CS 555 Advanced Topics in Compiler Construction, Spring®01 1

Preliminary version of 18 December 2009

Course Information

Course structure for Spring 2010

A compiler for any high-level language is a large piece ofwafe consisting of many different
phases that express different program analysis, tranataym and optimization algorithms.
Underlying these is a significant body of theoretical wonk.abdition, the variety of modern
programming languages require specialized approachespieientation (for instance, Java
requires a compiler to be present while the program is runimmorder to load classes dynami-
cally). Therefore, building a complete compiler for an emprogramming language is a major
undertaking. A single class cannot cover all aspects of &ded Topics in Compiler Con-
struction”; it is intended that this course will be given eepedly, and each time core concepts
of compilation will be reviewed, but the focus will shift tafiérent compiler components.

This semester the emphasis will be on the “middle-end” stagehe compilation of strict
functional programming languages. The topics are interatedepresentations and code trans-
formations. In particular, we will study representatiofsantrol flow, the continuation-passing
style and the CPS transformation and its relatives, the wabform and the static single as-
signment form. We will examine how higher-order functioas de efficiently implemented.
In addition to their use in compilation, the transformasiame will study can be viewed as
programming techniques, and we will look at examples ofrthse.

Another area of interest is the definition and implementatd programming languages via
abstract machines and virtual machines (bytecode corngi)at Again, continuations play a
big role in this development.

Prerequisites in detail

No specific courses are prerequisites for this one.

Students should be familiar with several high-level progmang languages, so that they can
appreciate the purpose and the tasks of a compiler.

Students should be experienced programmers able to deeetfgprogramming projects im-
plemented quickly. The ability to keep up with deadlinesnportant.

There are some specific topics that will be assumed to forrbahkground of each participant:

e functional programming in general, and Scheme, ML, or Hhgkearticular

e understanding recursive data types, recursive functmesmpute over them, and struc-
tural induction to prove things about them



CS 555 Advanced Topics in Compiler Construction, Spring®01 2

o familiarity with computer organization and architectuspgerating systems, machine lan-
guage and assembly language programming, and the C progngrtanguage
Lectures

Tuesdays and Thursdays 9:30-10:45 location TBA

Instructor

Darko Stefanovic, office FEC 345C, phone 2776561, emailalarkoffice hours TBA

Teaching assistant

None

Grading

The grade will be determined as follows:
e Programming projects 50%
e Homework and oral presentations 20%
e Mid-term exam 25%
e Class participation 5%

You are expected to attend class regularly, read the askigraeling before class, give occa-
sional oral presentations, and participate in class ds&ons

Programming assignment hand-in policy

Programming assignments are to be submitted on-line. Bdtaistructions will be provided
with each assignment. Late programming assignment sulaméswvill be penalized 8%,
wheren is the number of days late.

Textbooks

The principal text for this class Bemantics Engineering with PLT Redex by Matthias Felleisen,
Robert Bruce Findler, and Matthew Flatt, MIT Press 2009. iAddal reading material (tutori-
als and research papers) will be provided as needed.



CS 555 Advanced Topics in Compiler Construction, Spring@01 3

Topics

Boldface: topics emphasized this term.

Introduction to compilation

The structure of compilers

Front-end design

Back-end design

Common issues in the compilation of functional languages
Compilation of strict functional languages

Intermediate representations for strict functional laagps

Front-end design for strict functional languages

Modules, functors, and their implementation

Abstract machines for lambda calculi

Representing and analyzing control flow: CPS, ANF, SSA, and EA
Parametric polymorphism and its implementation

Higher-order functions, closure conversion, and defunctnalization

Back-end design for strict functional languages

Lecture plan (tentative)

1.

Organizational; Overview of core topics via examples fwaall the way from source to
machine code

Continue overview of core topics

Common compiler structure; Functional language coripitaStrict functional language
compilation

Register allocation (a back-end topic)
Front-end design: Scanning; Recursive descent paisirfd) parsing

Combinator parsing



CS 555 Advanced Topics in Compiler Construction, Spring®01 4

10.
11.
12.
13.
14.
15.

16.
17.

18.
19.
20.
21.
22.
23.
24.
25.
26.
27.

28.
29.
30.

Monadic parsing combinators; Parsec

Review of lambda-calculus

Call-by-value lambda-calculus and its definition by stuwal operational semantics
Abstract machines using the notion of evaluation cdntex

Abstract machines using continuations; CEK

Tail calls; CPS transformation

Implementation(s) of the CPS transformation

Closure conversion

Review of typed systems; Simply-typed lambda-calguh@F; More extensions (records,
variants, let)

Definitional interpreters

Review of denotational semantics; Evaluators for lamnbalculus; Continuation-based
semantics for jumps

Defunctionalization

CPS in a typed setting

ANF

ANF implementation

Code generation and optimization for strict functidaaguages
Implementation of polymorphism; Representations &iad
Representations for closures

Monadic code transformation

Control-flow analysis

Use of control-flow analysis in code optimization, clesaonversion, and type recon-
struction

Krivine’s abstract machine; Landin’s SECD as abstraamtimme and as virtual machine
Correspondences between evaluators and abstractrmeachi

Certifying compilation; Certified compilers



