CS 451 Programming Paradigms, Spring 2005 1

Homework 5 — ML — assigned Wednesday 6 April — due Thursday 21
April

All ML code in this assignment must be encapsulated in appropate modules (signatures and
structures). Be careful to distinguish internal (auxiliary) components from those that should be
visible to the outside, and write the signatures accordingl Document the purpose of signatures
and structures.

Reading assignment

Read Chapter 8 dfiL for the Working Programmeifocusing on input-output; explore available input-
output primitives in the online SML Basis Library documdita. Read about the mutable store in ML
(type constructorgef andarray), but do not use it in your work.

Read Chapter 7 oML for the Working Programmerbut ignore all references tabstype, which is
obsolete.

5.1 Realfunctions[A.2; A4;C; K.1.1; K.1.3; K.2.3; K.2.5;K.2.7; K.3.1] (50pts)

Warning: In this exercise, the worflinctionrefers both to ML functions and to mathematical functions.
The intended meaning should be clear from context.

In this exercise we use the following representation fomaxbf mathematical functions that is a subset
of R - R:

Num of real

IntNum of int

ConstE

ConstPi

Var of string

Let of {var: string, value: expr, body: expr}

datatype expr

Neg of expr

Add of expr * expr
Sub of expr * expr
Mul of expr * expr
Div of expr * expr

Sin of expr

Cos of expr

Tan of expr

Arctan of expr

Exp of expr

Ln of expr

Power of expr * expr

type env = string -> real

CS 451 Programming Paradigms, Spring 2005 2

exception Unbound of string
val emptyEnv: env = fn s => raise (Unbound s)
fun extendEnv oldEnv s n s’ = if s’ = s then n else oldEnv s’

exception FunctionUndefinedAtArgument of string

Note that we have an expliditet construct, similar to avhereclause in ordinary mathematical usage.
The environment typenv can be used to supply values for the free variables of an ssijore (“param-
eters”, in mathematical parlance).

Usage example: the mathematical express//'dms%‘ can be represented as

Mul (Power (Mul (IntNum 2, ConstPi), Div (IntNum 1, IntNum 2)),
Div (Sin (Var "x"), Var "x")

) : expr

All the code should be placed in a single structtselFunctions: REALFUNCTIONS. Carefully design
the signatur®@EALFUNCTIONS so that it specifies no more components than absolutely seges

CS 451 Programming Paradigms, Spring 2005 3

5.1.1 Evaluator (10pts)

Write the ML function:

evalExpr: {
func: expr,
env: env
} > real

which evaluates the expressidtnc in the environmenénv. If there exists some variable that is free in
the expressiotiunc but not defined in the environmeatv, the ML functionevalExpr should raise the
exceptionUnbound.

Usage example: evaluating the mathematical functien e at the pointx = 2.3 can be represented
as

evalExpr {func = Exp (Neg (Power (Var "x", IntNum 2))),
env = extendEnv emptyEnv "x" 2.3

¥

which should evaluate to.®4-103.

CS 451 Programming Paradigms, Spring 2005 4

5.1.2 Drawing (40pts)

Write the ML function:

plotExprs: {
fies: {func: expr, indep: string, env: env} list,
interval: {lower: real, upper: reall,
numPoints: int
} -> string

which is a combination of an expression evaluator and a fomgtiotter that generates PostScript output.
The ML functionplotExprs should plot each supplied function expression over thenginterval with

the given number of internal points. Thedeps provided are the variables that are to be considered as
the independent variables of their respecfiuacs. The value of each such independent variable ranges
over the same givetinterval; note that the particular variable name may be differentaicheof the
function expressions. Thenvs should provide the values for any other free variables oh ed the
funcs.

The ML functionplotExprs should handle singularities gracefully and still produs@ppropriate plot.
Hint: we suggest two approaches: one is building into théuetar certain knowledge of the behavior
of elementary real functions, such as, e.g., that the fandti is defined only for positive arguments;
and the other is relying on the behavior of SML Basis Libramdtions from the structureeal and
inspecting their results.

The drawing area of the resulting PostScript program shbaldonsistentfor functions with arbitrary
domains and ranges; to make this precise, we insist thatadtmlding box in the generated PostScript
must be 0 0 500 500, and the plots should fully use the dravéo@ngle.

Usage example: to plot the mathematical functigns e andt — Asincwt with parameter values
A= mandw = 0.7 on the interva[—r, 7], invoke

plotExprs {

fies =
[
{
func = Exp (Neg (Power (Var "x", IntNum 2))),
indep = "x",
env = emptyEnv
3,
{
func = Mul (Var "A", Sin (Mul (Var "omega", Var "t"))),
indep = "t",
env = extendEnv (extendEnv emptyEnv "A" Math.pi) "omega" 0.7
}
1,

interval = {lower= “Math.pi, upper= Math.pi},
numPoints = 1000

CS 451 Programming Paradigms, Spring 2005

The result should look like:

"o00 X gv: temp.ps !
__Flle || State||Page|| Portralt|| 1.000|BBox|| tempps || MonMar 1220705 2004 |
varale Size |

_ open |

Pt |

it i

_ saves |

e v

 Fectsply |

CS 451 Programming Paradigms, Spring 2005 6

5.2 Programming language semantics [C; K.1.1; K.1.3; K.1,4K.2.5; K.2.7; K.3.1] (50pts)

The goal is to add new features to the language PCF discusseldss. For each new feature, do
the following: extend the static and dynamic semantics ¢attthe new syntactic forms; extend the
scanner and parser as needed; extend the type checker ametpester; write programs in the extended
language; and test.

Carefully design the various modules you will need for thisreise. The code provided to you is in the
ML core language, and it must be reorganized to take advargalylL modules. Use your experience
from previous CS classes to come up with a good design.

The code must be built using the SML/NJ Compilation Managetéad of manually loading modules
usinguse).

5.2.1 No new features (10pts)

Rewrite the provided code to use ML modules.

5.2.2 Letexpressions (10pts)

We extend the syntax of expressions by allowing a let-bigdin
e— let val X=€; in & end
The intended meaning is just like thet in ML (but there is no polymorphism involved).

5.2.3 List primitives (20pts)

We extend the syntax of types as follows:
T—1ist(T)

We extend the syntax of expressions as follows:
e—nil(T1)

e— cons(T,€e ,€)

e—null(T,e)

e—hd(71,e€)

e—tl(1,€)

Thus we can write, for instance:

fun len (1: int list): int is

if int null(int,l) then O else +(1,len(tl(int,1))) fi
end

The intended meaning is that these list primitives implenhemogeneous lists, as in ML. The argument
T to the primitives is always the list element type. In somessethe primitives are arbitrarily overloaded
with respect to the list element type, but there is no polyhimm involved.

CS 451 Programming Paradigms, Spring 2005 7

5.2.4 Together (10pts)

Both let expressions and list primitives are added.

5.2.5 Polymorphism (100pts extra credit)

Extend the syntax of types as follows:

T—a

5.2.6 Compilation (100pts extra credit)

Translate PCF to the list stack machine code from Homew&HK 4.

How to turnin

Turn in your code by running
“jackmp/cs451TA/handin your-file
on a regular UNM CS machine. You should use whatever filenarappropriate in place of your-file.

Include the following statement with your submission, sigand dated:
| pledge my honor that in the preparation of this assignmeérave complied with the University of New
Mexico Board of Regents’ Policy Manual.

