
CS 451 Programming Paradigms, Spring 2006 1

Homework 3 — ML core language — assigned Tuesday 7 March — due
Tuesday 21 March

3.1 Boolean formulae: writing recursive functions over algebraic datatypes (15pts) [A.1;
C; K.1.1; K.2.3; K.2.4]

We can use the following declaration to introduce a languageof Boolean formulae:

datatype expr = Const of bool

| Var of int

| And of expr list

| Or of expr list

| Not of expr

For instance, the Boolean formula(¬x1∨ x2∨ x3)∧ (x1∨¬x2) is represented by the ML termAnd [Or

[Not (Var 1), Var 2, Var 3], Or [Var 1, Not (Var 2)]]. TheAnd and theOr lists have at
least two elements (conjuncts/disjuncts).

3.1.1 Simple Boolean evaluator (5pts)

Write a functioneval, with type env -> expr -> bool, which computes the Boolean value of a
formula.

The typeenv is the type of environments; an environment is simply an assignment of Boolean values
to variablesxi. Some concrete representation must be chosen forenv, and we choose a binary tree, as
follows:

datatype (’a,’b) searchtree =

Empty

| Node of ’a * ’b * (’a,’b) searchtree * (’a,’b) searchtree

fun lookup (equal: ’a * ’a -> bool) (lessthan: ’a * ’a -> bool)

(t: (’a,’b) searchtree) (k: ’a)

: ’b option =

case t of

Empty => NONE

| Node (key,value,left,right) =>

if equal (k,key) then

SOME value

else if lessthan (k,key) then

lookup equal lessthan left k

else

lookup equal lessthan right k

type env = (int, bool) searchtree



CS 451 Programming Paradigms, Spring 2006 2

3.1.2 More on Boolean formulae: satisfiability checker (5pts)

Write a functionsatisfiable: expr -> bool, which determines if the given formula is satisfiable,
i.e., true for some assignment of Boolean values to the variables that appear in the formula. Note:
efficiency is not a concern.

3.1.3 More on Boolean formulae: tautology checker (5pts)

Write a functiontautology: expr -> bool, which determines if the given formula is a tautology,
i.e., true forall possible assignments of Boolean values to the variables that appear in the formula. Note:
efficiency is not a concern.

3.2 Using lists for arithmetic: writing recursive functions over lists (20pts) [A.3; E;
K.2.2]

This is a continuation of homework exercise 2.1, and all conventions carry over from that exercise. Write
the following functions for computing with arbitrarily large numbers (nonnegative integers) represented
as lists of digits in arbitrary radices:

1. (2pts)subLongInts: numeral * numeral -> numeral, such that
subLongInts (a,b)
computes the differencea−b. Precondition is thata ≥ b.

2. (1pt)eqLongInts: numeral * numeral -> bool, such that
eqLongInts (a,b)
determines ifa andb are equal.

3. (2pts)ltLongInts: numeral * numeral -> bool, such that
ltLongInts (a,b)
determines ifa < b.

4. (15pts)divmodLongInts: numeral * numeral -> numeral * numeral, such that
divmodLongInts (a,b)
computes the quotient and the remainder in the divisiona/b. Precondition is thatb is not 0.

3.3 Drawing: writing recursive functions over lists; manipulating strings (15pts) [A.4;
E; K.2.2]

In this exercise, we develop some simple tools for drawing.

A drawing is just a line drawing consisting of some number of polygons. A polygon is given as a list of
vertices, and a vertex is simply a pair of real numbers for thex andy coordinates.

For instance,

[[(100.0,100.0),(100.0,200.0),(200.0,100.0)],

[(150.0,150.0),(150.0,200.0),(200.0,200.0),(200.0,150.0)]]

is an internal representation in ML of a drawing consisting of a triangle and a square.



CS 451 Programming Paradigms, Spring 2006 3

3.3.1 Creating the drawing command (10pts)

Your task is to convert such a representation of a drawing into a simple page description in the PostScript
language. Specifically, you are to write an ML functionmakeCommand: (real * real) list list

-> string.

The result returned bymakeCommand is an ML value of type string, which must contain valid PostScript
commands for drawing the given polygons. When the SML/NJ toplevel prints this result, print it us-
ing print, and paste it by hand into a fileresult.ps, and then display it by running GhostScript:gs
result.ps.

For instance, the expression

makeCommand [[(100.0,100.0),(100.0,200.0),(200.0,100.0)],

[(150.0,150.0),(150.0,200.0),(200.0,200.0),(200.0,150.0)]]

should evaluate to the string:

%!PS-Adobe-3.0 EPSF-3.0

%%BoundingBox: 100.0 100.0 200.0 200.0

100.0 100.0 moveto

100.0 200.0 lineto

200.0 100.0 lineto

closepath

stroke

150.0 150.0 moveto

150.0 200.0 lineto

200.0 200.0 lineto

200.0 150.0 lineto

closepath

stroke

showpage

%%EOF

which will be displayed as in Figure 1.

Note that the bounding box is the smallest upright rectanglesuch that no points of the drawing lie outside
it; it is specified by giving the coordinates of its lower leftand upper right corners, in our example
(100.0,100.0) and(200.0,200.0).

The example shown here entirely suffices as a pattern to follow; however, if you would like to learn more
about the PostScript language you can follow the links on thecourse web page.

Hint: you need to learn how to control the top level of SML/NJ so that it does not truncate very long
strings when it prints them.



CS 451 Programming Paradigms, Spring 2006 4

Figure 1: A triangle and a square.

3.3.2 Streams (file input/output) (5pts)

Read about file output in ML in Paulson, Section 8.8, and in thedocumentation of the Standard ML Basis
Library. Produce the output PostScript file directly from MLinstead of cutting and pasting. (Implement
a functiondumpStringToFile: string * string -> unit, which takes two strings; the first is
the name of the file to be written, and the second is the string that is to be dumped to the file.)

3.4 Using lists for text (10pts) [K.2.2]

Write a functionsplit_into_words to split text into words. Spaces, tabs, and new lines are word
separators.

The function you write will replace the comment in the code fragment below to make the whole work.

local

fun acceptfile (fileName: string) : string =

let

val f = TextIO.openIn fileName

val s = TextIO.inputAll f

val _ = TextIO.closeIn f

in

s

end

type word = char list

type sentence = char list

(* your code goes here *)

fun split_into_words (s: sentence): word list =

(* begin your code *)

(* end your code *)

in



CS 451 Programming Paradigms, Spring 2006 5

fun main (filename: string) =

let

val s = acceptfile filename

val cl = explode s

val wl = split_into_words cl

in

wl

end

end

The declaration ofsplit_into_words should be expressed in terms of the language primitives (i.e.,
without the use of library functions).

3.5 An arithmetic expression evaluator: writing recursivefunctions over algebraic datatypes
(10pts) [C; K.1.1; K.2.3; K.2.4; K.2.7]

We use the following data type declaration to introduce a language of simple arithmetic expressions, with
variables and binding:

datatype expr = Num of int

| Var of string

| Let of {var: string, value: expr, body: expr}

| Add of expr * expr

| Sub of expr * expr

| Mul of expr * expr

| Div of expr * expr

type env = string -> int

exception Unbound of string

val emptyEnv: env = fn s => raise (Unbound s)

fun extendEnv oldEnv s n s’ = if s’ = s then n else oldEnv s’

exception ExprDivByZero

Write a functionevalInEnv, with typeenv -> expr -> int, which computes the arithmetic value of
an expression (which may have free variables) in a given environment (a mapping from variables toint
values).

Then define:

fun eval e = evalInEnv emptyEnv e

so thateval evaluates closed expressions.

3.6 Number representations: signed integers (15pts) [A.3;E; K.2.2]

Use the following representation for signed integers:



CS 451 Programming Paradigms, Spring 2006 6

datatype sign = Pos | Neg

datatype numeral = Numeral of {sign: sign, magnitude: int}

The representation invariants are as follows. Positive signed integers are represented as aPos sign and a
positivemagnitude; negative signed integers are represented as aNeg sign and a positivemagnitude;
zero is represented as aPos sign and 0magnitude.

Implement the following operations over signed integers:

1. (2pts)toString: numeral -> string, which produces the common mathematical representa-
tion of a number, with an explicit sign;fromInt: int -> numeral, to make a signed integer
from an ordinary SMLint; andtoInt: numeral -> int, to make an ordinary SMLint from
a signed integer.

2. (10pts)addSignedInt: numeral * numeral -> numeral,
subSignedInt: numeral * numeral -> numeral,
mulSignedInt: numeral * numeral -> numeral,
divSignedInt: numeral * numeral -> numeral,
andmodSignedInt: numeral * numeral -> numeral,
for the arithmetic operators over signed integers; they must agree with the arithmetic operators
defined for SMLints.

3. (3pts)ltSignedInt: numeral * numeral -> bool

andeqSignedInt: numeral * numeral -> bool,
for the relational operators over signed integers; they must agree with the relational operators
defined for SMLints.

3.7 Number representations: rationals (15pts) [A.3; E; K.2.2]

Use the following representation for rational numbers:

type rat = int * int

The representation invariants are as follows. An SML value(p,q) represents the rational numberp
q .

The denominatorq is positive andp
q is a reduced fraction.

Implement the following operations over rationals, with the obvious mathematical meaning:

1. (1pt)toString: rat -> string; e.g.,toString (3, 4) should evaluate to"3/4".

2. (2pts)fromInt: int -> rat, to make a rational from an ordinary SMLint.

3. (12pts)addRat: rat * rat -> rat,
subRat: rat * rat -> rat,
mulRat: rat * rat -> rat,
divRat: rat * rat -> rat,
ltRat: rat * rat -> bool,
andeqRat: rat * rat -> bool.



CS 451 Programming Paradigms, Spring 2006 7

3.8 Extra credit (25pts)

Consider the matrixTm,n of homework exercise 1.6.2.

1. (5pts) Determine the closed form for the entries ofTm,n.

2. (10pts) Using the typetype realmatrix = real list list to represent real matrices, write
a functiondet: realmatrix -> real to compute the determinant of a matrix,using cofactor
expansion.

3. LetSm,n, j be ann×n submatrix ofTm,n consisting ofn consecutive rows ofTm,n starting with the
j-th row.

(a) (5pts) Show that detSm,n, j is the same for allj.

(b) (5pts) Determine the closed form for detSm,n, j.

How to turn in

Submission instructions will be posted to the course mailing list.

Include the following statement with your submission, signed and dated:
I pledge my honor that in the preparation of this assignment I have complied with the University of New
Mexico Board of Regents’ Policy Manual.


