
CS 451 Programming Paradigms, Spring 2006 1

Homework 6 — ML module language — assigned Monday 17 April — due
Tuesday 25 April

All code in this homework assignment must use the SML module language, and it must be organized
using the SML/NJ Compilation Manager. Place all functor applications together in a file link.sml. Put
all tests into a structure Tests in the file tests.sml.

6.1 Lambda-calculus (30pts)

A library of λ -terms

I , λx.x K , λxy.x S , λ f gx.( f x)(gx) B , λ f gx. f (gx) C , λ f gx. f xg

ω , λx.xx Ω , ωω Y , λ f .(λx. f (x x))(λx. f (x x))

true , λxy.x false , λxy.y not , λ t.t false true cond , λee1e2.ee1e2

pair , λe1e2 f . f e1e2 fst , λ p.p true snd , λ p.p false

0 , λ f x.x 1 , λ f x. f x 2 , λ f x. f ( f x) succ , λn f x.n f ( f x) add , λmn f x.m f (n f x)
iszero , λn.n(λx.false)true prefn , λ f p.pair false(cond(fst p)(snd p)( f (sndp)))
pred , λn f x.snd(n(prefn f )(pair true x))

cons , λhts.sht hd , λL.L true tl , λL.L false nil , λx.true isempty , λL.L(λht.false)

Normal forms of some λ -terms

SKK � λx.x K(SII) � λab.bb S(S(KS)(KI))(KI) � λab.bb
SSSSSSS � λab.(ab(ab(abλc.ac(bc))))

6.1.1

Show that the following λ -terms have a normal form:

1. (λy.yyy)((λab.a)I(SS))

2. (λyz.zy)((λx.xxx)(λx.xxx))(λw.I)

6.1.2

For each of the following λ -terms either find its normal form or show that it has no normal form:

1. (λx.x x)(λx.x)

2. (λx.x x)(λx.x x)

3. Y

4. Y(λy.y)



CS 451 Programming Paradigms, Spring 2006 2

6.1.3

(Turing) Let A , λxy.y(xxy). Let Θ , AA. Show that Θ is a fixed-point operator.

6.2 Lambda-calculus Interpreter (70pts) [K.1.1; K.3.1; K.3.2]

Develop an interpreter for the λ -calculus that will automate reductions. This program will follow liter-
ally the rules for β -conversion and the rules for substitution. The internal representation of λ -terms is
essentially the same as the textual representation, though the data type makes the bracketting structure
apparent, and pattern-matching easier.

We must first specify the internal representation for λ -terms. The following type must be used:

type var = string

datatype expr = Var of var

| Abs of var * expr

| App of expr * expr

The following tasks build the interpreter bottom-up.

6.2.1

Implement an environment mapping identifiers to λ -terms, with type string -> expr. There should be
a mechanism to build new environments out of old ones by introducing a new definition for an identifier.

6.2.2

Implement a function freeVariables: expr -> var list.

6.2.3

Implement a function isFreeVariable: var * expr -> bool.

6.2.4

Implement a function substitute: expr * var * expr -> expr, such that substitute (e, x, t)

substitutes t for x in e. To generate fresh variable symbols, use the following code:

local

val counter = ref 0

in

fun genSym () =

let

val x = !counter



CS 451 Programming Paradigms, Spring 2006 3

val _ = counter := x+1

in

"_" ^ Int.toString x

end

end

6.2.5

Implement a function isBetaRedex: expr -> bool.

6.2.6

Implement a function convertBetaRedex: expr -> expr.

6.2.7

Implement a function convert: expr -> expr option which finds a leftmost outermost β redex, if
any, and performs β conversion.

6.2.8

Implement a function reduce: expr -> expr that applies β conversion steps in normal order until a
normal form is found.

6.2.9

Test your program by reducing various λ -terms, such as: SKK; K(SII); S(S(KS)(KI))(KI); SSSSSSS.

6.2.10

Implement the factorial function over Church numerals. (Use the Y combinator.) Test your program by
having it compute n! for various n. Report how fast the evaluator works for different inputs or input sizes.
(Take into account that with a unary representation, different numbers have different sizes.)

How to turn in

Submission instructions have been posted to the course mailing list.

Include the following statement with your submission, signed and dated:
I pledge my honor that in the preparation of this assignment I have complied with the University of New
Mexico Board of Regents’ Policy Manual.


