
On Availability of Bit-narrow Operations in
General-purpose Applications

Darko Stefanović and Margaret Martonosi

Department of Electrical Engineering
Princeton University

Princeton NJ 08544, USA
fdarko,mrmg@ee.princeton.edu

Abstract. Program instructions that consume and produce small operands can be
executed in hardware circuitry of less than full size. We compare different proposed
models of accounting for the usefulness of bit-positions inoperands, using a run-time
profiling tool, both to observe and summarize operand values, and to reconstruct and
analyze the program’s data-flow graph to discover useless bits. We find that under
aggressive models, the average number of useful bits per integer operand is as low
as 10, not only in kernels but also in general-purpose applications from SPEC95.

1 Introduction

The purpose of abit-set analysisis to identify which bit positions in various values com-
puted by a program carry essential information and which do not, and, consequently, which
bit positions must be computed by instructions and which do not. A typical programming
language does not allow one to express bit usage requirements, hence in a compile-time
analysis they must be inferred by the compiler. A typical RISC instruction set is too crude
to express arbitrary bit usage requirements (at most, it mayexpress a few fixed sub-words),
hence in a run-time analysis these requirements must be re-derived from the executing pro-
gram. Once useful bit-sets are identified for each value, it may become possible to simplify
the hardware that implements the program’s instructions sothat it will produce only the use-
ful bit-sets. With luck, the smaller circuitry will also be faster; and, fitting a larger number
of smaller circuits in the same silicon area allows potentially higher execution parallelism.
Our goal is ultimately to apply the results as one of the criteria for code partitioning in
hybrid fixed-configurable processors.

2 Background

In the early days of computing, narrow-width computation was available in hardware and
programmers could write code by hand to exploit it. The integer types of C still support this
at the programming language level, albeit in an ill-defined and non-portable manner. With
the advent of RISC processors, uniform, word-width operation became the norm; and only
recently have we seen support for sub-word operations again, in the multimedia extensions
to RISC instruction sets.



During the last decade there has been interest in detecting and exploiting narrow oper-
ations through compiler analysis. Razdan and Smith [1, 2, 3]proposed a static analysis to
narrow widths for use with a tightly-coupled configurable functional unit. Their analysis is
a bit-wise abstract interpretation over the bit positions of each variable in an internal repre-
sentation of the program, with forward and backward passes to characterize the generation
and the use of bit positions.

More recently, Stephenson, Babb, and Amarasinghe [4], and independently Budiu,
Goldstein, Sakr, and Walker [5] have constructed static analyses to identify narrow compu-
tation, for use in various settings. Stephenson’s analysisBitwise is an abstract interpreta-
tion that computes data ranges: the minimum and maximum value that may be assumed by
variables in an internal representation based on SUIF [6]. This interval analysis is equipped
with useful heuristics for recognizing loop induction patterns. It is integrated with powerful
pointer and alias analyses [7]. Bit-width savings are reported to be 15–80% (static count)
on a set of small (kernel) programs. In conjunction with silicon compilation, it achieves up
to 86% reduction in silicon area on some programs.

Budiu’s analysisBitValueis primarily a bit-wise analysis, somewhat similar to Razdan
and Smith’s, but it explicitly treats constantness (forward pass) and uselessness (backward
pass). It operates on an internal representation, also based on SUIF. Underlying analyses
(such as the alias analysis which affects recognized data dependences) are not as sophisti-
cated as inBitwise. BitValueanalysis optionally includes an ad-hoc loop induction analysis.
With both turned on, bit-set savings on the order of 29% (static count) and 30% (dynamic
count) are reported on a set of programs from SPEC95 and Mediabench.

Brooks and Martonosi [8], on the other hand, use dynamic profiling to observe the
set of operands presented to individual arithmetic instructions. Under the assumption that
each operand’s high-order bits can be elided to a single signbit, they find that significant
savings are possible in the number of bits needed for the representation, and in integer
unit’s consumed power, as much as 60%.

In short, previous research has demonstrated the availability of bit-narrow operands.
However, different studies have assumed different definitions of which bit positions are
useful. For instance, should only high-order bits be considered as potentially useless; or,
should bits proven constant by analysis be considered useless; or, what is the granularity
of usefulness decisions? As a result the effectiveness of different compile-time analyses
cannot be compared, nor can the different definitions be compared. In this study we use
run-time knowledge of observed values, so that our precision is a bound on that achievable
by compile-time analyses. We are then able to compare different definitions of which bits
are useful, and how they are tallied.

Our run-time program analysis incorporates data-flow graphreconstruction and propa-
gation of bit-use information backward in the graph, which allows the elimination of bits
as unused, unlike with instruction-by-instruction observations [8]. Since this feature can be
turned on or off, we can evaluate the effectiveness of such ananalysis.

The broader purpose of the tools built is to discover bit-narrow operands in general-
purpose applications, their prevalence being one of the criteria for the selection of code
sections for implementation in configurable hardware.



3 Run-time program analysis

3.1 Data-flow reconstruction

The front-end of our tool is a modified version of thesim-profiletool of the SimpleScalar
architectural simulation toolset [9], for the Alpha instruction set architecture as target (in-
cluding multi-media extensions). We track the flow of data through an architecture’s func-
tional and storage units, and dynamically construct a data-flow graph. Our basic notion is
that of avalue: an instruction uses a number of input values and produces a number of
output values. With each value we record the observed register contents—the raw bits of
the value.

A value has atype, which is inferred dynamically from its usage. Ideally the type of a
value is resolved tointegeror floating-point. Occasionally this is not possible, so the type
lattice includes the elements integer, floating-point, unknown, and conflict.

We keep track of a program’s state, including both registersand memory. Each register
contains at most one value. Registers that a program has not touched contain no value.
When an instruction creates an output value and stores it in aregister, we note that the
register contains that value. When an instruction reads an input value from a register, we
retrieve the value contained in the register. However, if novalue is currently contained in the
register, we make a fresh value: this allows tracking to start from initial externally defined
register contents (and to restart after a system call). Memory on the Alpha is both byte-
addressable and byte-accessible. Our memory model is a mapping from byte addresses to
pairs: a 7! hv; ii, wherei is the offset of the byte at memory addressa within a stored
valuev. A store instruction causes the mapping to be updated for a number of successive
addresses. At any given time, a value is said to have a register presence if it is contained in
any register, and to have a memory presence if any of its constituent bytes have a presence
anywhere in memory.

The instructions executed by the program are represented byinstructionnodes. Each
node indicates the program address of the instruction, its class and opcode, and its input
and output values. Unlike operation nodes in compilers, this is a run-time concept, and
each dynamic execution of an instruction results in a distinct node. No instruction nodes
are created for instructions identifiable as data transport: register moves and memory loads.
In the case of memory loads, this means that the retrieved bytes are checked to see if
they exactly match one entire stored value. The values are appropriately bypassed from
the producing node to the ultimate using node. Thus the data flow of the computation is
reconstructed independent of the data storage decisions and layout.

While instructions are simulated, new nodes and values are added to the graph. Bit-
set analysis is performed on the oldest values, and upon analysis, the oldest values (and
their nodes) are discarded. The difference between the oldest and the newest nodes, i.e.,
the lookahead that the bit-set analysis enjoys, also determines the amount of storage the
simulator needs and its speed of simulation. With the current prototype implementation we
can achieve lookaheads of a few million instructions.

3.2 Bit-set analysis

Our bit-set analysis comprises two independent components: analysis of the dynamic data-
flow graph, and computation of a static summary.



The goal of dynamic data-flow graph analysis is to infer that certain bit positions of
the analyzed values are not needed for subsequent computation. The main source of such
information, in the Alpha instruction set, are logic instructions. For instance, consider an
instructionSRL r1, 8, r2, which shifts the contents ofr1 by 8 bits and stores the
result inr2, and suppose that this instruction is the only use of the value present inr1.
The instruction shifts the uppermost 7 bytes ofr1 into the lowermost 7 bytes ofr2, and
writes zeroes into the uppermost byte ofr2. The lowermost byte ofr1 is discarded: it
is not useful in this instruction. Since this instruction isthe only use of the value inr1,
the lowermost byte of that value need not be computed at all. The information flow in this
analysis is backward: all the uses of a value, and their subsequent uses, etc., affect which
bits of the value are truly needed. In case of finite lookahead, we conservatively assume that
all values that have a presence (in registers or memory) at the time of analysis will have all
their bits used by future computation. The result of dynamicdata-flow graph analysis is an
annotationuseful/uselesson the bits of each dynamic value.

We compute a static summary over all executions of each static instruction in the pro-
gram, more precisely, of each operand of each static instruction. By observing the bit-
values (0 or 1) assumed by a bit-position of an operand over all executions, we annotate
a bit-positions withAlways-0or Always-1if it is constant over all executions. If dynamic
data-flow graph analysis is performed, we also statically summarize its results and annotate
a bit-position withSometimes-usefulif it is useful on any execution. If dynamic data-flow
graph analysis is not performed,Sometimes-usefulis assumed for all bit-positions.

3.3 How many bits are useful: definitions

Various bit-set analyses are meaningful only in the contextof particularassumptionsmade
about the hardware. Because of the static-summarizing step, our analyses are only valid
under the assumption that the hardware executing a given static instruction remains un-
changed for the duration of the program. This is by no means a universal assumption, but a
reasonable one.

While the annotationsAlways-0, Always-1, andSometimes-usefulare convenient for
computing the static summary, in interpreting the results it is more convenient to convert to
a three-way classification of bits intoN: never useful;C: sometimes useful and constant;
andV: sometimes useful but not constant.

We offer several definitions that describe which bits are considereduselessin an operand:

– Definition 1 (bit-wise, optimistic): AllN andC bits. This definition reflects the savings
possible in configurable hardware. In addition to eliminating all reference to outputs
markedN, a circuit can be synthesized to provideC outputs as hard-wired 0 or 1.C in-
puts can be used directly to simplify the circuit description. (It is instructive to consider
the interaction of the savings inferred in program analysis, and those in subsequent cir-
cuit synthesis [4].)

– Definition 2 (bit-wise, less optimistic): AllN bits. If joint synthesis of circuit imple-
mentations corresponding to larger data-flow subgraphs is not possible, then wires
carrying 0s and 1s, though known constants, are necessary, and this definition models
that cost.



– Definition 3 (prefix bit-wise, optimistic): All leadingN or C bits. This definition re-
flects the fact that customizing circuits to take advantage of isolated known-constant
bits may not be as practical as generating a family of circuits for any operand width.
(Particularly true when we consider narrow functional units for inclusion in a non-
configurable processor.) Thus, only high-order bits are considered useless, leaving a
contiguous string of useful low-order bits.

– Definition 4 (prefix bit-wise, less optimistic): All leadingN bits. This definition is
conservative both in the sense of definition 2 and of definition 3.

– Definition 5 (data range): All leading sign bits but one. Thisdefinition assumes that
hardware circuits for widening (with sign extension) are inserted where necessary. In
other words, useful bits are those needed for the 2’s complement representation of the
observed data range, exactly as in [8], and analogous to statically inferred data ranges
in [4].

The definitions described which bits were considered useless; all remainingbits are
useful, and are counted towards the totals we report in the results.

4 Experimental Setup

Our initial focus was on the Raw benchmark suite, in order to compare the results with those
of [4]. We also examined a number of longer-running benchmarks, including SPEC95 (both
integer and floating-point) and Honeywell ACS [10] suites. We summarize the relevant
program characteristics in Table 4. The columns for integeroperands refer to the integer
values identified and analyzed by our tools.

Benchmarks were compiled on a Compaq (Digital) Alpha 21164 EV56 machine using
native C and Fortran optimizing compilers. Each benchmark was simulated using our run-
time analysis extensions to SimpleScalar/Alpha. The lookahead size was limited by the
memory capacity of the simulator host machine and the memoryoverhead of the simulator
to about 1.5 million instructions. This was sufficient to encompass entire executions of all
but one Raw benchmark.

Results are reported for all integer operands. Whereas a bit-wise analysis can infer that
certain bits are constant in floating-point operands, this is more difficult to exploit, and is
generally eschewed for configurable hardware.

5 Results

Average bit requirements are shown in Figure 1, for the unweighted average, and in Figure 2
for the average weighted by each instruction’s execution count. For each benchmark, seven
bars are shown with average bit requirements computed according to different analysis
modes. In order from the bottom upward in the graph:def1/bp:definition 1 of Section 3.3,
with dynamic analysis (“back-propagation”) as described in Section 3.2;def2/bp:definition
2 with dynamic analysis;def3/bp:definition 3 with dynamic analysis;def4/bp:definition
4 with dynamic analysis;def1: definition 1 without dynamic analysis;def3: definition 3
without dynamic analysis;def5: definition 5 (which does not involve dynamic analysis).



Benchmark Description Source
lines

Instructions
executed

Integer
operands
(static)

Integer
operands
(dynamic)

Raw
adpcm Multimedia: audio compression 195 288672 1309 584829
bubblesort Dense matrix 62 2993603 1211 7015682
convolve Multimedia 74 34248 1383 71967
edge-detect Multimedia 175 151124 1875 289721
histogram Multimedia 115 862026 1416 2040775
intfir Multimedia: Integer FIR filter 64 381020 1160 855144
intmatmul Dense matrix: matrix multiplication 78 602363 1218 1472609
jacobi Dense matrix 84 30652 1166 68270
life Automata: Conway’s game of life 150 1460919 1716 3552042
median Multimedia: median filter 86 745383 1308 1347242
mpegcorr Multimedia: kernel from MPEG-3 144 25958 1383 63115
newlife Automata: Conway’s game of life 119 736575 1627 1890671
parity Multimedia 54 313236 1128 751227
pmatch Multimedia: pattern matching 63 1403699 1178 3263404
sha Encryption: secure hash algorithm 638 1030098 6572 3007709
sor Dense matrix: Successive overrelaxation 60 1026951 1300 2516264

Honeywell
microkernel Two-dimensional discrete cosine tranform 169 248322172 7606 412699970
timing CORDIC vector rotation algorithm 219 58295213 7627 104040721
versatility.compressWavelet image compression algorithm 528 56202163 8343 113693092

SPECint95 (train inputs)
126.gcc-jump GNU C compiler (jump.i input) 133049 202205526 150516 268594145
129.compress Adaptive Lempel-Ziv coding 1422 46186413 6069 83526455
130.li LISP interpreter running the Gabriel benchmarks 4323 192134942 9343 251585142

Table 1.Properties of benchmarks.

To make the chart legible, we included only three of the 16 Rawbenchmarks; the ones not
shown behave similarly tosor.

The kernels from Raw overall have very low bit requirements by any measure, with the
exception ofsha(which by design constructs numbers spread wide over the integer range).
Larger programs from the Honeywell and SPEC95 suites tend tohave higher bit require-
ments. These average bit requirements numbers could, in principle, be compared against
those reported from static analyses, as inBitwiseandBitValue, with the expectation that
our run-time analysis represents the limit to which the compile-time analysis may aspire;
however, differences in the context of analysis preclude adirect numerical comparison.

In addition to averages, the distribution of bit requirements is of interest. For two char-
acteristic programs, thelife kernel from the Raw suite, and thegcccompiler, it is shown in
Figures 3 and 4. We divide possible bit requirements into bins for 0, 1, 2, 3–4, 5–8, 9–16,
17–32, and 33–64 bits, and display them as a stacked bar graph. Each of the seven analysis
modes results in a different bar; and again the operands may be counted (a) statically or (b)
dynamically.1

In the average bit requirement plots, as well as in the detailed distributions, we note that
modelsdef1/bpanddef3/bpproduce nearly identical results; and similarly modelsdef2/bp

1Drawing the seven exact distribution curves is less informative visually, because some of them
are too close to one another to be discernible.



0 10 20 30 40 50 60

130.li

129.compress

126.gcc-jump

versatility.compress

timing

microkernel

sor

sha

life

Useful bits (average)

def5

def3

def1

def4/bp

def3/bp

def2/bp

def1/bp

Fig. 1. Average useful bits, static operand count

0 10 20 30 40 50 60

130.li.train

129.compress.train

126.gcc-jump

versatility.compress

timing

microkernel

sor

sha

life

Useful bits (average)

def5

def3

def1

def4/bp

def3/bp

def2/bp

def1/bp

Fig. 2. Average useful bits, dynamic operand count



anddef4/bp; and modelsdef1anddef3. Thus, the restriction of useless bits to the high-order
prefix is of little significance.

Comparingdef1/bpwith def1, or def3/bpwith def3, we see that the additional sav-
ings that backward-propagated operand-use information gives are very small. This becomes
quite clear when we comparedef1/bpwith def2/bp, or def3/bpwith def4/bp, where we see
that using constantness information makes a huge difference; modelsdef2/bpanddef4/bp
make useonly of the backward-propagated operand-use information, and this is scant.

Lastly, definition 5 is typically weaker than either 1 or 3, i.e., it considers more bits as
useful. In light of the fact that greater savings are reported [4] from a static analysis using
definition 5 than from another static analysis [5] using definition 3, we draw the conclusion
that the difference in savings is not due to the use of differing definitions, but either to a
more powerful compile-time analyses preceding the analysis of bit-sets, or to significantly
different operand accounting.

To summarize, the number of bits that can be saved other than in the high-order prefix is
small, by any definition. Analysis using backward flow over the dynamically reconstructed
data-flow graph is not very powerful in inferring that bit-positions are not needed. The
constantness information from observed operand values is much more informative.2

Acknowledgments.We would like to thank Jonathan Babb for valuable discussions on
the design ofBitwiseas well as for allowing us the use of the Raw benchmark suite. We
thank David Brooks, Zhen Luo, and the anonymous reviewers for their comments.

References

[1] R. Razdan.PRISC: Programmable Reduced Instruction Set Computers. PhD thesis, Harvard
University, Cambridge, Massachusetts, 1994.

[2] R. Razdan and M. D. Smith. A high-performance microarchitecture with hardware-
programmable functional units. InMicro-27, Nov. 1994.

[3] R. Razdan, K. Brace, and M. D. Smith. PRISC software acceleration techniques. InProc. Int’l
Conf. on Computer Design, pages 145–149, Oct. 1994.

[4] M. Stephenson, J. Babb, and S. Amarasinghe. Bitwidth analysis with application to silicon
compilation. InPLDI 2000, Vancouver, BC, June 2000.

[5] M. Budiu, S. C. Goldstein, M. Sakr, and K. Walker. BitValue inference: Detecting and exploit-
ing narrow bitwidth computations. InEuroPar 2000, Munich, Germany, 2000.

[6] M. W. Hall, J. M. Anderson, S. P. Amarasinghe, B. R. Murphy, S.-W. Liao, E. Bugnion, and
M. S. Lam. Maximizing multiprocessor performance with the SUIF compiler.IEEE Computer,
Dec. 1996.

[7] J. Babb, M. Rinard, A. Moritz, W. Lee, M. Frank, R. Barua, and S. Amarasinghe. Parallelizing
applications into silicon. InFCCM ’99, Napa Valley, CA, Apr. 1999.

[8] D. Brooks and M. Martonosi. Dynamically exploiting narrow width operands to improve pro-
cessor power and performance. In5th HPCA, Jan. 1999.

[9] D. Burger and T. M. Austin. The SimpleScalar tool set, version 2.0. Computer Architecture
News, pages 13–25, June 1997.

[10] S. Kumar. Benchmarking tools and assessment environment for configurable computing. Sub-
mitted by Honeywell Technology Center to USA Intelligence Center and Fort Huachuca under
Contract No. DABT63-96-C-0085, Sept. 1999.

2The corresponding compile-time backward analysis may berelatively more powerful, because
the static inference of operand values is weaker.



0

0.2

0.4

0.6

0.8

1

def1/bp def2/bp def3/bp def4/bp def1 def3 def5

33-64

17-32

9-16

5-8

3-4

2

1

0

(a) static operand count

0

0.2

0.4

0.6

0.8

1

def1/bp def2/bp def3/bp def4/bp def1 def3 def5

33-64

17-32

9-16

5-8

3-4

2

1

0

(b) dynamic operand count

Fig. 3. Benchmarklife: bit requirements distribution



0

0.2

0.4

0.6

0.8

1

def1/bp def2/bp def3/bp def4/bp def1 def3 def5

33-64

17-32

9-16

5-8

3-4

2

1

0

(a) static operand count

0

0.2

0.4

0.6

0.8

1

def1/bp def2/bp def3/bp def4/bp def1 def3 def5

33-64

17-32

9-16

5-8

3-4

2

1

0

(b) dynamic operand count

Fig. 4. Benchmark126.gcc-jump: bit requirements distribution


