
CS 451 Programming Paradigms, Spring 2005 1

Homework 4 — ML programming [A; C; E; K] — assigned 9 March —
due 30 March

In all exercises except 4.3, you must use higher-order functions, including built-in ones from the
Standard ML Basis Library, as well as those you define for your own data types, in preference to
pointwise recursive function definitions. In exercise 4.3, use your aesthetic judgment.

In this homework, you may use the ML module language to structure your code. If you do, each
structure and signature should be in a separate file (e.g., expressions.sig and expressions.sml),
and all the files for one exercise should be grouped into a common subdirectory; for instance
hw4.1/expressions.sig. You should use the SML/NJ top level only to load all the modules with
a sequence of use invocations and then execute your tests; and you must not use open anywhere.

4.1 An arithmetic expression evaluator: writing recursive functions over algebraic datatypes
(10pts) [C; K.1.1; K.2.3; K.2.4; K.2.7]

We use the following data type declaration to introduce a language of simple arithmetic expressions, with
variables and binding:

datatype expr = Num of int

| Var of string

| Let of {var: string, value: expr, body: expr}

| Add of expr * expr

| Sub of expr * expr

| Mul of expr * expr

| Div of expr * expr

type env = string -> int

exception Unbound of string

val emptyEnv: env = fn s => raise (Unbound s)

fun extendEnv oldEnv s n s’ = if s’ = s then n else oldEnv s’

exception ExprDivByZero

Write a function evalInEnv, with type env -> expr -> int, which computes the arithmetic value of
an expression (which may have free variables) in a given environment (a mapping from variables to int

values).

Then you can define:

fun eval e = evalInEnv emptyEnv e

so that eval evaluates closed expressions.

Note: the code presented in class for this problem was written in the pointwise style.

CS 451 Programming Paradigms, Spring 2005 2

4.2 Boolean formulae: writing recursive functions over algebraic datatypes (30pts) [A.1;
C; K.1.1; K.2.3; K.2.4]

We can use the following declaration to introduce a language of Boolean formulae:

datatype expr = Const of bool

| Var of int

| And of expr list

| Or of expr list

| Not of expr

For instance, the Boolean formula (¬x1 ∨ x2 ∨ x3)∧ (x1 ∨¬x2) is represented by the ML term And [Or

[Not (Var 1), Var 2, Var 3], Or [Var 1, Not (Var 2)]].

4.2.1 Simple Boolean evaluator (10pts)

Write a function eval, with type env -> expr -> bool, which computes the Boolean value of a
formula.

The type env is the type of environments; an environment is simply an assignment of Boolean values to
variables xi. Choose your own ML representation for the type env.

4.2.2 More on Boolean formulae: satisfiability checker (10pts)

Write a function satisfiable: expr -> bool, which determines if the given formula is satisfiable,
i.e., true for some assignment of Boolean values to the variables that appear in the formula. Note:
efficiency is not a concern.

4.2.3 More on Boolean formulae: tautology checker (10pts)

Write a function tautology: expr -> bool, which determines if the given formula is a tautology,
i.e., true for all possible assignments of Boolean values to the variables that appear in the formula.

4.3 Interpreter (60pts) [A.7; C; E; K.1.1; K.2.2; K.2.3]

4.3.1 General description

Consider a simple stack machine for integer list manipulation. The stack machine has a program p, a
program counter pc, a stack s that may hold integers and lists, and a stack top pointer sp. The instructions
of the machine and their effect on the stack are described by the following table:

In the table, i stands for an integer, a for an address, within the program, r for an address within the
program, t for a list, v for an arbitrary value, and s for the remainder of the stack (0 or more values).

An instruction with an argument (CST, GOTO, IFNZRO, CALL, LISTCASE) takes up two positions in the
program.

CS 451 Programming Paradigms, Spring 2005 3

Instruction Stack before Stack after Effect
CST i s ⇒ i s Push integer constant i
ADD i2 i1 s ⇒ (i1 + i2) s Add integers
SUB i2 i1 s ⇒ (i1 − i2) s Subtract integers
DUP v s ⇒ v v s Duplicate
SWAP v2 v1 s ⇒ v1 v2 s Swap
POP v s ⇒ s Pop
GOTO a s ⇒ s Jump to a
IFNZRO a i s ⇒ s Jump to a if i 6= 0
CALL a v s ⇒ v r s Call function at a, pushing return address r
RET v r s ⇒ v s Return: jump to r
MKNIL s ⇒ Nil s Push Nil (the empty list)
MKCONS t i s ⇒ Cons(i,t) s Push cons node
LISTCASE a Nil s ⇒ s If Nil, do not jump
LISTCASE a Cons(i,t) s ⇒ t i s If Cons, unpack components and jump to a
PRINT v s ⇒ v s Print v and keep it
STOP s ⇒ Halt the machine

Under any circumstances not covered by the table, the machine will crash. For instance, if the instruction
to be executed is an ADD but the top stack element is a list rather than an integer, the machine will crash.

4.3.2 The emulator (interpreter) (20pts)

Given the following elements of a list stack machine interpreter written in ML, complete the rest of the
code.

datatype bytecode = B_CST

| B_ADD

| B_SUB

| B_DUP

| B_SWAP

| B_POP

| B_GOTO

| B_IFNZRO

| B_CALL

| B_RET

| B_MKNIL

| B_MKCONS

| B_LISTCASE

| B_PRINT

| B_STOP

| B_INT of int

| B_ADDR of int

CS 451 Programming Paradigms, Spring 2005 4

type program = bytecode Vector.vector

datatype list’ = Nil

| Cons of int * list’

datatype object = (**** part A of your code here ****)

type stack = (**** part B of your code here ****)

fun listToString Nil = "Nil"

| listToString (Cons (i, l)) =

"Cons(" ^ Int.toString i ^ ", " ^ listToString l ^ ")"

fun objectToString (Integer i) = Int.toString i

| objectToString (List l) = listToString l

fun execcode (p: program) (s: stack, pc: int)

: stack * int =

let

fun step (s: stack, pc: int): (stack * int) option =

case Vector.sub (p, pc) of

B_CST => (case Vector.sub (p, pc+1) of B_INT i =>

SOME (Integer i :: s, pc+2))

| B_ADD => (case s of (Integer i2)::(Integer i1)::s’ =>

SOME (Integer (i1+i2) :: s’, pc+1))

(**** part C (the main part) of your code here ****)

fun loop spc =

let

val next = step spc

in

case next of

NONE => spc

| SOME spc’ => loop spc’

end

in

loop (s, pc)

end

fun exec p = execcode p ([], 0)

(* an example: *)

CS 451 Programming Paradigms, Spring 2005 5

val program = Vector.fromList [B_CST, B_INT 1, B_CST,

B_INT 1, B_SUB, B_MKNIL,

B_MKCONS, B_PRINT, B_STOP]

val xxx = exec program;

(* under SML/NJ, the following is printed:

Cons(0, Nil)

val program =

#[B_CST,B_INT 1,B_CST,B_INT 1,B_SUB,B_MKNIL,B_MKCONS,B_PRINT,B_STOP]

: bytecode vector

val xxx = ([List (Cons (#,#))],8) : stack * int

4.3.3 Analysis and discussion (40pts)

Having implemented the interpreter, answer the following questions.

1. (5pts) Manually execute the code below on the stack machine. Show the stack contents after every
instruction and show what is printed on the console:

0: CST 100

2: CST 11

4: ADD

5: MKNIL

6: MKCONS

7: PRINT

8: STOP

2. (5pts) Write stack machine code to create and print the list Cons(111,Cons(222,Nil)).

3. (5pts) The instructions CALL and RET can be used to implement simple functions. What does
the following stack machine program do, assuming that the integer 42 is on the stack top when
execution is started at instruction address 0?

0: CALL 4

2: PRINT

3: STOP

4: DUP

5: DUP

6: MKNIL

7: MKCONS

8: MKCONS

9: MKCONS

10: RET

Show the contents of the stack after each instruction, in the order in which the instructions are
executed.

CS 451 Programming Paradigms, Spring 2005 6

4. (5pts) Write a stack machine program that, given that integer n ≥ 0 is on the stack top, builds and
prints an n-element list of the form Cons(n,Cons(n− 1,...,Cons(1,Nil),...)). Provide
both an iterative and a recursive solution.

5. (5pts) The instruction LISTCASE can be used to test whether the list on the stack top is Nil or a
Cons. If the stack top element is Nil, execution simply continues with the next instruction. If the
stack top element is Cons(i,t), then the integer i and the list tail t are unpacked on the stack and
execution continues at address a.

Consider the following stack machine code fragment:

21: LISTCASE 27

23: CST 999

25: GOTO 28

27: POP

28: PRINT

Assume that the list Cons(111,Cons(222,Nil)) is on the stack top when the function at address
21 is called (by CALL 21). What is on the stack top, and is therefore printed, when control reaches
instruction 28? What is printed if the empty list is on the stack top when CALL 21 is executed?

6. (5pts) Write a stack machine function that, given that a list is on the stack top, computes the sum
of the list elements. Provide both an iterative and a recursive solution.

7. (10pts) Write an ML function

mklist: int -> bytecode Vector.vector

which, for a given integer n ≥ 0 generates stack machine code which, if executed starting with an
initial program counter of 0 and an empty initial stack, will build and print a list of n Cons nodes
of the form:

Cons(2n, Cons(2n−2, ..., Cons(2, Nil) ...))

How to turn in

Turn in your code by running

˜jackmp/cs451TA/handin your-file

on a regular UNM CS machine. You should use whatever filename is appropriate in place of your-file.

Include the following statement with your submission, signed and dated:
I pledge my honor that in the preparation of this assignment I have complied with the University of New
Mexico Board of Regents’ Policy Manual.

