),(100.0,200.0),(200.0,100.0)],

[(150.0,150.0),(150.0,200.0),(200.0,200.0),(200.0,150.0)]]

is an internal representation in ML of a drawing consisting of a triangle and a square.



CS 451 Programming Paradigms, Spring 2005 2

Your task is to convert such a representation of a drawing into a simple page description in the PostScript
language. Specifically, you are to write an ML functionmakeCommand: (real * real) list list

-> string.

The result returned bymakeCommand is an ML value of type string, which must contain valid PostScript
commands for drawing the given polygons. When the SML/NJ toplevel prints this result, paste it by
hand into a fileresult.ps, and then display it by running GhostScript:gs result.ps.

For instance, the expression

makeCommand [[(100.0,100.0),(100.0,200.0),(200.0,100.0)],

[(150.0,150.0),(150.0,200.0),(200.0,200.0),(200.0,150.0)]]

should evaluate to the string:

%!PS-Adobe-3.0 EPSF-3.0

%%BoundingBox: 100.0 100.0 200.0 200.0

100.0 100.0 moveto

100.0 200.0 lineto

200.0 100.0 lineto

closepath

stroke

150.0 150.0 moveto

150.0 200.0 lineto

200.0 200.0 lineto

200.0 150.0 lineto

closepath

stroke

showpage

%%EOF

which will be displayed as in Figure 1.

Note that the bounding box is the smallest upright rectanglesuch that no points of the drawing lie outside
it; it is specified by giving the coordinates of its lower leftand upper right corners, in our example
(100.0,100.0) and(200.0,200.0).

The example shown here entirely suffices as a pattern to follow; however, if you would like to learn more
about the PostScript language you can follow the links on thecourse web page.

Hint: you need to learn how to control the top level of SML/NJ so that it does not truncate very long
strings when it prints them.

Optional: learn how to do file output in ML, and produce the output file directly from ML instead
of cutting and pasting. Implement a functiondumpStringToFile: string * string -> unit,
which takes two strings; the first is the name of the file to be written, and the second is the string that is
to be dumped to the file.



CS 451 Programming Paradigms, Spring 2005 3

Figure 1: A triangle and a square.

2.3 Using lists for sets: writing recursive functions over lists (35pts)

Let us use the ML typeint list to represent sets of integers. In this representation, there must be no
duplicates in the list, and the order of the list elements is immaterial.

• (5pts) Write an ML functionunion: int list * int list -> int list that takes two
sets and returns their union.

• (5pts) Write an ML functionintersection: int list * int list -> int list that takes
two sets and returns their intersection.

• (5pts) Write an ML functiondifference: int list * int list -> int list that takes
two sets and returns their set difference.

• (5pts) Write an ML functionequal: int list * int list -> bool that takes two sets and
returnstrue if and only if the two sets are equal.

• (15pts) Write an ML functionpowerset: int list -> int list list that takes a setS
and returns its powerset 2S. (The powerset 2S of a setS (sometimes writtenP(S)) is the set of all
subsets ofS.) Note that the result uses the ML typeint list list to represent sets of sets of
integers.

2.4 Using lists for text (20pts)

Write a functionsplit_into_words to split text into words. Spaces, tabs, and new lines are word
separators.

The function you write will replace the comment in the code fragment below, to make the whole work.

local

fun acceptfile (fileName: string) : string =

let



CS 451 Programming Paradigms, Spring 2005 4

val f = TextIO.openIn fileName

val s = TextIO.inputAll f

val _ = TextIO.closeIn f

in

s

end

type word = char list

type sentence = char list

(* your code goes here *)

fun split_into_words (s: sentence): word list =

(* begin your code *)

(* end your code *)

in

fun main (filename: string) =

let

val s = acceptfile filename

val cl = explode s

val wl = split_into_words cl

in

wl

end

end

The declaration ofsplit_into_words should be expressed in terms of the language primitives (i.e.,
without the use of library functions).

How to turn in

Turn in your code by running

˜jackmp/cs451TA/handin your-file

on a regular UNM CS machine. You should use whatever filename is appropriate in place of your-file.

Include the following statement with your submission, signed and dated:
I pledge my honor that in the preparation of this assignment Ihave complied with the University of New
Mexico Board of Regents’ Policy Manual.


