CS 451 Programming Paradigms, Spring 2006 1

Homework 6 — ML module language — assigned Monday 17 April — due
Tuesday 25 April

All code in this homework assignment must use the SML module language, and it must be organized
using the SML/NJ Compilation Manager. Place all functor applications together in a file 1ink.sml. Put
all tests into a structure Tests in the file tests.sml.

6.1 Lambda-calculus (30pts)

Alibrary of A-terms

1£ Axx K £ Axy.x S £ A fgx.(fx)(gx) B = A fgx.f(gx) C& Afgx.fxg
W= AXXX Q2 ww Y 2 A (AXF(xX)(Ax. f(xX))
true £ Axy.x false £ Axy.y not £ At.t false true cond £ Aeeje.0018
pair 2 Aeef.feie fst = A p.p true snd £ A p.p false
02Afxx 12Afxfx 22 Afxf(fx) succ 2 Anfx.nf(fx) add 2 Amnfx.mf(nfx)
iszero = An.n(Ax false)true prefn = A f p.pair false(cond(fst p)(snd p)(f(sndp)))

pred 2 Anfx.snd(n(prefn f)(pair true x))
cons 2 Ahtssht hd 2 AL.Ltrue tI2AL.Lfalse nil2Axtrue isempty = AL.L(Aht.false)

Normal formsof some A-terms

SKK — Ax.x K(SII) — Aab.bb S(S(KS)(K1))(KI) —» Aab.bb
SSSSSSS —» Aab.(ab(ab(abA c.ac(bc))))

6.1.1
Show that the following A -terms have a normal form:

1. (Ayyyy)((Aab.a)l(SS))
2. (Ayzzy) ((AX200) (AXXXX)) (Aw.l)

6.1.2
For each of the following A -terms either find its normal form or show that it has no normal form:

1. (AXXX)(AX.X)
2. (AXXX)(AX.XX)
.Y

4. Y(Ayy)

CS 451 Programming Paradigms, Spring 2006 2

6.1.3

(Turing) Let A2 Axy.y(xxy). Let © £ AA. Show that © is a fixed-point operator.

6.2 Lambda-calculusInterpreter (70pts) [K.1.1; K.3.1; K.3.2]

Develop an interpreter for the A-calculus that will automate reductions. This program will follow liter-
ally the rules for -conversion and the rules for substitution. The internal representation of A-terms is
essentially the same as the textual representation, though the data type makes the bracketting structure
apparent, and pattern-matching easier.

We must first specify the internal representation for A-terms. The following type must be used:

type var = string

datatype expr = Var of var
| Abs of var * expr
| App of expr * expr

The following tasks build the interpreter bottom-up.

6.2.1

Implement an environment mapping identifiers to A -terms, with type string -> expr. There should be
a mechanism to build new environments out of old ones by introducing a new definition for an identifier.

6.2.2

Implement a function freeVariables: expr -> var list.

6.2.3

Implement a function isFreeVariable: var * expr -> bool

6.24

Implement a function substitute: expr * var * expr -> expr,suchthat substitute (e, x, t)
substitutes t for x in e. To generate fresh variable symbols, use the following code:

local
val counter = ref O
in
fun genSym () =
let
val x = !counter

CS 451 Programming Paradigms, Spring 2006 3

val _ = counter := x+1
in
"_" 7 Int.toString x
end
end
6.2.5

Implement a function isBetaRedex: expr -> bool.

6.2.6

Implement a function convertBetaRedex: expr -> expr.

6.2.7

Implement a function convert: expr -> expr option which finds a leftmost outermost 8 redex, if
any, and performs 3 conversion.

6.2.8

Implement a function reduce: expr -> expr that applies 3 conversion steps in normal order until a
normal form is found.

6.2.9

Test your program by reducing various A-terms, such as: SKK; K(SIl); S(S(KS)(KI))(KI); SSSSSSS.

6.2.10

Implement the factorial function over Church numerals. (Use the Y combinator.) Test your program by
having it compute n! for various n. Report how fast the evaluator works for different inputs or input sizes.
(Take into account that with a unary representation, different numbers have different sizes.)

How toturnin

Submission instructions have been posted to the course mailing list.

Include the following statement with your submission, signed and dated:
| pledge my honor that in the preparation of this assignment | have complied with the University of New
Mexico Board of Regents' Policy Manual.

