
CS 451 Programming Paradigms, Spring 2008 1

Homework 4 — assigned Monday 28 April — due Monday 5 May

Your programs should be prepared as literate Haskell scripts hw4n.lhs (wheren is a digit) containing,
in addition to your program code, some descriptive text outlining your design decisions, and a detailed
testing log, showing a comprehensive test suite. Your code should be compiled usingghc, and the
executablehw4n and all other output files from the compiler should be submitted as well. If you are
using the Latex literate Haskell script style, submit the final typeset form as a PDF file.

Wherever this aids clarity, use Haskell’s predefined higher-order functions. Wherever this aids clarity,
use the point-free style of definition.

4.1 Using lists for arithmetic: writing recursive functions over lists (50pts)

Numerals can be represented as lists of integers. For instance, decimal numerals can be expressed
as lists of integers from 0 to 9. The integer 12345678901234567890 might be represented as the
Haskell list [1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0] :: [Int].
However, the representation should allow a radix (base) other than 10 as well.

We use the following type abbreviation:

type Numeral = (Int, [Int])

where the first component of the pair is the radix and the second the list of digits.

The above example number is then represented as:

example = (10, [1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0])

Write the following functions:

1. (10pts)makeLongInt: Integer -> Int -> Numeral, such thatmakeLongInt n r computes
the list representation of the integern in radix r. You can assume thatn ≥ 0, and thatr > 1. For
example,makeLongInt 123 10 should evaluate to(10, [1,2,3]).

2. (10pts)evaluateLongInt: Numeral -> Integer, such thatevaluateLongInt (r, l) con-
verts a numeral back to a Haskell integer. You can assume thatl is a valid list for radixr. For
example,evaluateLongInt (10, [1,2,3]) should evaluate to123.

3. (10pts)changeRadixLongInt: Numeral -> Int -> Numeral, such thatchangeRadixLongInt
n r computes the representation of the same number asn in a new radixr. For example,
changeRadixLongInt (10, [1,2,3]) 8 should evaluate to(8, [1,7,3]); on the other hand,
changeRadixLongInt (10, [1,2,3]) 16 should evaluate to(16, [7,11]). The computa-
tion should be carried out without the use of Haskell’s built-in Integer arithmetic.

4. (10pts)addLongInts: Numeral -> Numeral -> Numeral, such thataddLongInts a b com-
putes the sum of the numbers given by the numeralsa andb. If a andb use the same radix, that
radix should be used for the result. Ifa andb use different radices, the result should use the larger
one. For example,addLongInts (10, [1,2,3]) (3, [1]) should evaluate to(10, [1,2,4]).
The computation should be carried out without the use of Haskell’s built-in Integer arithmetic.

CS 451 Programming Paradigms, Spring 2008 2

5. (10pts)mulLongInts: Numeral -> Numeral -> Numeral, such thatmulLongInts a b com-
putes the product of the numbers given by the numeralsa and b. If a and b use the same
radix, that radix should be used for the result. Ifa andb use different radices, the result should
use the larger one. For example,mulLongInts (10, [1,2,3]) (3, [1]) should evaluate to
(10, [1,2,3]). The computation should be carried out without the use of Haskell’s built-in
Integer arithmetic. It is not permissible to implement the multiplication ofa andb as∑a

1b.

4.2 Higher-order functions over lists (40pts)

Answers to these two questions should be submitted as a text file hw42.txt or as a PDF filehw42.pdf.

4.2.1 Filter (20pts)

Prove that the following equality holds for all finite listsxs and for all predicatesp andq of suitable type:

filter p (filter q xs) = filter (p &&& q) xs

where the infix operator&&& is defined as follows:

p &&& q = \x -> p x && q x

4.2.2 Map and concat (20pts)

Prove that the following equality holds for all finite listsxs and for all functionsf of suitable type:

concat (map (map f) xs) = map f (concat xs)

4.3 Trees (30pts)

We can define binary trees without any interesting content asfollows:

data T = Leaf | Node T T

A path from the root to any subtree consists of a series of instructions to go left or right, which can be
represented using another datatype:

data P = GoLeft P | GoRight P | This

where the pathThis denotes the whole tree. Given some tree, we would like to find all paths, i.e., the list
of all paths from the root of the given tree to each of its subtrees. Write a functionallpaths :: T -> [P]

to do so.

For instance,allpaths (Node Leaf (Node Leaf Leaf)) should evaluate to
[This,GoLeft This,GoRight This,GoRight (GoLeft This),GoRight (GoRight This)]

(but the ordering of the paths is immaterial).

CS 451 Programming Paradigms, Spring 2008 3

How to turn in

Submission instructions: see course mailing list.

Include the following statement with your submission, signed and dated:
I pledge my honor that in the preparation of this assignment I have complied with the University of New
Mexico Board of Regents’ Policy Manual.

