Building the components for a biomolecular computer
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Abstract. We propose a new method for amorphous bio-compatible computing
using deoxyribozyme logic gates [1] in which oligonucleotides act as enzymes
on other oligonucleotides, yielding oligonucleotide products. Moreover, these re-
actions can be controlled by inputs that are also oligonucleotides. We interpret
these reactions as logic gates, and the concentrations of chemical species as sig-
nals. Since these reactions are homogeneous, i.e., they use oligonucleotides as
both inputs and outputs, we can compose them to construct complex logic cir-
cuits. Thus, our system for chemical computation offers functionality similar to
conventional electronic circuits with the potential for deployment inside of living
cells. Previously, this technology was demonstrated in closed-system batch reac-
tions, which limited its computational ability to simple feed-forward circuits. In
this work, we go beyond closed systems, and show how to use thermodynami-
cally open reactors to build biomolecular circuits with feedback. The behavior of
an open chemical system is determined both by its chemical reaction network and
by the influx and efflux of chemical species. This motivates a change in design
process from that used with closed systems. Rather than focusing solely on the
stoichiometry of the chemical reactions, we must carefully examine their kinetics.
Systems of differential equations and the theory of dynamical systems become the
appropriate tools for designing and analyzing such systems. Using these tools, we
present an inverter. Next, by introducing feedback into the reaction network, we
construct devices with a sense of state. We show how a combination of analytical
approximation techniques and numerical methods allows us to tune the dynamics
of these systems. We demonstrate a flip-flop which exhibits behavior similar to
the RS flip-flop of electronic computation. It has two states in which the con-
centration of one oligonucleotide is high and the other is low or vice versa. We
describe how to control the state of the flip-flop by varying the concentration of
the substrates. Moreover, there are large regions of parameter space in which this
behavior is robust, and we show how to tune the influx rates as a function of the
chemical reaction rates in a way that ensures bistability.

1 Introduction

We use deoxyribozymes (nucleic acid enzymes) as gates to transform input and sub-
strate signals (molecular concentrations) into product signals and thereby perform sim-
ple computation. Since the inputs are of the same type as the outputs, viz. oligonu-
cleotides, gates may, in principle, be connected in complex circuits, with the output of
one gate acting as the input of another. Thus, we may design chemical systems that



perform complex computations from simple boolean primitives in much the same way
electronic computers are built from simple logic gates. These devices could operate
without macroscopic intervention in a biological environment, and the goal of this tech-
nology is autonomous in vivo computation for diagnostic and therapeutic purposes. We
have reported gates with a single layer of logic, and no inter-gate communication [1].
Devices that function as a half-adder [2] and a tic-tac-toe automaton [3] have been built
and tested in the laboratory.

These gates have been deployed in a closed reactor, which effectively limits this
technology to one-shot boolean computations. To overcome this limitation, we explore
using this chemistry in an open reactor, in which gates could be re-used many times
and connected in recurrent, rather than feed-forward, circuits. This adds a level of com-
plexity to the engineering task, but we develop a process that may be used to engineer
these devices. We apply methods of dynamical systems to construct reaction networks
in open reactors that implement rudimentary elements of digital chemical computation.
This allows us to investigate complex reaction networks that make use of inter-gate
communication and feedback.

2 The Chemical Kinetics of Deoxyribozyme Logic Gates

The four components of our deoxyribozyme system are inputs, gates, substrates, and
products. Under certain input conditions a gate is an active enzyme [1]. The effect of
input molecules on the catalytic activity of the gate defines the logic operation that
the gate performs. A gate requires the presence and/or absence of certain inputs to be
active. When active, the enzymatic gate is a phosphodiesterase: it catalyzes an oligonu-
cleotide cleavage reaction. A substrate molecule is cleaved into two product molecules.
The product molecules represent the output signal of the gate. Computations are car-
ried out in solution, where gates communicate by diffusion of oligonucleotides. Logic
signals, true or false, are expressed by high or low concentrations of specific oligonu-
cleotides. Oligonucleotides transmit information by participating in the reactions of
multiple gates. The simplest example is an oligonucleotide that is a product of one gate
and an input to another; serving as a substrate would suffice as well.

The mechanism of a deoxyribozyme gate is as follows. Input molecules bind to the
designated locations on the gate molecules. The binding of an input to a gate affects
the conformation of the gate, which in turn affects catalytic activity. Under appropri-
ate circumstances, the gate is an active enzyme, in which case it binds to a substrate
molecule, cleaves it into two molecules of product, and separates into two molecules of
product and one active gate complex. Active gates continue to operate as long as there
is substrate remaining to be cleaved.

In order to design larger circuits, we must first understand the dynamic behavior
of individual logic gates. We set up the experiment as follows. We prepare a solution
with a concentration of G = 250nM of a specific YES gate (which becomes active in
the presence of input), a certain concentration | of the matching input, and a concen-
tration S = 2500nM of the substrate cleaved by the gate. At 900s intervals we record
the instrumentally measured fluorescence. We repeat the experiment varying I, starting
with | = S and repeatedly halving it. The measured fluorescence level of a molecular



species is proportional to its concentration. The specific fluorescences of the product
and the substrate have been established separately and are in a ratio of 8:1. Therefore
the increase of total fluorescence is proportional to the amount of product, which allows
us to convert measured fluorescence into product concentration, shown in Figure 1.
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Fig. 1. Measured kinetics of a deoxyribozyme gate for different input concentrations | (nM).

For small values of the input concentration I, product concentration P rises linearly
with time, with slope proportional to 1. For larger values of I, the growth soon reaches
a plateau defined by the initial substrate concentration S: when all of the substrate has
been converted to product, the reaction stops. Note also the saturating behavior: whereas
the slope of t — P increases with | for small I, it remains roughly constant for | > G.

We will model the kinetics of the deoxyribozyme gates as follows. First we note
that the cleavage and separation of substrate molecules is the slowest of the reactions—
it is the rate-limiting process. We will assume that bonding between gate and input
molecules is instantaneous and complete. Thus, the number of active gates at a given
time is a simple calculation depending solely on the number of gates and inputs.

Cleavage of substrate requires both substrate and an active gate complex. Exper-
iments have shown that the rate of production is proportional to the concentration of
both reactants. Hence, a model for the rate at which product is produced is: ‘é—f =BSGa,
where P is the product concentration, 3 is the reaction rate constant, S is the substrate
concentration, and Ga is the concentration of active gates. In the experiments shown
in Figure 1, | (and thus Ga) was held constant. Therefore, the solution is an exponen-
tial decay of the substrate S. This model agrees well with observed measurements in
Figure 1, and analysis of the measured data gives a rough estimate of the reaction rate
constant B =5-10""nM~1s~1, This value will be used to model the chemical gates in
the circuit designs presented herein.



3 TheReactor

Chemical reactors may be divided into closed systems, where reactants are added to a
solution and the reaction is allowed to proceed toward equilibrium, and open systems,
where reactants are continuously supplied and excess solution is removed. We explore
the benefits and design considerations associated with using our chemistry in an open
reactor. Previous theoretical work has described circuits created from hypothetical en-
zymatic transistors in open reactors [4]. We expand on this work by presenting circuit
designs based on the chemical technology described above. Reactions in a closed en-
vironment are subject to the Second Law of Thermodynamics, which posits that the
free energy in a closed system will continuously decrease and implies that the system
will move toward an equilibrium. This does not rule out interesting behavior, such as
oscillations on the way to an equilibrium [5], but it implies a finite number of cycles
through these oscillations. Thus it would be impaossible to implement a recurrent digital
circuit in which gates could switch on and off an arbitrary number of times.

Instead, we use a thermodynamically open system; material is continuously sup-
plied and removed, as in a living cell. The circuit may be reused and produce many
outputs over its lifetime, so that it is recurrent rather than feed-forward. While a long-
term goal of this technology is deployment inside of (thermodynamically open) living
cells, the first step toward that end is testing and verification in a laboratory setting. A
model open environment is the continuous-flow stirred tank reactor. It delivers reactants
into a reaction chamber, stirred to maintain a uniform distribution of chemical species.
An outflow removes solution from the reactor to maintain constant volume. The inputs
can be varied in terms of their concentrations in the input solution and the flow rate
into the reactor. Both the concentration and the volumetric influx of a solution can be
varied while still maintaining the same total molecular influx rate. Thus we can manip-
ulate total efflux while maintaining desired concentrations of chemical species inside
the reactor.

The decay rate of the reactor (k) is equal to the efflux rate (E) divided by the vol-
ume (V). As the decay rate is increased, material spends less time inside the reactor.
Because the reactor state changes faster, the circuit speeds up. However, this increases
the amount of chemical species needed to maintain the same concentrations. In the spe-
cific design below, the reactor will have a total efflux of 5-10 8 m3s~1 and a volume
of 5-10~*m3. This results in a decay rate of 10~4s~1. While the resulting circuits
will operate very slowly, these values were chosen as design points corresponding to
equipment that can be found in a traditional chemistry laboratory.

4 A Simplelnverter

We begin by examining a simple computational device: the digital inverter. It is built
from a single type of NOT gate G operating in an open reactor. The reactor is supplied
with a constant influx of gate and substrate molecules. In addition, input I is supplied to
provide an external drive. The output of this inverter is expressed by the concentration
of product P cleaved from substrate S. The behavior of the system can be modeled with



the following system of four coupled differential equations:
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where I™, G™, and S™ are the constant rates of molar influx of the respective chemical
species, V is the volume of the reactor, E is the rate of volume efflux, and 3 is the
reaction rate constant. The max terms in (3) and (4) come from our assumption that the
binding of input to gate molecule is both instantaneous and complete.

Clearly, this system can function as an inverter. If there are no inputs in the reactor,
all of the gates are active and produce product—this is the high signal. As input is added
gates become inhibited, and the product concentration falls. As the input concentration
reaches the gate concentration, all gates become inhibited and the product concentration
falls to zero—this is the low signal.

To explore the equilibrium behavior of the inverter we first assume that the input
concentration never exceeds the gate concentration; we can then eliminate the max
functions from equations (1)-(4). We can now set the derivatives to zero and solve for P.
This produces the following relation between input concentration and output (product)
concentration:

_ B™VE-H E(E-D
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Introducing rescaling parameters a = % Y= %m and 6= BEV allows further simplifi-
cation. Thus we arrive at the following equation for the static transfer curve:

_afy=1
T o+ (y=1)

This shows how the output concentration P depends on the input concentration I.

Further constraints must be introduced to create an inverter with well-defined signal
levels. First, the concentration corresponding to a high logic value is defined as H. We
require that P = H when | =0 and P = 0 when | = H. These conditions yield the
constraints y=H and a = H + &. Thus, to alter the static transfer curve, we may vary
the parameters & and a, while maintaining the relationship: a = H + 8. Figure 2 shows
the transfer functions obtained by setting & to a range of values. As o is increased, the
curve flattens out and becomes close to linear. As & is decreased the curve becomes
more bowed out (i.e., a large derivative).

This transfer curve is far from the sigmoid shape desired in digital computing. Any
noise that moves the input concentration away from its digital value will propagate
through to the output, possibly resulting in computational errors. However, we may
construct inverters with differing static characteristics by concatenating several gates in
a cascade. Details of this construction are given in [6].
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Fig. 2. The static transfer curve for an inverter constructed from a NOT gate in an open system
with several different values for o: %, % and 200. As o increases the transfer curve approaches a
straight line from high product and low input to low product and high input concentrations.

While the static behavior addresses equilibrium characteristics, this analysis ne-
glects the dynamic behavior of the system. Ultimately, the static transfer characteristic
depends on only one ratio, but the dynamic behavior is less restricted and depends on
several variables. However, this solution space is narrowed by the physical restrictions
of our technology. We define a logical high value to be a concentration of 250 nM and
calculate the rest of the parameters for the system. Figure 3 shows the results of numer-
ical integration of the inverter working under such conditions. The reactor was started
with zero concentration of all chemical species. The propagation delay of the inverter
is ~7.9-10%s, with a tpy &~ 12.5-10%s, and tp y ~ 3.2 - 103s.
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Fig. 3. Left: external drive (molecular influx), as input to the circuit. Middle: concentration of
input | inside the reactor. Right: product concentration P, the output of the inverter. The input
concentration is moved from low, to high, and back to low at 6-10%s intervals.

5 A Chemical Flip-Flop

Moving to an open system allows us to construct recurrent chemical and logical circuits—
circuits with a lasting internal state or memory, which can change and be accessed over



time. The simplest such system in digital logic is a flip-flop. This is simply a bistable
system, which exhibits three behaviors depending on its inputs, commonly called hold,
set, and reset. In the hold behavior, there are two stable states, which represent high and
low outputs of the system. Set forces the system into its high stable state regardless of its
previous state; similarly, reset forces it to its low stable state. Thus a flip-flop represents
a single bit of memory, which can be stored (hold) or overwritten (set or reset).

A system that functions as a flip-flop can be constructed with a network of two
NOT gates connected in a cycle of inhibition. A gate G1 cleaves substrate S to produce
product P1, which inhibits the catalytic activity of gate G»; gate G cleaves S, to produce
P., which inhibits G1 to complete the cycle. Output from the flip-flop is in terms of the
concentration of the cleaved product Py, with high or low concentration corresponding
to a logical one or zero. The flip-flop is controlled by varying the influx of substrates 1
and 2 to the reactor, while gates 1 and 2 are continuously supplied.

We define constants GT" and G4’ to be the rates of molecular influx of gate solutions.
The external control is modeled by the functions ST'(T) and S5(T), which describe
the variable molecular influx of substrates at time T. The rate of efflux of the system
is given by E. We define P1(T), P2(T), S1(T), S2(T), G1(T), and G(T) to be the
concentrations within the reactor at time T of product 1, product 2, substrate 1, substrate
2, gate 1, and gate 2, respectively. The system’s dynamics are modeled by the following
system of six coupled differential equations:
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where 31 and 3 are the reaction rate constants and V is the volume of the reactor.

We now examine the model to determine the conditions under which it will function
as a flip-flop. Since we control it using substrate concentrations, we must determine how
its output depends on these. To simplify the analysis, we take the gate concentrations to
be constant (depending only on the efflux of the system). Hence we view the substrate
concentrations as parameters of the system rather than dynamic variables. Now the
behavior of the flip-flop can be understood using the following two-dimensional system:

dpy

g = "1max(0,01 = pa(t)) — kpa () ®)
9P — romax(0,6, - pa(1) kb2t ©

where p1 and py are the product concentrations, r1 and rp are lumped parameters
representing substrate concentration and the reaction rate constant for the two reactions,
g1 and g, are the gate concentrations, and k is the decay constant. In order to function as



a flip-flop, the system must have two stable states: a set state with a high value of p 2, and
a reset state with a low value of p,. Additionally there should exist control mechanisms
to switch between states, in this case by varying the substrate concentrations. High
concentration of both substrates is used to hold the flip-flop state, while the absence of
one is used to set or reset the flip-flop. We now examine how the system will behave for
various values of the parameters r1 and r.

We begin our analysis by examining the nullclines of the system, i.e., the curves
along which the time derivatives of the variables are constant. Setting equations (5) and
(6) to zero yields:

dpy _ rimax(0,91 — p2)
F =0= p1= f
dp2 _ romax(0,92 — p1)
F =0= p2 = f

The derivative on the nullclines will have components in a single direction, along either
the p1 or pz axis. This observation can be further qualified by inspecting equations
(5)-(6). Notice that as we increase the value of p1 the value of % decreases, and as
we decrease the value of p1 the value of % increases. This same relationship holds
between p» and %. Thus a point above the p1 nullcline will have a derivative in the
negative pi1 direction and a point below the py nulicline will have a derivative in the

positive p1 direction. We can use these facts to partition the phase space into regions
where the signs of the derivatives are known [7].

Fig. 4. The geometric structure of the flip-flop equations. Dark lines indicate the nullclines, where
p1 or p2 is unchanging. The arrows indicate the sign of the derivatives at various regions in the
phase space. a The hold state: a bistable system with balanced substrate concentrations. Points B
and C are the stable points of the system. Point A is an unstable saddle node. b The reset state:
a mono-stable system caused by a low concentration of substrate 2. The nullclines intersect once
at point F, which all locations will be attracted to.



Figure 4 shows two possible configurations of the nullclines along with the signs of
the derivatives in different regions of the phase space. In the case shown in Figure 4a
the two nullclines intersect (to create fixed points) at points A, B, and C. The stability
of these points can be investigated by examining the slopes of the surrounding regions.
The intersection at point A has four adjacent regions. Two of the regions adjacent to A
have derivatives pointing toward A, but two of the regions have derivatives away from
A. This reveals that A is a saddle point: perturbations in one direction will return back
to A, while perturbations in another direction will fall away from A. B and C, on the
other hand, are stable. The separatrix shown in Figure 4a divides the phase space into
two basins of attraction. All trajectories starting above the separatrix will be attracted to
B; all trajectories starting below it will be attracted to C. This configuration represents
a hold state of the flip-flop as the system will evolve to either B or C. B is the low
state of the flip-flop, in which the system has a low concentration of p 2 and a high
concentration of ps1. Similarly, C is the high state, with a high concentration of p, and
a low concentration of p1. Thus we have two stable states and a valid flip-flop.

If the nuliclines do not intersect in the positive quadrant then there will be a single
intersection on either the p1 or the p» axis. Such a situation is shown in Figure 4b. The
point F is a stable node with a low p2 value and a high p; value. An examination of
the three regions of the phase space reveals that all points will be attracted to point F.
Thus this state will reset the flip-flop. For bistability to occur the two nullclines must
intersect in the orientation shown in Figure 4a. This requires that point B be above
point D and that point C be to the right of point E, and translates into the following
conditions: kgz < rig; and kgy < ragp. If we wish to maintain symmetry, we can set
g1 =02 and r; = rp = r and the conditions become k < r. When this condition is met the
flip-flop will be in a hold state. The flip-flop is set or reset when the two nullclines do
not intersect in the positive quadrant. Then there will exist one stable fixed point at their
intersection (point F in Figure 4b). This will be the case if either ry or r» takes the value
of zero. Suppose that the flip-flop is in the hold state with a high concentration of p , at
point C in Figure 4a. As the parameter r» is reduced, the slope of the % nullcline will
decrease and the stable point C will slide down the p2 axis toward point E. As C passes
E the fixed point is annihilated, and the system will jump to the only fixed point: point
F in Figure 4b. After the system has gone to point F the parameter r can be returned to
its original value and the flip-flop will remain in its low state. This lack of reversibility
as the parameter is varied is called hysteresis in dynamical systems [7].

This stability analysis reveals the constraints we need to satisfy for the system to
function as a flip-flop. First, in order to maintain output symmetry we require thatg 1 =
g2. This ensures that both the output of the flip-flop (p 2) and the negated output (p1)
have the same value for a logical high. Next, in order to maintain a symmetric separatrix
along the line p1 = p2 we require that ry = ro = r. Thus, during the hold state of the flip-
flop, the phase-space is equally divided between values which are attracted to the high
state and values which are attracted to the low state. Finally, the constraint for bistability
is k < r. This means that the rate at which concentrations decay in the reactor (by means
of outflow) must be less than the rate at which the enzymatic gates can create product.
In other words, the gates must be capable of creating product faster than product is
being removed.



We then convert these constraints on the dimensionless model to specifications for a
physical system. Figure 5 shows a numerical integration of the system over a period of
9.6-10%s. At 2.4-10%s intervals the system is moved between set, hold, reset, and hold
operations by controlling the influx of substrates. The top two traces on the left show
substrate molecular influx rates. The top two traces on the right show the corresponding
concentrations of substrates. The bottom two traces show concentrations of products 2
and 1. These represent the output and the negated output of the system, respectively.
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Fig. 5. Exercising control over the flip-flop system.

6 Conclusions

Deoxyribozyme logic gates may be used to construct a biomolecular computer. By mov-
ing to open reactors, we increase the computational abilities of the underlying logic
gates by making it possible to build recurrent circuits and devices with feedback. Tech-
niques from dynamical systems offer qualitative and quantitative insights about the be-
havior of these chemical networks. Using these techniques, we have designed two fun-
damental components of a biomolecular computer: a single-bit inverter and a flip-flop
that provides a single bit of memory. Compared to electronic computers, this technol-
ogy is slow (about 1 milliHertz) but the possibility it offers of amorphous computation
inside living cells is extremely exciting.
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