Course Information

Lectures
Mondays, Wednesdays, and Fridays 2:00–2:50, in Dane Smith Hall 231.

Instructor
Darko Stefanovic, office hours Mondays, Wednesdays, and Fridays 10:00–11:00 in FEC 345C.

Teaching assistant
TBA

Course topics
The course covers introductory topics in compiler construction, including computer organization and architecture, operating system support, code and data layout, memory management, generation of executable code, intermediate representations, simple code optimizations, as well as the traditional topics of syntax analysis.

Despite the catalogue description, students will not have to write a whole compiler. Instead, students will implement several components of a compiler, ranging from parsing to code generation, with an emphasis on tools for automated translation.

The course will focus on the implementation of imperative languages; techniques for functional and logic languages will be left out, as indeed the special techniques for object-oriented languages. The course will include simple program analysis and code optimization techniques.

Prerequisites
Students should be familiar with computer organization and with several high-level programming languages, so that they can appreciate the purpose and the tasks of a compiler. Students should be experienced programmers able to develop fairly large programming projects quickly. Finally, students should be good team players.

Course format
The course will consist of lectures, written homework assignments, and projects. Students enrolled in CS554 (i.e., graduate students) will be given additional work as part of their homework assignments and projects.
Assignments

Midterm exam, final exam (covering the entire course), up to 3 short written homework assignments to consolidate lecture material, 3 programming projects.

Written homework assignments

Homework assignments will be carried out individually. Detailed submission instructions will be given with each assignment.

Projects

Each project will be an implementation of an algorithm or phase in a compiler, or an algorithm or tool used to automatically generate a phase in a compiler. Detailed input/output specifications will be provided. Students will be free to choose any implementation language(s), subject to the constraint that a standalone executable file (runnable on CS machines) must be generated and submitted as part of the solution. (Similarly, the instructor will be free to discuss implementation strategies using any implementation language(s) by way of example.)

Projects will be carried out in teams of two (except for graduate students’ additional tasks, which will be carried out individually). Detailed submission instructions will be given with each project.

Textbooks

Required reading

General reading on compilers

Special topics

Grading

You are expected to attend class regularly, read the assigned reading before class, and participate in class discussion. The grade will be determined as follows:

Homeworks 10%
Programming projects 60%
Exams 30% (10% midterm exam, 20% final)

Homework and programming assignment hand-in policy

Written homework assignments are due on the date assigned, no extensions will be granted, and no credit will be given for late homework. Late programming project submissions will be penalized $2n^2\%$, where n is the number of days late.

Lecture Plan

- Week 1: Course organization; translation and interpretation. Code generation. Register allocation.
- Week 1-2: Lexical analysis. RE, DFA, NFA construction; pragmatic issues; tools.
- Week 3-4: Parsing. Top-down; bottom-up; pragmatics; tools.
- Week 5: Names, scope, and binding.
- Week 5-6: Semantic elaboration; attribute grammars.
- Week 7: Representing data types.
• Week 8: Representing control flow.
• Week 9: Representing the procedure abstraction.
• Week 10-11: Intermediate representations.
• Week 12: Code generation.
• Week 13: Instruction scheduling.
• Week 14: Register allocation.

Mailing list

A mailing list will be used for class discussion. It may also be used for administrative announcements. See http://www.cs.unm.edu/cgi-bin/mailman/listinfo/cs454.

Wiki

The permanent location for course material, such as assignments and shared files, is the course wiki, https://digamma.cs.unm.edu/wiki/bin/view/UNMCS454Fall2014Web/WebHome.

UNM statement of compliance with ADA

Qualified students with disabilities needing appropriate academic adjustments should contact the instructor as soon as possible to ensure their needs are met in a timely manner. Handouts are available in alternative accessible formats upon request.