
CS 451 Programming Paradigms, Spring 2007 1

Homework 3 — Simple ML programs — assigned Tuesday 6 March — due
Tuesday 20 March

3.1 Boolean formulae: writing recursive functions over algebraic datatypes (25pts) [A.1;
C; K.1.1; K.2.3; K.2.4]

We can use the following declaration to introduce a languageof Boolean formulae:

datatype expr = Const of bool

| Var of int

| And of expr list

| Or of expr list

| Not of expr

For instance, the Boolean formula(¬x1∨ x2∨ x3)∧ (x1∨¬x2) is represented by the ML termAnd [Or

[Not (Var 1), Var 2, Var 3], Or [Var 1, Not (Var 2)]]. TheAnd and theOr lists have at
least two elements (conjuncts/disjuncts).

3.1.1 Simple Boolean evaluator (5pts)

Write a functioneval, with type env -> expr -> bool, which computes the Boolean value of a
formula.

The typeenv is the type of environments; an environment is simply an assignment of Boolean values
to variablesxi. Some concrete representation must be chosen forenv, and we choose a binary tree, as
follows:

datatype (’a,’b) searchtree =

Empty

| Node of ’a * ’b * (’a,’b) searchtree * (’a,’b) searchtree

fun lookup (equal: ’a * ’a -> bool) (lessthan: ’a * ’a -> bool)

(t: (’a,’b) searchtree) (k: ’a)

: ’b option =

case t of

Empty => NONE

| Node (key,value,left,right) =>

if equal (k,key) then

SOME value

else if lessthan (k,key) then

lookup equal lessthan left k

else

lookup equal lessthan right k

type env = (int, bool) searchtree



CS 451 Programming Paradigms, Spring 2007 2

3.1.2 More on Boolean formulae: satisfiability checker (10pts)

Write a functionsatisfiable: expr -> bool, which determines if the given formula is satisfiable,
i.e., true for some assignment of Boolean values to the variables that appear in the formula. Note:
efficiency is not a concern.

3.1.3 More on Boolean formulae: tautology checker (10pts)

Write a functiontautology: expr -> bool, which determines if the given formula is a tautology,
i.e., true forall possible assignments of Boolean values to the variables that appear in the formula. Note:
efficiency is not a concern.

3.2 An arithmetic expression evaluator: writing recursivefunctions over algebraic datatypes
(15pts) [C; K.1.1; K.2.3; K.2.4; K.2.7]

We use the following data type declaration to introduce a language of simple arithmetic expressions, with
variables and binding:

datatype expr = Num of int

| Var of string

| Let of {var: string, value: expr, body: expr}

| Add of expr * expr

| Sub of expr * expr

| Mul of expr * expr

| Div of expr * expr

type env = string -> int

exception Unbound of string

val emptyEnv: env = fn s => raise (Unbound s)

fun extendEnv oldEnv s n s’ = if s’ = s then n else oldEnv s’

exception ExprDivByZero

Write a functionevalInEnv, with typeenv -> expr -> int, which computes the arithmetic value of
an expression (which may have free variables) in a given environment (a mapping from variables toint
values).

Then define:

fun eval e = evalInEnv emptyEnv e

so thateval evaluates closed expressions.

3.3 Number representations: rationals (15pts) [A.3; E; K.2.2]

Use the following representation for rational numbers:



CS 451 Programming Paradigms, Spring 2007 3

type rat = IntInf.int * IntInf.int

The representation invariants are as follows. An SML value(p,q) represents the rational numberp
q .

The denominatorq is positive andp
q is a reduced fraction.

Implement the following operations over rationals, with the obvious mathematical meaning:

1. (1pt)toString: rat -> string; e.g.,toString (3, 4) should evaluate to"3/4".

2. (2pts)fromInt: int -> rat, to make a rational from an ordinary SMLint.

3. (12pts)addRat: rat * rat -> rat,
subRat: rat * rat -> rat,
mulRat: rat * rat -> rat,
divRat: rat * rat -> rat,
ltRat: rat * rat -> bool,
andeqRat: rat * rat -> bool.

3.4 Polymorphic arithmetic: ordered fields and matrices over them (30pts) [A.2; A.3; E;
K.2.2; K.2.3]

In this exercise you are asked to put together a software framework using components you worked on in
previous homework assignments.

The following type declarations will be used:

type ’a lvector = ’a list

type ’a lmatrix = ’a list list

type ’a orderedfield =

{

tostring: ’a -> string,

add: ’a * ’a -> ’a,

mul: ’a * ’a -> ’a,

addid: ’a,

mulid: ’a,

addinv: ’a -> ’a,

mulinv: ’a -> ’a,

lt: ’a * ’a -> bool,

eq: ’a * ’a -> bool

}

val realorderedfield: real orderedfield =

{

tostring = Real.toString,

add = Real.+,

mul = Real.*,

addid = 0.0,

mulid = 1.0,



CS 451 Programming Paradigms, Spring 2007 4

addinv = Real.~,

mulinv = fn x => 1.0 / x,

lt = Real.<,

eq = Real.==

}

Matrices have at least one row and at least one column, and arerepresented in row-major form (a matrix is
a list of rows, and a row is a list of elements). All operationsare assumed to have conformant arguments.

Define the following polymorphic functions for linear algebra:

3.4.1 (1pt)

gmI: ’a orderedfield -> int -> ’a lmatrix, to make the identity matrix of given size.

3.4.2 (1pt)

gvsp: ’a orderedfield -> ’a lvector * ’a -> ’a lvector, to multiply a vector by a scalar.

3.4.3 (1pt)

gmsp: ’a orderedfield -> ’a lmatrix * ’a -> ’a lmatrix, to multiply a matrix by a scalar.

3.4.4 (1pt)

gvvs: ’a orderedfield -> ’a lvector * ’a lvector -> ’a lvector, to add two vectors.

3.4.5 (1pt)

gmms: ’a orderedfield -> ’a lmatrix * ’a lmatrix -> ’a lmatrix, to add two matrices.

3.4.6 (1pt)

gvvp: ’a orderedfield -> ’a lvector * ’a lvector -> ’a, to compute the inner product of
two vectors.

3.4.7 (4pts)

gmt: ’a lmatrix -> ’a lmatrix, to transpose a matrix.



CS 451 Programming Paradigms, Spring 2007 5

3.4.8 (4pts)

gmvp: ’a orderedfield -> ’a lmatrix * ’a lvector -> ’a lvector, to compute a matrix-
vector product.

3.4.9 (5pts)

gmmp: ’a orderedfield -> ’a lmatrix * ’a lmatrix -> ’a lmatrix, to compute a matrix-
matrix product.

3.4.10 (5pts)

gminv: ’a orderedfield -> ’a lmatrix -> ’a lmatrix, to invert a matrix.

3.4.11 (5pts)

gmdet: ’a orderedfield -> ’a lmatrix -> ’a, to compute the determinant of a matrix.

3.4.12 (1pts)

Using the typerat from the preceding exercise, declare a valueratorderedfield: rat orderedfield,
to collect the various operations on rationals.

Thoroughly test your polymorphic functions for linear algebra using these two examples:

• The built-in reals,realorderedfield.

• The rationals,ratorderedfield.

Implementations should be reasonably time- and space-efficient. For instance, computing the determi-
nant by cofactor expansion takes more than polynomial time and is not considered efficient.



CS 451 Programming Paradigms, Spring 2007 6

3.5 Higher-order functions [C; E; K.1.1; K.2.1; K.2.2; K.2.3; K.2.4] (15pts)

We declare a data type of trees where each branch node may haveany finite number of branches, as
follows:

datatype t = L of int

| N of t list

val example = N [L 1, N [L 2, N [L 3, L 4], L 5], N [L 6, L 7], L 8]

Given this datatype declaration, we could declare a valuesize, which is a function to count the leaves,
as follows:

fun size (L n) = 1

| size (N l) = List.foldr Int.+ 0 (List.map size l)

Instead, we introduce a combinator functionK and a bottom-up foldtfold over the typet, such that we
can declaresize as follows:

val size = tfold {fL = K 1, fN = List.foldr Int.+ 0}

Write a declaration that declaresK andtfold such that in its scope the above (second) declaration for
size is valid (has a type) and correct (always computes the same result as the first declaration and the
verbal specification).

How to turn in

Submission instructions: see course mailing list.

Include the following statement with your submission, signed and dated:
I pledge my honor that in the preparation of this assignment I have complied with the University of New
Mexico Board of Regents’ Policy Manual.


