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Abstract. Existing machines for lazy evaluation use a flat representation of en-
vironments, storing the terms associated with free variables in an array. Com-
bined with a heap, this structure supports the shared intermediate results required
by lazy evaluation. We propose and describe an alternative approach that uses a
shared environment to minimize the overhead of delayed computations. We show
how a shared environment can act as both an environment and a mechanism for
sharing results. To formalize this approach, we introduce a calculus that makes
the shared environment explicit, as well as a machine to implement the calculus,
the Cactus Environment Machine. A simple compiler implements the machine
and is used to run experiments for assessing performance. The results show rea-
sonable performance and suggest that incorporating this approach into real-world
compilers could yield performance benefits in some scenarios.

1 Introduction

Call-by-need evaluation is a formalization of the idea that work should be delayed until
needed, and performed only once. Existing implementations of call-by-need take care
in packaging a delayed computation, or thunk, by building a closure with an array that
contains the bindings of all free variables [24, 7]. The overhead induced by this opera-
tion is well known, and is one reason existing implementations avoid thunks wherever
possible [18]. The key insight of our Cactus Environment (CE ) Machine is that this
overhead can be minimized by only recording a location in a shared environment.

As an example, consider the application f e. In existing call-by-need implementa-
tions, e.g., the STG machine[24], a closure with a flat environment will be constructed
for e. Doing so incurs a time and memory cost proportional to the number of free vari-
ables of e. 1 We minimize this packaging cost by recording a location in a shared envi-
ronment, which requires only two machine words (and two instructions) for the thunk:
one for the code pointer, and one for the environment pointer. One way to think about
the approach is that it is lazier about lazy evaluation: in the case that e is unneeded,
the work to package it in a thunk is entirely wasted. In the spirit of lazy evaluation, we
attempt to minimize this potentially unnecessary work.

The main contributions of the paper are:
1 In some implementations, these are lambda-lifted to be formal parameters, but the principle is

the same.



– A big-step calculus and small-step abstract machine that formalize the notion of a
shared environment for call-by-need evaluation using an explicitly shared environ-
ment (Section 4).

– A simple implementation of the abstract machine that compiles to x86 assembly
with a preliminary evaluation that shows performance comparable to existing im-
plementations (Sections 6 and 7).

Section 2 reviews relevant background material, and Section 3 discusses the current
landscape of environment representations, highlighting the opportunity for combining
shared environments with lazy evaluation. We then provide some intuition for why this
might be combination might be desirable, and formalize the connection between call-
by-need evaluation and shared environments in a calculus (Section 4). Section 5 uses
the calculus to derive a novel abstract machine, the CE machine, explains how CE uses
the shared environment in a natural way to implement lazy evaluation, and gives its
formal semantics. We then describe a straightforward implementation of CE in Sec-
tion 6, extended with machine literals and primitive operations, and compiling directly
to native code. We evaluate the implementation in Section 7, showing that it is capable
of performing comparably to existing implementations despite lacking several common
optimizations, and we discuss the results. We discuss related work, the limitations of
our approach, and some ideas for future work in Section 8, and conclude the paper in
Section 9.

2 Background and Motivation

This section provides relevant background for the CE machine, outlining lambda cal-
culus, evaluation strategies, and Curien’s calculus of closures.

2.1 Preliminaries

We begin with the simple lambda calculus [5]:

t ::= x | λx.t | t t

where x is a variable, λx.t is an abstraction, and t t is an application. We also use lambda
calculus with deBruijn indices, which replaces variables with a natural number indexing
into the binding lambdas. This calculus is given by the syntax:

t ::= i | λ t | t t

where i ∈N. In both cases, we use the standard Barendregt syntax conventions, namely
that applications are left associative and the bodies of abstractions extend as far as
possible to the right [5]. A value in lambda calculus refers to an abstraction. We are
concerned only with evaluation to weak head normal form (WHNF), which terminates
on an abstraction without entering its body.

In mechanical evaluation of expressions, it would be too inefficient to perform ex-
plicit substitution. To solve this, the standard approach uses closures [20, 8, 24, 6]. Clo-
sures combine a term with an environment, which binds the free variables of the term
to closures.



As the formal basis for closures we use Curien’s calculus of closures [8], Figure 1.
It is a formalization of closures with an environment represented as a list of closures,
indexed by deBruijn indices. We will occasionally modify this calculus by replacing the
deBruijn indices with variables for readability, in which case variables are looked up in
the environment instead of indexed, e.g., t[x = c,y = c′]) [5]. We also add superscript
and subscript markers to denote unique syntax elements, e.g., t ′, t1 ∈ Term.

Syntax

t ::= i | λ t | t t (Term)

i ∈ N (Variable)

c ::= t[ρ] (Closure)

ρ ::= • | c ·ρ (Environment)

Semantics

t1[ρ]
∗−→Lλ t2[ρ ′]

t1t3[ρ]→L t2[t3[ρ] ·ρ ′]
(LEval)

i[c0 · c1 · ...ci ·ρ]→L ci (LVar)

Fig. 1. Curien’s call-by-name calculus of closures [8]

2.2 Evaluation Strategies

There are three standard evaluation strategies for lambda calculus: call-by-value, call-
by-need, and call-by-name. Call-by-value evaluates every argument to a value, whereas
call-by-need and call-by-name only evaluate an argument if it is needed. If an argument
is needed more than once, call-by-name re-computes the value, whereas call-by-need
memoizes the value, so it is computed at most once. Thus, call-by-need attempts to
embody the best of both worlds—never repeat work (call-by-value), and never perform
unnecessary work (call-by-name). These are intuitively good properties to have, and we
illustrate the correctness of such an intuition with the following example, modified from
[10]:

m︷ ︸︸ ︷
cm(cm(· · ·(cm id

m︷ ︸︸ ︷
id) · · ·)id) true id bottom

where cn = λ s.λ z.

n︷ ︸︸ ︷
s (s · · ·(s z) · · ·), true= λ t.λ f .t, id = λx.x, and bottom=(λx.x x)λx.x x.

Call-by-value never terminates, call-by-name takes exponential time, and call-by-need
takes only polynomial time [10]. Of course, this is a contrived example, but it illustrates
desirable properties of call-by-need.



In practice, however, there are significant issues with call-by-need evaluation. We
focus on the following: Delaying a computation is slower than performing it imme-
diately. This issue is well known [18, 24], and has become part of the motivation for
strictness analysis [23, 32], which transforms non-strict evaluation to strict when possi-
ble.

2.3 Existing Call-by-Need Machines

Diehl et al. [11] review the call-by-need literature in detail. Here we summarize the
most relevant points.

The best known machine for lazy evaluation is the Spineless Tagless G-Machine
(STG machine), which underlies the Glasgow Haskell Compiler (GHC). STG uses flat
environments that can be allocated on the stack, the heap, or some combination [24].

Two other influential lazy evaluation machines relevant to the CE machine are the
call-by-need Krivine machines [14, 19, 28], and the three-instruction machine (TIM)
[13]. Krivine machines started as an approach to call-by-name evaluation, and were
later extended to call-by-need [19, 28, 10, 14]. The CE modifies the lazy Krivine ma-
chine to capture the environment sharing given by the cactus environment. The TIM
is an implementation of call-by-need and call-by-name [13]. It involves, as the name
suggests, three machine instructions, TAKE, PUSH, and ENTER. In Section 6, we follow
Sestoft [28] and re-appropriate these instructions for the CE machine.

There has also been recent interest in heapless abstract machines for lazy evaluation.
Danvy et al. [9] and Garcia et al. [27] independently derived similar machines from
the call-by-need lambda calculus [4]. These are interesting approaches, but it is not yet
clear how these machines could be implemented efficiently.

3 Environment Representations

As mentioned in Section 2, environments bind free variables to closures. There is sig-
nificant flexibility in how they can be represented. In this section we review this design
space in the context of existing work, both for call by value and call by need.2

There are two common approaches to environment representation: flat environments
and shared environments (also known as linked environments) [2, 29]. A flat environ-
ment is one in which each closure has its own record of the terms its free variables
are bound to. A shared environment is one in which parts of that record can be shared
among multiple closures [2, 29]. For example, consider the following term:

(λx.(λy.t)(λ z.t1))t2

Assuming the term t has both x and y as free variables, we must evaluate it in the
environment binding both x and y. Similarly, assuming t1 contains both z and x as free

2 Some work refers to this space as closure representation rather than environment representa-
tion [29, 2]. Because the term part of the closure is simply a code pointer and the interesting
design choices are in the environment, we refer to the topic as environment representation.



variables, we must evaluate it in an environment containing bindings for both x and z.
Thus, we can represent the closures for evaluating t and t1 as

t[x = t2[•],y = c]

and
t1[x = t2[•],z = c1]

respectively, where • is the empty environment. These are examples of flat environ-
ments, where each closure comes with its own record of all of its free variables. Be-
cause of the nested scope of the given term, x is bound to the same closure in the two
environments. Thus, we can also create a shared, linked environment, represented by
the following diagram:

•

x = t2[•]

y = c z = c1

Now each of the environments is represented by a linked list, with the binding of x
shared between them. This is an example of a shared environment [2]. This shared,
linked structure dates back to the first machine for evaluating expressions, Landin’s
SECD machine [20].

The drawbacks and advantages of each approach are well known. With a flat envi-
ronment, variable lookup can be performed with a simple offset [24, 1]. On the other
hand, significant duplication can occur, as we will discuss in Section 3.1. With a shared
environment, that duplication is removed, but at the cost of possible link traversal upon
dereference.

As with most topics in compilers and abstract machines, the design space is actually
more complex. For example, Appel and Jim show a wide range of hybrids [2] between
the two, and Appel and Shao [29] show an optimized hybrid that aims to achieve the
benefits of both approaches. And as shown in the next section, choice of evaluation
strategy further complicates the picture.

3.1 Existing Call-by-Need Environments

Existing call by need machines use flat environments with a heap of closures [24, 13, 18,
7]. These environments may contain some combination of primitive values and pointers
into the heap (p below). The pointers and heap implement the memoization of results
required for call by need. Returning to the earlier example, (λx.(λy.t)(λ z.t1))t2, we can
view a simplified execution state for this approach when entering t as follows:

Closure

t[x = p0,y = p1]



Heap

p0 7→ t2[•]
p1 7→ λ z.t1[x = p0]

Consider t2[•], the closure at p0. If it is not in WHNF (this sort of unevaluated
closure is called a thunk [17, 25]), then if it is entered in either the evaluation of t or
t1, the resulting value will overwrite the closure at p0. The result of the computation is
then shared with all other instances of x in t and t1. In the case that terms have a large
number of shared variables, environment duplication can be expensive. Compile-time
transformation [25] (tupling arguments) helps, but we show that the machine can avoid
duplication completely.

Depending on t, either or both of the closures created for its free variables may not
be evaluated. Therefore, it is possible that the work of creating the environment for that
thunk will be wasted. This waste is well known, and existing approaches address it by
avoiding thunks as much as possible [24, 18]. Unfortunately, in cases like the above
example, thunks are necessary. We aim to minimize the cost of creating such thunks.

Thunks are special in another way. Recall that one advantage of flat environments
is quick variable lookups. In a lazy language, this advantage is reduced because a thunk
can only be entered once. After it is entered, it is overwritten with a value, so the next
time that heap location is entered it is entered with a value and a different environment.
Thus, the work to ensure that the variable lookup is fast is used only once. This is in
contrast to a call by value language, in which every closure is constructed for a value,
and can be entered an arbitrary number of times.

A more subtle drawback of the flat environment representation is that environments
can vary in size, and thus a value in WHNF can be too large to fit in the space allocated
for the thunk it is replacing. This problem is discussed in [24], where the proposed
solution is to put the value closure in a fresh location in the heap where there is suf-
ficient room. The original thunk location is then replaced with an indirection to the
value at the freshly allocated location. These indirections are removed during garbage
collection, but do impose some cost, both in runtime efficiency and implementation
complexity [24].

We have thus far ignored a number of details with regard to current implemen-
tations. For example, the STG machine can split the flat environment, so that part is
allocated on the stack and part on the heap. The TIM allocates its flat environments
separately from its closures so that each closure is a code pointer, environment pointer
pair [13] while the STG machine keeps environment and code co-located [24]. Still, the
basic design principle holds: a flat environment for each closure allows quick variable
indexing, but with an initial overhead.

To summarize, the flat environment representation in a call by need language im-
plies that whenever a term might be needed, the necessary environment is constructed
from the current environment. This operation can be expensive, and it is wasted if the
variable is never entered. In this work, we aim to minimize this potentially unnecessary
overhead.

Figure 2 depicts the design space relevant to this paper. There are existing call by
value machines with both flat and shared environments, and call by need machines with



flat environments. As far as we are aware, we are the first to use a shared environment
to implement lazy evaluation.

It is worth noting that there has been work on lazy machines that effectively use
linked environments, which could potentially be implemented as a shared environment,
e.g., Sestoft’s work on Krivine machines [28], but none make the realization that the
shared environment can be used to implement sharing of results, which is the primary
contribution of this paper.

Flat Environment Shared Environment
Call by need STG [24], TIM [13], GRIN [7] CE Machine (this paper)
Call by value ZAM [21], SML/NJ [3] ZAM, SECD [20], SML/NJ

Fig. 2. Evaluation strategy and environment structure design space. Each acronym refers to an
existing implementation. Some implementations use multiple environment representations.

4 Cactus Environment Calculus

This section shows how the shared environment approach can be applied to call-by-need
evaluation. We start with a calculus that abstracts away environment representation,
Curien’s calculus of closures, and we show how it can be modified to force sharing. See
Curien’s call-by-name calculus of closures in Figure 1. 3

The LEval rule pushes a closure onto the environment, and the LVar rule indexes
into the environment, entering the corresponding closure. We show in this section that
by removing ambiguity about how the environments are represented, and forcing them
to be represented in a cactus stack [30], we can define our novel call-by-need calculus.

To start, consider again the example from Section 3, this time with deBruijn indices:
(λ (λ t) (λ t1))t2. The terms t and t1, when evaluated in the closure calculus, would have
the following environments, respectively:

c · t2[•] · •
c1 · t2[•] · •

Again, the second closure is identical in each environment. And again, we can rep-
resent these environments with a shared environment, this time keeping call-by-need
evaluation in mind:

3 Curien calls it a “lazy” evaluator, and there is some ambiguity with the term lazy, but we use
the term only to mean call-by-need. We also remove the condition checking that i < m because
we are only concerned with evaluation of closed terms.



•

t2[•]

c c1

This inverted tree structure seen earlier with the leaves pointing toward the root is called
a cactus stack (sometimes called a spaghetti stack or saguaro stack) [15, 16]. In this
particular cactus stack, every node defines an environment as the sequence of closures
in the path to the root. If t2[•] is a thunk, and is updated in place with the value after its
first reference, then both environments would contain the resulting value. This is exactly
the kind of sharing that is required by call-by-need, and thus we can use this structure
to build a call-by-need evaluator. This is the essence of the cactus environment calculus
and the cactus environment (CE ) machine.

Curien’s calculus of closures does not differentiate between flat and shared environ-
ment representations, and indeed, no calculus that we are aware of has had the need to.
Therefore, we must derive a calculus of closures, forcing the environment to be shared.
Because we can hold the closure directly in the environment, we choose to replace the
standard heap of closures with a heap of environments. To enforce sharing, we extend
Curien’s calculus of closures to explicity include the heap of environments, which we
refer to as a cactus environment.

See Figure 3 for the syntax and semantics of the cactus calculus. Recall that we are
only concerned with evaluation of closed terms. The initial closed term t is placed in
a (t[0],ε[0 7→ •]) tuple, and evaluation terminates on a value. We use some shorthand
to make heap notation more palatable, for both the big-step semantics presented here
and the small step semantics presented in the next section. µ(l, i) = l′ 7→ c · l′′ denotes
that looking up the i’th element in the linked environment structure starting at l results
in location l′, where closure c and continuing environment l′′ reside. µ(l) = c · l′ is the
statement that l 7→ c · l′ ∈ µ , and µ(u 7→ c · l′) is µ with location u updated to map to
c · e. We define two different semantics, one for call-by-name and one for call-by-need,
which makes the connection to Curien’s call-by-name calculus more straightfoward.
The rule for application (MEval and NEval) is identical for both semantics: each eval-
uates the left hand side to a function, then binds the variable in the cactus environment,
extending the current environment.

The only difference between this semantics and Curien’s is that if we need to extend
an environment multiple times, the semantics requires sharing it among the extensions.
This makes no real difference for call-by-name, but it is needed for the sharing of re-
sults in the NVar rule. The explicit environment sharing ensures that the closure that is
overwritten with a value is shared correctly.

4.1 Correctness

Ariola et al. define the standard call-by-need semantics in [4]. To show correctness, we
show that there is a strong bisimulation between→N and their operational semantics, ⇓
(Figure 4).



Syntax

t ::= i | λ t | t t (Term)

i ∈ N (Variable)

c ::= t[l] (Closure)

v ::= λ t[l] (Value)

µ ::= ε | µ[l 7→ ρ] (Heap)

ρ ::= • | c · l (Environment)

l, f ∈ N (Location)

s ::= (c,µ) (State)

Call-by-Name Semantics

(t[l],µ) ∗−→M (λ t2[l′],µ ′) f 6∈ dom(µ ′)

(t t3[l],µ)→M (t2[ f ],µ ′[ f 7→ t3[l] · l′])
(MEval)

µ(l, i) = l′ 7→ c · l′′

(i[l],µ)→M (c,µ)
(MVar)

Call-by-Need Semantics

(t[l],µ) ∗−→N (λ t2[l′],µ ′) f 6∈ dom(µ ′)

(t t3[l],µ)→N (t2[ f ],µ ′[ f 7→ t3[l] · l′])
(NEval)

µ(l, i) = l′ 7→ c · l′′ (c,µ) ∗−→N (v,µ ′)
(i[l],µ)→N (v,µ ′(l′ 7→ v · l′′))

(NVar)

Fig. 3. Cactus calculus syntax and semantics.

Φ ,Ψ ,ϒ ::= x1 7→ t1, . . . ,xn 7→ tn (Heap)

〈Φ〉t ⇓ 〈Ψ〉λx.t ′

〈Φ ,x 7→ t,ϒ 〉x ⇓ 〈Ψ ,x 7→ λx.t ′,ϒ 〉λx.t ′
(Id)

〈Φ〉λx.t ⇓ 〈Φ〉λx.t
(Abs)

〈Φ〉tl ⇓ 〈Ψ〉λx.tn
〈Ψ ,x′ 7→ tm〉[x′/x]tn ⇓ 〈ϒ 〉λy.t ′

〈Φ〉tl tm ⇓ 〈ϒ 〉λy.t ′
(App)

Fig. 4. Ariola et. al’s Operational Semantics



Theorem 1. (Strong Bisimulation)

−→N ∼ ⇓

We start with a flattening relation between a configuration for ⇓ and a configuration
for−→N . The deBruijn indexed terms and the standard terms are both converted to terms
that use deBruijn indices for local variables and direct heap locations for free variables.
The flattening relation holds only when both terms are closed under their correspond-
ing heaps. It holds trivially for the special case of initializing each configuration with
a standard term and its corresponding deBruijn-indexed term, respectively. The proof
proceeds by induction on the step relation for each direction of the bisimulation.

5 CE Machine

Using the calculus of cactus environments defined in the previous section, we derive an
abstract machine: the CE machine. The syntax and semantics are defined in Figure 5.

Syntax

s ::= 〈c,σ ,µ〉 (State)

t ::= i | λ t | t t (Term)

i ∈ N (Variable)

c ::= t[l] (Closure)

v ::= λ t[l] (Value)

µ ::= ε | µ[l 7→ ρ] (Heap)

ρ ::= • | c · l (Environment)

σ ::=� | σ c | σ u (Context)

l,u, f ∈ N (Location)

Semantics

〈v,σ u,µ〉 →CE 〈v,σ ,µ(u 7→ v · l)〉 where c · l = µ(u) (Upd)

〈λ t[l],σ c,µ〉 →CE 〈t[ f ],σ ,µ[ f 7→ c · l]〉 f 6∈ dom(µ) (Lam)

〈t t ′[l],σ ,µ〉 →CE 〈t[l],σ t ′[l],µ〉 (App)

〈0[l],σ ,µ〉 →CE 〈c,σ l,µ〉 where c · l′ = µ(l) (Var1)

〈i[l],σ ,µ〉 →CE 〈(i−1)[l′],σ ,µ〉 where c · l′ = µ(l) (Var2)

Fig. 5. Syntax and semantics of the CE machine.

The machine operates as a small-step implementation of the calculus, extended only
with a context to implement the updates from the NVar subderivation (σ u) and the
operands from the NEval subderivation (σ c). Much like the calculus, a term t is inserted
into an initial state 〈t[0],σ ,ε[0 7→ •]. On the update rule, the current closure is a value,



and there is an update marker as the outermost context. This implies that a variable
was entered and that the current closure represents the corresponding value for that
variable. Thus, we update the location u that the variable entered, replacing whatever
term was entered with the current closure. The Lam rule takes an argument off the
context and binds it to a variable, allocating a fresh heap location for the bound variable.
This ensures that every instance of the variable will point to this location, and thus the
bound term will be evaluated at most once. The App rule simply pushes an argument
term in the current environment. The Var1 rule enters the closure pointed to by the
environment location, while the Var2 rule traverses the cactus environment to locate the
correct closure.

To get some intuition for the CE machine and how it works, consider Figure 6, eval-
uation of the term (λa.(λb.b a)λc.c a) ((λ i.i)λ j. j), which is (λ (λ0 1) λ0 1) ((λ0) λ0)
with deBruijn indices.

5.1 Correctness

We prove that the reflexive transitive closure of the CE machine step relation evaluates
to a value and heap and empty context iff −→N evaluates to the same value and heap.

Theorem 2. (Equivalence)

(c,µ)→N (v,µ ′) ↔ 〈c,�,µ〉 ∗−→CE 〈v,�,µ ′〉

By induction on the→N step relation for one direction, and induction on the reflex-
ive transitive closure of the→CE step relation for the other.

6 Implementation

This section describes how the CE machine can be mapped directly to x64 insructions.
Specifically, we re-define the three instructions given by the TIM [13]: TAKE, ENTER,
and PUSH, and implement them with x64 assembly. We also describe several design
decisions, as well as some optimizations. All implementation and benchmark code is
available at http://cs.unm.edu/~stelleg/cem-tfp2016.tar.gz.

Each closure is represented as a 〈code pointer, environment pointer¿ tuple. The Con-
text is implemented as a stack, with updates represented as a ¡null pointer, environment
pointer¿ tuple to differentiate them from closure arguments. The Heap, or cactus envi-
ronment, is implemented as a heap containing ¡closure, environment pointer¿ structs.
As a result, each cell in the heap takes 3 machine words.

6.1 Compilation

The three instructions are given below, with descriptions of their behavior.

– TAKE: Pops a context item off the stack. If the item is an update u, the instruction
updates the location u with the current closure. If it is an argument c, the instruction
binds the closure c to the fresh location in the cactus environment.



〈(λ (λ0 1) λ0 1) ((λ0) λ0)[0],�,ε[0 7→ •]〉
→CE 〈λ (λ0 1) λ0 1[0],�(λ0) λ0[0],ε[0 7→ •]〉
→CE 〈(λ0 1) λ0 1[1],�,ε[0 7→ •][1 7→ (λ0) λ0[0] ·0]〉
→CE 〈λ0 1[1],�λ0 1[1],ε[0 7→ •][1 7→ (λ0) λ0[0] ·0]〉
→CE 〈0 1[2],�,ε[0 7→ •][1 7→ (λ0) λ0[0] ·0][2 7→ λ0 1[1] ·1]〉
→CE 〈0[2],�1[2],ε[0 7→ •][1 7→ (λ0) λ0[0] ·0][2 7→ λ0 1[1] ·1]〉
→CE 〈λ0 1[1],�1[2]2,ε[0 7→ •][1 7→ (λ0) λ0[0] ·0][2 7→ λ0 1[1] ·1]〉
→CE 〈λ0 1[1],�1[2],ε[0 7→ •][1 7→ (λ0) λ0[0] ·0][2 7→ λ0 1[1] ·1]〉
→CE 〈0 1[3],�,ε[0 7→ •][1 7→ (λ0) λ0[0] ·0][2 7→ λ0 1[1] ·1][3 7→ 1[2] ·1]〉
→CE 〈0[3],�1[3],ε[0 7→ •][1 7→ (λ0) λ0[0] ·0][2 7→ λ0 1[1] ·1][3 7→ 1[2] ·1]〉
→CE 〈1[2],�1[3]3,ε[0 7→ •][1 7→ (λ0) λ0[0] ·0][2 7→ λ0 1[1] ·1][3 7→ 1[2] ·1]〉
→CE 〈0[1],�1[3]3,ε[0 7→ •][1 7→ (λ0) λ0[0] ·0][2 7→ λ0 1[1] ·1][3 7→ 1[2] ·1]〉
→CE 〈(λ0) λ0[0],�1[3]31,ε[0 7→ •][1 7→ (λ0) λ0[0] ·0][2 7→ λ0 1[1] ·1][3 7→ 1[2] ·1]〉
→CE 〈λ0[0],�1[3]31λ0[0],ε[0 7→ •][1 7→ (λ0) λ0[0] ·0][2 7→ λ0 1[1] ·1][3 7→ 1[2] ·1]〉
→CE 〈0[4],�1[3]31,ε[0 7→ •][1 7→ (λ0) λ0[0] ·0][2 7→ λ0 1[1] ·1][3 7→ 1[2] ·1][4 7→ λ0[0] ·0]〉
→CE 〈λ0[0],�1[3]314,ε[0 7→ •][1 7→ (λ0) λ0[0] ·0][2 7→ λ0 1[1] ·1][3 7→ 1[2] ·1][4 7→ λ0[0] ·0]〉
→CE 〈λ0[0],�1[3]31,ε[0 7→ •][1 7→ (λ0) λ0[0] ·0][2 7→ λ0 1[1] ·1][3 7→ 1[2] ·1][4 7→ λ0[0] ·0]〉
→CE 〈λ0[0],�1[3]3,ε[0 7→ •][1 7→ λ0[0] ·0][2 7→ λ0 1[1] ·1][3 7→ 1[2] ·1][4 7→ λ0[0] ·0]〉
→CE 〈λ0[0],�1[3],ε[0 7→ •][1 7→ λ0[0] ·0][2 7→ λ0 1[1] ·1][3 7→ λ0[0] ·1][4 7→ λ0[0] ·0]〉
→CE 〈0[5],�,ε[0 7→ •][1 7→ λ0[0] ·0][2 7→ λ0 1[1] ·1][3 7→ λ0[0] ·1][4 7→ λ0[0] ·0][5 7→ 1[3] ·0]〉
→CE 〈1[3],�5,ε[0 7→ •][1 7→ λ0[0] ·0][2 7→ λ0 1[1] ·1][3 7→ λ0[0] ·1][4 7→ λ0[0] ·0][5 7→ 1[3] ·0]〉
→CE 〈0[1],�5,ε[0 7→ •][1 7→ λ0[0] ·0][2 7→ λ0 1[1] ·1][3 7→ λ0[0] ·1][4 7→ λ0[0] ·0][5 7→ 1[3] ·0]〉
→CE 〈λ0[0],�51,ε[0 7→ •][1 7→ λ0[0] ·0][2 7→ λ0 1[1] ·1][3 7→ λ0[0] ·1][4 7→ λ0[0] ·0][5 7→ 1[3] ·0]〉
→CE 〈λ0[0],�5,ε[0 7→ •][1 7→ λ0[0] ·0][2 7→ λ0 1[1] ·1][3 7→ λ0[0] ·1][4 7→ λ0[0] ·0][5 7→ 1[3] ·0]〉
→CE 〈λ0[0],�,ε[0 7→ •][1 7→ λ0[0] ·0][2 7→ λ0 1[1] ·1][3 7→ λ0[0] ·1][4 7→ λ0[0] ·0][5 7→ λ0[0] ·0]〉

Fig. 6. CE machine example. Evaluation of (λ (λ0 1) λ0 1) ((λ0) λ0)



– ENTER i: Enters the closure defined by variable index i, the current environment
pointer, and the current cactus environment.

– PUSH m: Pushes the code location m along with the current environment pointer.

Each of these instructions corresponds directly to a corresponding lambda term: ab-
straction compiles to TAKE, application to PUSH, and variables to ENTER. Each is com-
piled using a direct implementation of the transition functions of the CE machine. The
mapping from lambda terms can be seen in Figure 7, which defines the compiler. Unlike
the TIM, our version of TAKE doesn’t have an arity; we compile a sequence of lambdas
as a sequence of TAKE instructions. While we have not compared performance of the
two approaches directly, we suspect that n inlined TAKE instructions should be roughly
as fast as a TAKE n instruction. Similarly, the ENTER i instruction can be implemented
either as a loop or unrolled, depending on i, and more performance comparisons are
needed to determine the trade-off between code size and speed.

C[[t t ′]] = PUSH labelC[[t ′]] : C[[t]]++C[[t ′]]

C[[λ t]] = TAKE : C[[t]]

C[[i]] = ENTER i

Fig. 7. CE machine compilation scheme. C compiles a sequence of instructions from a term. The
label represents a code label: each instruction is given a unique label. The : operator denotes
prepending an item to a sequence and ++ denotes concatenating two sequences.

We compile to x64 assembly. Each of the three instructions is mapped onto x64 in-
structions with a macro. The PUSH instruction is particularly simple, consisting of only
two x64 instructions (two pushes, one for the code pointer and one for the environ-
ment pointer). This is actually an important point: thunk creation is only two hardware
instructions, regardless of environment size.

6.2 Machine Literals and Primitive Operations

Following Sestoft [28], we extend the CE machine to include machine literals and prim-
itive operations. Figure 8 shows the parts of syntax and semantics that are new or mod-
ified.

6.3 Omitted Extensions

Our implementation omits a few other standard extensions. Here we address some of
these omissions.

Data types are a common extension that we omit [24, 7]. We take the approach of
Sestoft [28] that these can be efficiently implemented with pure lambda terms. For ex-
ample, consider a list data type (in Haskell syntax): data List a = Cons a (List



Syntax

t ::= i | λ t | t t| n | op (Term)

n ∈ I (Integer)

op ::=+ | − | ∗ | / | = | > | < (PrimOp)

v ::= λ t[l] | n[l] (Value)

Integer and Primop Semantics

〈n[l],σ c,µ,k〉 →CE 〈c,σ n[l],µ,k〉 (Int)

〈op[l],σ n′ n,µ,k〉 →CE 〈op(n′,n)[l],σ ,µ,k〉 (Op)

Fig. 8. Extensions to the syntax and semantics of the CE machine.

a) | Nil. This can be represented in pure lambda terms with Cons= λh.λ t.λc.λn.c h t
and Nil = λc.λn.n.

Let bindings are another term commonly included in functional language compilers,
even in the internal representation [7, 24]. Non-recursive let is syntactic sugar for a
lambda binding and application, and we treat it as such. This approach helps ensure
that we can of compile arbitrary lambda terms, while some approaches require pre-
processing [28, 13].

Recursive let bindings are a third omission. Here we follow Rozas [26]: If it can
be represented in pure lambda terms, it should be. Thus, we implement recursion using
the standard Y combinator. In the case of mutual recursion, we use the Y combinator in
conjunction with a church tuple of the mutually recursive functions. Without the appro-
priate optimizations [26], this approach has high overhead, as we discuss in Section 7.1.

6.4 Optimizations

The CE implementation described in the previous section is completely unoptimized.
For example, no effort is expended to discover global functions to avoid costly jumps
to pointers in the heap [24]. Indeed, every variable reference will look up the code
pointer in the shared environment and jump to it. There is also no implementation of
control flow analysis as used by Rozas to optimize away the Y combinator. Thus, every
recursive call exhibits the large overhead involved in re-calculating the fixed point of
the function.

We do, however, implement two basic optimizations, primarily to reduce the load
on the heap:

– POP: A TAKE instruction can be converted to a POP instruction that throws away
the operand on the top of the stack if there are no variables bound to the λ term in
question. For example, the function λx.λy.x can be implemented with TAKE, POP,
ENTER 0.



– ENTERVAL: An ENTER instruction, when entering a closure that is already a value,
should not push an update marker onto the stack. This shortcut prevents unneces-
sary writes to the stack and heap [24, 14, 28].

6.5 Garbage Collection

We have implemented a simple mark and sweep garbage collector with the property
that it does not require two spaces because constant-sized closures in the heap allow
a linked-list representation for the free cells. Indeed, while the abstract machine from
Section 5 increments a free heap counter, the actual implementation uses the next free
cell in the linked list.

Because the focus of this paper is not on the performance of garbage collection, we
ensure the benchmarks in Section 7 are not dominated by GC time.

7 Performance Evaluation

This section reports experiments that assess the strengths and weaknesses of the CE
machine. We evaluate using benchmarks from the nofib benchmark suite. Because we
have implemented only machine integers, and must translate the examples by hand, we
use a subset of the nofib suite that excludes floating point values and arrays. A list of
the benchmarks used and a brief description is given in Figure 9.

– exp3: A Peano arithmetic benchmark. Computes 38 and prints the result.
– queens: Computes the number of solutions to the nqueens problem for an n by n board.
– primes: A simple primes sieve that computes the nth prime.
– digits-of-e1: A calculation of the first n digits of e using continued fractions.
– digits-of-e2: Another calculation of the first n digits of e using an infinite series.
– fib: Naively computes the nth Fibonacci number.
– fannkuch: Counts the number of reverses of a subset of a list.
– tak: A synthetic benchmark involving basic recursion.

Fig. 9. Description of Benchmarks

We compare the CE machine with two existing implementations:

– GHC: The Glasgow Haskell compiler. A high performance, optimizing compiler
based on the STG machine [24].

– UHC: The Utrecht Haskell compiler. An optimizing compiler based on the GRIN
machine [7, 12].

We use GHC version 7.10.3 and UHC version 1.1.9.3. We compile with -O0 and
-O3, and show the results for both. Where possible, we pre-allocate a heap of 1GB to
avoid measuring the performance of GC implementations. The tests were run on an
Intel(R) Xeon(R) CPU E5-4650L at 2.60GHz, running Linux version 3.16.



7.1 Results

Figure 10 gives the benchmark results. In general, we are outperformed by GHC, some-
times significantly, and we outperform UHC. We spend the remainder of the section
analyzing these performance differences.

CE GHC -O0 UHC -O0 GHC -O3 UHC -O3
exp3 8 1.530 1.176 3.318 1.038 2.286
tak 16 8 0 0.366 0.146 1.510 0.006 1.416
primes 1500 0.256 0.272 1.518 0.230 1.532
queens 9 0.206 0.050 0.600 0.012 0.598
fib 35 2.234 0.872 10.000 0.110 8.342
digits-of-e1 1000 3.576 1.274 21.938 0.118 22.010
digits-of-e2 1000 0.404 0.792 3.430 0.372 3.278
fannkuch 8 0.560 0.084 2.184 0.048 2.196

Fig. 10. Machine Literals Benchmark Results. Measurement is wall clock time, units are seconds.
Times averaged over 5 runs.

There are many optimizations built into the abstract machine underlying GHC, but
profiling indicates that three in particular lead to much of the performance disparity:

– Register allocation: The CE machine has no register allocator. In contrast, by
passing arguments to functions in registers, GHC avoids much heap thrashing.

– Unpacked literals: This allows GHC to keep machine literals without tags in reg-
isters for tight loops. In contrast, the CE machine operates entirely on the stack,
and has a code pointer associated with every machine literal.

– Y combinator: Because recursion in the CE machine is implemented with a Y
combinator, it performs poorly. This could be alleviated with CFA-based tech-
niques, similar to those used in [26].

Lack of register allocation is the primary current limitation of the CE machine. The
STG machine pulls the free variables into registers, allowing tight loops with every-
thing kept in registers. However, it is less clear how to effectively allocate registers in
a fully shared environment setting. That said, we believe being lazier about register al-
location, e.g., not loading values into registers that may not be used, could have some
performance benefits.

To isolate the effect of register allocation and unpacked machine literals, we replace
machine integers with Church numerals in a compatible subset of the evaluation pro-
grams. Figure 11 shows the performance results with this modification, which are much
improved, with the CE machine occasionally even outperforming optimized GHC.

Next, we consider the disparity due to the Y-combinator, by running a simple expo-
nentiation example with Church numerals, calculating 38−38 = 0. In this case, the CE
machine significantly outperform both GHC and UHC, as seen in Figure 12 .

These results give us confidence that by adding the optimizations mentioned above,
among others, the CE machine has the potential to be the basis of a real-world compiler.



CE GHC -O0 UHC -O0 GHC -O3 UHC -O3
tak 14 7 0 1.610 2.428 7.936 1.016 7.782
primes 32 0.846 1.494 4.778 0.666 5.290
queens 8 0.242 0.374 1.510 0.154 1.508
fib 23 0.626 0.940 5.026 0.468 5.336
digits-of-e2 6 0.138 1.478 5.056 0.670 5.534
fannkuch 7 0.142 0.124 0.796 0.040 0.808

Fig. 11. Church Numeral Benchmark Results. Measurement is wall clock time, units are seconds.
Times averaged over 5 runs.

CE GHC -O0 UHC -O0 GHC -O3 UHC -O3
pow 3 8 0.564 1.994 4.912 0.906 4.932

Fig. 12. Church Numeral Exponentiation Benchmark Results. Measurement is wall clock time,
units are seconds. Times averaged over 5 runs.

We discuss how some of these optimizations can be applied to the CE machine in
Section 8.

7.2 The Cost of the Cactus

Recall that variable lookup is linear in the index of the variable, following pointers
until the index is zero. As one might guess, the lookup cost is high. For example, for
the queens benchmark without any optimizations, variable lookup took roughly 80−
90% of the CE machine runtime, as measured by profiling. Much of that cost was for
lookups of known combinators, however, so for the benchmarks above we added the
inlining mentioned in the previous section. Still, even with this simple optimization,
variable lookup takes roughly 50% of execution time. There is some variation across
benchmarks, but this is a rough approximation for the average cost. We discuss how this
cost could be addressed in future work in Section 8.

8 Discussion and Related Work

Some related work was discussed earlier to provide background and context. Here, we
briefly and explicitly compare our approach with earlier work. We also discuss areas
for future work.

8.1 Closure Representation

Appel and Shao [29] and Appel and Jim [2] both cover the design space for closure rep-
resentation, and develop an approach called safely linked closures. It uses flat closures
when there is no duplication, and links in a way that preserves liveness, to prevent vio-
lation of the safe for space complexity (SSC) rule [1]. While we do not address SSC or
garbage collection in general, understanding the relationship between SSC and shared



environment call-by-need is an interesting area for future work. In particular, hot en-
vironments with no sharing could benefit greatly from replacing shared structure with
flat.

8.2 Eval/Apply vs. Push/Enter

Marlow and Peyton Jones describe two approaches to the implementation of function
application: eval/apply, where the function is evaluated and then passed the necessary
arguments, and push/enter, where the arguments are pushed onto the stack and the func-
tion code is entered [22]. They conclude that despite push/enter being a standard ap-
proach to lazy machines, eval/apply performs better. While our current approach uses
push/enter, investigating whether eval/apply could be usefully implemented for a shared
environment machine like the CE machine is an interesting avenue for future work.

8.3 Collapsed Markers

Friedman et al. show how a machine can be designed to prevent multiple adjacent
update markers being pushed onto the stack [14]. This property is desirable because
multiple adjacent update markers are always updated with the same value. They give
examples showing that in some cases, these redundant update markers can cause an oth-
erwise constant-space stack to grow unbounded. They implement an optimization that
collapses update markers by adding a layer of indirection between heap locations and
closures. We propose a similar approach, but without the performance hit caused by an
extra layer of indirection. Upon a variable dereference the CE machine checks if the top
of the stack is an update. If it is, instead of pushing a redundant update marker onto the
stack, it replaces the closure in the heap at the desired location with an update marker.
Then, the variable dereference rule checks for an update marker upon dereference, and
will update accordingly. We have begun to implement this optimization, but leave the
full implementation and description for future work.

8.4 Register Allocation

One advantage of flat environments is that register allocation is straightforward [1, 24,
31]. It is less obvious how to do register allocation with the CE machine. We speculate
that it should be possible to do a sufficient job, particularly in the cases that matter most,
e.g. unboxed machine literals, though certainly not easy.

One possible approach that could work well with our shared environment approach
would be to only load strict free variables into registers. That is to say, some environ-
ment variables may not be used, and only the ones we know will be used should be
loaded into registers, while the rest should be loaded on demand.

8.5 Verification

A signal property of our implementation is its simplicity, which makes it an attractive
target for a verified compiler. Because it avoids complexities required for flat envi-
ronment implementations, e.g., black hole updates, basing a verified compiler on this
machine is another exciting area for future work.



9 Conclusion

Lazy evaluation has long suffered from high overhead when delaying computations.
While strictness analysis helps to alleviate this issue, there are and there always will
be cases it cannot catch. Existing implementations choose to pay an up-front cost of
constructing a flat environment to ensure efficient variable lookup if a delayed compu-
tation is used. When a delayed computation is never used, this overhead is wasted. In
this paper we have presented a novel approach that minimizes this overhead. We have
achieved this overhead minimization by taking an old idea, shared environments, and
using them in a novel way. By leveraging the structure inherent in a shared environment
to share results of computation, we have avoided some of the overheads involved in
delaying a computation.

We conclude by summarizing the key points of this paper. First, a shared environ-
ment, explicitly represented as a cactus stack, is a natural way to share the results of
computation as required by lazy evaluation. Second, this approach is in a sense lazier
about lazy evaluation than existing implementations because it avoids some unneces-
sary packaging. Third, this approach can be formalized in both big-step and small-step
semantics. Lastly, the abstract machine can be implemented as a compiler in a straight-
forward way, yielding performance comparable to existing implementations.
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