
CS 451 Programming Paradigms, Spring 2005 1

Homework 5 — ML — assigned Wednesday 6 April — due Thursday 21
April

All ML code in this assignment must be encapsulated in appropriate modules (signatures and
structures). Be careful to distinguish internal (auxiliary) components from those that should be
visible to the outside, and write the signatures accordingly. Document the purpose of signatures
and structures.

Reading assignment

Read Chapter 8 ofML for the Working Programmer, focusing on input-output; explore available input-
output primitives in the online SML Basis Library documentation. Read about the mutable store in ML
(type constructorsref andarray), but do not use it in your work.

Read Chapter 7 ofML for the Working Programmer, but ignore all references toabstype, which is
obsolete.

5.1 Real functions [A.2; A.4; C; K.1.1; K.1.3; K.2.3; K.2.5;K.2.7; K.3.1] (50pts)

Warning: In this exercise, the wordfunctionrefers both to ML functions and to mathematical functions.
The intended meaning should be clear from context.

In this exercise we use the following representation for a class of mathematical functions that is a subset
of R → R:

datatype expr = Num of real

| IntNum of int

| ConstE

| ConstPi

| Var of string

| Let of {var: string, value: expr, body: expr}

| Neg of expr

| Add of expr * expr

| Sub of expr * expr

| Mul of expr * expr

| Div of expr * expr

| Sin of expr

| Cos of expr

| Tan of expr

| Arctan of expr

| Exp of expr

| Ln of expr

| Power of expr * expr

type env = string -> real

CS 451 Programming Paradigms, Spring 2005 2

exception Unbound of string

val emptyEnv: env = fn s => raise (Unbound s)

fun extendEnv oldEnv s n s’ = if s’ = s then n else oldEnv s’

exception FunctionUndefinedAtArgument of string

Note that we have an explicitLet construct, similar to awhereclause in ordinary mathematical usage.
The environment typeenv can be used to supply values for the free variables of an expression (“param-
eters”, in mathematical parlance).

Usage example: the mathematical expression
√

2π sinx
x can be represented as

Mul (Power (Mul (IntNum 2, ConstPi), Div (IntNum 1, IntNum 2)),

Div (Sin (Var "x"), Var "x")

) : expr

All the code should be placed in a single structureRealFunctions: REALFUNCTIONS. Carefully design
the signatureREALFUNCTIONS so that it specifies no more components than absolutely necessary.

CS 451 Programming Paradigms, Spring 2005 3

5.1.1 Evaluator (10pts)

Write the ML function:

evalExpr: {

func: expr,

env: env

} -> real

which evaluates the expressionfunc in the environmentenv. If there exists some variable that is free in
the expressionfunc but not defined in the environmentenv, the ML functionevalExpr should raise the
exceptionUnbound.

Usage example: evaluating the mathematical functionx 7→ e−x2
at the pointx = 2.3 can be represented

as

evalExpr {func = Exp (Neg (Power (Var "x", IntNum 2))),

env = extendEnv emptyEnv "x" 2.3

}

which should evaluate to 5.04·10−3.

CS 451 Programming Paradigms, Spring 2005 4

5.1.2 Drawing (40pts)

Write the ML function:

plotExprs: {

fies: {func: expr, indep: string, env: env} list,

interval: {lower: real, upper: real},

numPoints: int

} -> string

which is a combination of an expression evaluator and a function plotter that generates PostScript output.
The ML functionplotExprs should plot each supplied function expression over the given interval with
the given number of internal points. Theindeps provided are the variables that are to be considered as
the independent variables of their respectivefuncs. The value of each such independent variable ranges
over the same giveninterval; note that the particular variable name may be different in each of the
function expressions. Theenvs should provide the values for any other free variables of each of the
funcs.

The ML functionplotExprs should handle singularities gracefully and still produce an appropriate plot.
Hint: we suggest two approaches: one is building into the evaluator certain knowledge of the behavior
of elementary real functions, such as, e.g., that the function ln is defined only for positive arguments;
and the other is relying on the behavior of SML Basis Library functions from the structureReal and
inspecting their results.

The drawing area of the resulting PostScript program shouldbe consistentfor functions with arbitrary
domains and ranges; to make this precise, we insist that the bounding box in the generated PostScript
must be 0 0 500 500, and the plots should fully use the drawing rectangle.

Usage example: to plot the mathematical functionsx 7→ e−x2
and t 7→ Asinωt with parameter values

A = π andω = 0.7 on the interval[−π,π], invoke

plotExprs {

fies =

[

{

func = Exp (Neg (Power (Var "x", IntNum 2))),

indep = "x",

env = emptyEnv

},

{

func = Mul (Var "A", Sin (Mul (Var "omega", Var "t"))),

indep = "t",

env = extendEnv (extendEnv emptyEnv "A" Math.pi) "omega" 0.7

}

],

interval = {lower= ~Math.pi, upper= Math.pi},

numPoints = 1000

}

CS 451 Programming Paradigms, Spring 2005 5

The result should look like:

CS 451 Programming Paradigms, Spring 2005 6

5.2 Programming language semantics [C; K.1.1; K.1.3; K.1.4; K.2.5; K.2.7; K.3.1] (50pts)

The goal is to add new features to the language PCF discussed in class. For each new feature, do
the following: extend the static and dynamic semantics to treat the new syntactic forms; extend the
scanner and parser as needed; extend the type checker and theinterpreter; write programs in the extended
language; and test.

Carefully design the various modules you will need for this exercise. The code provided to you is in the
ML core language, and it must be reorganized to take advantage of ML modules. Use your experience
from previous CS classes to come up with a good design.

The code must be built using the SML/NJ Compilation Manager (instead of manually loading modules
usinguse).

5.2.1 No new features (10pts)

Rewrite the provided code to use ML modules.

5.2.2 Let expressions (10pts)

We extend the syntax of expressions by allowing a let-binding:

e−→ let val x = e1 in e2 end

The intended meaning is just like thelet in ML (but there is no polymorphism involved).

5.2.3 List primitives (20pts)

We extend the syntax of types as follows:

τ −→ list(τ)

We extend the syntax of expressions as follows:

e−→ nil(τ)

e−→ cons(τ , e1 , e2)

e−→ null(τ , e)

e−→ hd(τ , e)

e−→ tl(τ , e)

Thus we can write, for instance:

fun len (l: int list): int is

if int null(int,l) then 0 else +(1,len(tl(int,l))) fi

end

The intended meaning is that these list primitives implement homogeneous lists, as in ML. The argument
τ to the primitives is always the list element type. In some sense, the primitives are arbitrarily overloaded
with respect to the list element type, but there is no polymorphism involved.

CS 451 Programming Paradigms, Spring 2005 7

5.2.4 Together (10pts)

Both let expressions and list primitives are added.

5.2.5 Polymorphism (100pts extra credit)

Extend the syntax of types as follows:

τ −→ α

5.2.6 Compilation (100pts extra credit)

Translate PCF to the list stack machine code from Homework 4.3.1.

How to turn in

Turn in your code by running

˜jackmp/cs451TA/handin your-file

on a regular UNM CS machine. You should use whatever filename is appropriate in place of your-file.

Include the following statement with your submission, signed and dated:
I pledge my honor that in the preparation of this assignment Ihave complied with the University of New
Mexico Board of Regents’ Policy Manual.

