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Abstract. Program instructions that consume and produce small ogereen be
executed in hardware circuitry of less than full size. We pare different proposed
models of accounting for the usefulness of bit-positiorsgarands, using a run-time
profiling tool, both to observe and summarize operand vakmesto reconstruct and
analyze the program’s data-flow graph to discover useléss\e find that under
aggressive models, the average number of useful bits psgenbperand is as low
as 10, not only in kernels but also in general-purpose agjdias from SPEC95.

1 Introduction

The purpose of it-set analysiss to identify which bit positions in various values com-
puted by a program carry essential information and whichatpand, consequently, which
bit positions must be computed by instructions and which ato A typical programming
language does not allow one to express bit usage requirspesrice in a compile-time
analysis they must be inferred by the compiler. A typical RiSstruction set is too crude
to express arbitrary bit usage requirements (at most, iterpyess a few fixed sub-words),
hence in a run-time analysis these requirements must berieed from the executing pro-
gram. Once useful bit-sets are identified for each valueait become possible to simplify
the hardware that implements the program’s instructiorisaidt will produce only the use-
ful bit-sets. With luck, the smaller circuitry will also badter; and, fitting a larger number
of smaller circuits in the same silicon area allows potdigtiziigher execution parallelism.
Our goal is ultimately to apply the results as one of the gdtéor code partitioning in
hybrid fixed-configurable processors.

2 Background

In the early days of computing, narrow-width computatiors\vamailable in hardware and
programmers could write code by hand to exploit it. The iatagpes of C still support this

at the programming language level, albeit in an ill-defined aon-portable manner. With
the advent of RISC processors, uniform, word-width opereiecame the norm; and only
recently have we seen support for sub-word operations gigetime multimedia extensions
to RISC instruction sets.



During the last decade there has been interest in deteatthgxploiting narrow oper-
ations through compiler analysis. Razdan and Smith [1, pr&)osed a static analysis to
narrow widths for use with a tightly-coupled configurabladtional unit. Their analysis is
a bit-wise abstract interpretation over the bit positiohsaczh variable in an internal repre-
sentation of the program, with forward and backward passekdracterize the generation
and the use of bit positions.

More recently, Stephenson, Babb, and Amarasinghe [4], addpendently Budiu,
Goldstein, Sakr, and Walker [5] have constructed statityara to identify narrow compu-
tation, for use in various settings. Stephenson’s anaBigiseis an abstract interpreta-
tion that computes data ranges: the minimum and maximune\hht may be assumed by
variables in an internal representation based on SUIF [k ifterval analysis is equipped
with useful heuristics for recognizing loop induction gaits. It is integrated with powerful
pointer and alias analyses [7]. Bit-width savings are regubto be 15-80% (static count)
on a set of small (kernel) programs. In conjunction withcsili compilation, it achieves up
to 86% reduction in silicon area on some programs.

Budiu’s analysiBitValueis primarily a bit-wise analysis, somewhat similar to Razda
and Smith’s, but it explicitly treats constantness (fomvpass) and uselessness (backward
pass). It operates on an internal representation, alsa lmas8UIF. Underlying analyses
(such as the alias analysis which affects recognized dgndiences) are not as sophisti-
cated as iBitwise BitValueanalysis optionally includes an ad-hoc loop induction gsial
With both turned on, bit-set savings on the order of 29%itstatunt) and 30% (dynamic
count) are reported on a set of programs from SPEC95 and bierdia.

Brooks and Martonosi [8], on the other hand, use dynamic Iprgfio observe the
set of operands presented to individual arithmetic insimns. Under the assumption that
each operand’s high-order bits can be elided to a singlelsigthey find that significant
savings are possible in the number of bits needed for theeseptation, and in integer
unit’s consumed power, as much as 60%.

In short, previous research has demonstrated the avéitabilbit-narrow operands.
However, different studies have assumed different defimstiof which bit positions are
useful. For instance, should only high-order bits be cargid as potentially useless; or,
should bits proven constant by analysis be consideredsssede what is the granularity
of usefulness decisions? As a result the effectivenessfiefreint compile-time analyses
cannot be compared, nor can the different definitions be eoaap In this study we use
run-time knowledge of observed values, so that our pratisia bound on that achievable
by compile-time analyses. We are then able to compare diffatefinitions of which bits
are useful, and how they are tallied.

Our run-time program analysis incorporates data-flow grapbnstruction and propa-
gation of bit-use information backward in the graph, whitlbves the elimination of bits
as unused, unlike with instruction-by-instruction obsgions [8]. Since this feature can be
turned on or off, we can evaluate the effectiveness of suanatlysis.

The broader purpose of the tools built is to discover bitmaroperands in general-
purpose applications, their prevalence being one of ther@ifor the selection of code
sections for implementation in configurable hardware.



3 Run-time program analysis

3.1 Data-flow reconstruction

The front-end of our tool is a modified version of thien-profiletool of the SimpleScalar
architectural simulation toolset [9], for the Alpha insttion set architecture as target (in-
cluding multi-media extensions). We track the flow of datatigh an architecture’s func-
tional and storage units, and dynamically construct a latagraph. Our basic notion is
that of avalue an instruction uses a number of input values and producesrder of
output values. With each value we record the observed egishtents—the raw bits of
the value.

A value has a@ype which is inferred dynamically from its usage. Ideally tlgpe of a
value is resolved tintegeror floating-point Occasionally this is not possible, so the type
lattice includes the elements integer, floating-point,novin, and conflict.

We keep track of a program'’s state, including both registacsmemory. Each register
contains at most one value. Registers that a program ha®ucheéd contain no value.
When an instruction creates an output value and stores itregiater, we note that the
register contains that value. When an instruction readsjaut ivalue from a register, we
retrieve the value contained in the register. However, falae is currently contained in the
register, we make a fresh value: this allows tracking ta $tam initial externally defined
register contents (and to restart after a system call). Mgran the Alpha is both byte-
addressable and byte-accessible. Our memory model is aimgafppm byte addresses to
pairs:a — (v,i), wherei is the offset of the byte at memory addressvithin a stored
valuev. A store instruction causes the mapping to be updated formebeuof successive
addresses. At any given time, a value is said to have a regigsence if it is contained in
any register, and to have a memory presence if any of its itoast bytes have a presence
anywhere in memory.

The instructions executed by the program are representéasbyctionnodes Each
node indicates the program address of the instruction)ass@nd opcode, and its input
and output values. Unlike operation nodes in compilers, ithia run-time concept, and
each dynamic execution of an instruction results in a distiode. No instruction nodes
are created for instructions identifiable as data transpegister moves and memory loads.
In the case of memory loads, this means that the retrieveesksite checked to see if
they exactly match one entire stored value. The values greppately bypassed from
the producing node to the ultimate using node. Thus the datadf the computation is
reconstructed independent of the data storage decisiahisaout.

While instructions are simulated, new nodes and values ddedato the graph. Bit-
set analysis is performed on the oldest values, and upogsasiathe oldest values (and
their nodes) are discarded. The difference between thestodel the newest nodes, i.e.,
the lookahead that the bit-set analysis enjoys, also detesnthe amount of storage the
simulator needs and its speed of simulation. With the ctipsstotype implementation we
can achieve lookaheads of a few million instructions.

3.2 Bit-set analysis

Our bit-set analysis comprises two independent componanidysis of the dynamic data-
flow graph, and computation of a static summary.



The goal of dynamic data-flow graph analysis is to infer theatain bit positions of
the analyzed values are not needed for subsequent conmputalie main source of such
information, in the Alpha instruction set, are logic ingtiions. For instance, consider an
instructionSRL r 1, 8, r 2, which shifts the contents afl by 8 bits and stores the
result inr 2, and suppose that this instruction is the only use of theevphesent irr 1.
The instruction shifts the uppermost 7 bytes df into the lowermost 7 bytes of2, and
writes zeroes into the uppermost byterd. The lowermost byte of 1 is discarded: it
is not useful in this instruction. Since this instructiortli® only use of the value in1,
the lowermost byte of that value need not be computed at ladl.ififormation flow in this
analysis is backward: all the uses of a value, and their sulese uses, etc., affect which
bits of the value are truly needed. In case of finite lookahe&dtonservatively assume that
all values that have a presence (in registers or memorygdirtte of analysis will have all
their bits used by future computation. The result of dynadaita-flow graph analysis is an
annotatioruseful/uselesen the bits of each dynamic value.

We compute a static summary over all executions of eactc steiruction in the pro-
gram, more precisely, of each operand of each static ingirucBy observing the bit-
values (0 or 1) assumed by a bit-position of an operand oVexatutions, we annotate
a bit-positions withAlways-0or Always-1if it is constant over all executions. If dynamic
data-flow graph analysis is performed, we also staticaltgrearize its results and annotate
a bit-position withSometimes-usefiilit is useful on any execution. If dynamic data-flow
graph analysis is not performeSpmetimes-usefid assumed for all bit-positions.

3.3 How many bits are useful: definitions

Various bit-set analyses are meaningful only in the coraéparticularassumptionsnade
about the hardware. Because of the static-summarizing stepanalyses are only valid
under the assumption that the hardware executing a givéin statruction remains un-
changed for the duration of the program. This is by no meamswrsal assumption, but a
reasonable one.

While the annotationg\lways-Q Always-1 and Sometimes-usefalre convenient for
computing the static summary, in interpreting the restilssrnore convenient to convert to
a three-way classification of bits inté: never usefulC: sometimes useful and constant;
andV: sometimes useful but not constant.

We offer several definitions that describe which bits ares@erediselessn an operand:

— Definition 1 (bit-wise, optimistic): AIN andC bits. This definition reflects the savings
possible in configurable hardware. In addition to elimingtall reference to outputs
markedN, a circuit can be synthesized to provideutputs as hard-wired O or C.in-
puts can be used directly to simplify the circuit descriptigit is instructive to consider
the interaction of the savings inferred in program analysisl those in subsequent cir-
cuit synthesis [4].)

— Definition 2 (bit-wise, less optimistic): AN bits. If joint synthesis of circuit imple-
mentations corresponding to larger data-flow subgraphstigaossible, then wires
carrying Os and 1s, though known constants, are necessarihia definition models
that cost.



— Definition 3 (prefix bit-wise, optimistic): All leading\ or C bits. This definition re-
flects the fact that customizing circuits to take advantdgeadated known-constant
bits may not be as practical as generating a family of cisciait any operand width.
(Particularly true when we consider narrow functional sifigr inclusion in a non-
configurable processor.) Thus, only high-order bits aresiclamed useless, leaving a
contiguous string of useful low-order bits.

— Definition 4 (prefix bit-wise, less optimistic): All leadiniy bits. This definition is
conservative both in the sense of definition 2 and of defimifio

— Definition 5 (data range): All leading sign bits but one. Tt&finition assumes that
hardware circuits for widening (with sign extension) areeiried where necessary. In
other words, useful bits are those needed for the 2's congrienepresentation of the
observed data range, exactly as in [8], and analogous foahatinferred data ranges
in [4].

The definitions described which bits were considered usgkdsremainingbits are
useful, and are counted towards the totals we report in thdtse

4 Experimental Setup

Our initial focus was on the Raw benchmark suite, in ordeotogare the results with those
of [4]. We also examined a number of longer-running benchmancluding SPEC95 (both
integer and floating-point) and Honeywell ACS [10] suitese Wimmarize the relevant
program characteristics in Table 4. The columns for integErands refer to the integer
values identified and analyzed by our tools.

Benchmarks were compiled on a Compagq (Digital) Alpha 21188&machine using
native C and Fortran optimizing compilers. Each benchmaa& simulated using our run-
time analysis extensions to SimpleScalar/Alpha. The lbekd size was limited by the
memory capacity of the simulator host machine and the memmayhead of the simulator
to about 1.5 million instructions. This was sufficient to empass entire executions of all
but one Raw benchmark.

Results are reported for all integer operands. Whereaswaidst analysis can infer that
certain bits are constant in floating-point operands, thimare difficult to exploit, and is
generally eschewed for configurable hardware.

5 Results

Average bit requirements are shown in Figure 1, for the ughted average, and in Figure 2
for the average weighted by each instruction’s executiamtd-or each benchmark, seven
bars are shown with average bit requirements computed diogpto different analysis
modes. In order from the bottom upward in the gragéfl/bp:definition 1 of Section 3.3,
with dynamic analysis (“back-propagation”) as descrilre8ection 3.2def2/bp:definition

2 with dynamic analysisgef3/bp:definition 3 with dynamic analysiglef4/bp:definition

4 with dynamic analysisglefl: definition 1 without dynamic analysisief3: definition 3
without dynamic analysisjef5: definition 5 (which does not involve dynamic analysis).



Benchmark Description Source [Instructions |Integer Integer
lines |executed operands |operands
(static) (dynamic)
Raw
adpcm Multimedia: audio compression 195 288673 1309 584829
bubblesort Dense matrix 62 2993604 1211 7015687
convolve Multimedia 74 34248 1383 71967
edge-detect Multimedia 175 151124 1875 289721
histogram Multimedia 115 862026 1416 2040774
intfir Multimedia: Integer FIR filter 64 381020 1160 855144
intmatmul Dense matrix: matrix multiplication 78 602363 121§ 1472609
jacobi Dense matrix 84 30652 1166 68270
life Automata: Conway's game of life 150 1460919 171§ 3552047
median Multimedia: median filter 86 745383 1308 1347242
mpegcorr Multimedia: kernel from MPEG-3 144 25958 1383 63115
newlife Automata: Conway's game of life 119 736575 1627 1890671
parity Multimedia 54 313234 1128 7512271
pmatch Multimedia: pattern matching 63 1403699 1179 3263404
sha Encryption: secure hash algorithm 638 1030094 6572 3007709
sor Dense matrix: Successive overrelaxation 60| 1026951 1300 2516264
Honeywell
microkernel Two-dimensional discrete cosine tranform 169| 248322172 7606 41269997
timing CORDIC vector rotation algorithm 219 5829521 7627 104040721
versatility.compreg®avelet image compression algorithm 528 5620216 8343 113693092
SPECIint95 (train inputs)

126.gcc-jump GNU C compiler { unp. i input) 133049 20220552 150514 26859414
129.compress Adaptive Lempel-Ziv coding 1422 4618641 6069 83526454
130.li LISP interpreter running the Gabriel benchmarks| 4323 192134942 9343 251585142

Table 1. Properties of benchmarks.

To make the chart legible, we included only three of the 16 Ranchmarks; the ones not
shown behave similarly tsor.

The kernels from Raw overall have very low bit requiremenmntatly measure, with the
exception osha(which by design constructs numbers spread wide over tegéntrange).
Larger programs from the Honeywell and SPEC95 suites tetnéte higher bit require-
ments. These average bit requirements numbers could,riipleé, be compared against
those reported from static analyses, a8itwise andBitValug with the expectation that
our run-time analysis represents the limit to which the ciberiime analysis may aspire;
however, differences in the context of analysis precludaexct numerical comparison.

In addition to averages, the distribution of bit requiretsés of interest. For two char-
acteristic programs, thée kernel from the Raw suite, and tigeccompiler, it is shown in
Figures 3 and 4. We divide possible bit requirements intg bin 0, 1, 2, 3—4, 5-8, 9-16,
17-32, and 33-64 bits, and display them as a stacked bar.dtaph of the seven analysis
modes results in a different bar; and again the operands meagunted (a) statically or (b)
dynamically:

In the average bit requirement plots, as well as in the destalistributions, we note that
modelsdefl/bpanddef3/bpproduce nearly identical results; and similarly mod#é2/bp

*Drawing the seven exact distribution curves is less infaireavisually, because some of them
are too close to one another to be discernible.
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anddef4/bp and modelsleflanddef3 Thus, the restriction of useless bits to the high-order
prefix is of little significance.

Comparingdefl/bpwith defl, or def3/bpwith def3 we see that the additional sav-
ings that backward-propagated operand-use informati@sgire very small. This becomes
quite clear when we compadefl/bpwith def2/bp or def3/bpwith def4/bp where we see
that using constantness information makes a huge differenodelsdef2/bpanddef4/bp
make usenly of the backward-propagated operand-use information, leisdst scant.

Lastly, definition 5 is typically weaker than either 1 or &, j.it considers more bits as
useful. In light of the fact that greater savings are regbj4¢ from a static analysis using
definition 5 than from another static analysis [5] using d#éfin 3, we draw the conclusion
that the difference in savings is not due to the use of diffpdefinitions, but either to a
more powerful compile-time analyses preceding the armlysbit-sets, or to significantly
different operand accounting.

To summarize, the number of bits that can be saved otherithe high-order prefix is
small, by any definition. Analysis using backward flow ovex ttynamically reconstructed
data-flow graph is not very powerful in inferring that bitgiions are not needed. The
constantness information from observed operand valuesiéh more informativé.
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