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Abstract

We previously described a tic-tac-toe playing molecular automaton, MAYA-II, constructed from a 
molecular array of deoxyribozyme-based logic gates,  that uses oligonucleotides as inputs and 
outputs. We are now developing an ensemble modeling tool for high-throughput oligonucleotide 
input and logic gate designs. The modeling tool is based on exhaustive reconstruction of both 
intended and unintended reactions between MAYA-II gates and inputs,  and seeks to directly 
correlate empirical observations with computational predictions. Here we describe exhaustive 
analysis of the MAYA-II Yes logic gates folding structures, both alone and in conjunction with the 
MAYA-II oligonucleotide inputs. Results indicate that in silico modeling accurately reflects 
experimental results, creating a predictive value and benchmark for future high-throughput 
oligonucleotide input and Yes gate designs. These studies serve purpose towards our goal of 
constructing a generalized oligonucleotide design library for expansion of molecular computation 
beyond hundreds, to millions of potential interactions, conferring greater functionality in terms of 
both reliability and complexity.
 

1. Introduction

Computation on a molecular substrate has been physically realized in automata devised by Adelman [1], 
Benenson et al. [3], and in our laboratory as the MAYA-I [14] and MAYA-II [17] experiments, among 
others.  MAYA, a molecular array of Yes and And gates, consists of individual deoxyribozyme-based logic 
gates and sequentially introduced DNA oligonucleotide inputs. These automata effect control by careful 
biochemical arrangement.  With the ensuing heterogenous population of tens of distinct  oligonucleotide 
species together in solution, successful computation depends on achieving satisfactory thresholds of 
hundreds of desired events, including gates folding to their intended secondary structure and inputs 
binding to gates at precisely the correct  locations along their entire length.    These potential events are 
positive in the sense that  they are necessary to carry out the intended computation, yet  commensurately 



there are thousands of negative events that  must not  occur, or occur at low enough rates  so as to minimize 
noise or system failure.  

Design efforts hence walk a tight line.  In practice, in silico planning [2,5,11,12,16,18] has centered 
around sequence selection that  will achieve a particular target secondary structure, matching gate 
recognition regions to the reverse complements of input sequences, and ensuring sufficient content 
difference between all other element combinations that  may be present in solution but intended to have 
agnostic relationships. Multiple gates and inputs are then combinable in solution and may carry out 
parallel hybridization reactions as long as sufficient  primary structure differences exist between all gate/
gate, input/input, and gate/input  tuples designed to not  hybridize.  We assume both negative and positive 
affinity relationships. By employing Hamming distance metrics, we assume suitable separation will 
minimize or eliminate the problem of cross-talk.  Correspondingly, we assume that  matching gate 
recognition regions to inputs ensures reliable, measurable oligonucleotide cleavage or hybridization 
outputs, which are then de facto communication signals carrying information.  

A reasonable hypothesis is that  these assumptions should be equally borne out  in stand-alone DNA 
models advertising predictiveness and further that empirical results should additionally confirm model 
predictions.  However, as far as we are aware, the empirical feedback from the significant  in vivo tuning, 
testing, and modifications required to achieve computational logic goals within a chemical network has 
not to date been fully incorporated back into the design process. 

To this end, we are undertaking an analytical reconstruction of the MAYA-II automaton.  MAYA-II now 
serves as a rich source of unmined data which can be used as design feedback.  Reconstruction is a 
reverse engineering effort, and has clear goals.  First, we would like to compare and correlate empirical 
observations to offline model predictions.  Second, we want  to be able to deduce sources of noise 
resulting from unintended reactions and explain varying signal intensity from some of the deoxyribozyme 
gates.  Finally, and most importantly, MAYA-II reconstruction results are useful in developing an 
ensemble model for future designs and deoxyribozyme library construction.  The full details of MAYA-II, 
including all experimental results, are in [14].  We report here our reconstruction approach, development 
of our general ensemble modeling tool Pyxis, and reconstruction results in progress which have 
confirmed some initial expectations.  Pyxis exhaustively enumerates all reactions which must be 
accounted for in a molecular computing system, and allows testing against a suite of existing domain-
specific models.  Collating ensemble model prediction results, along with empirical data comparison, will 
permit design scaling from thousands to millions of competing reactions.

1.1 Overview of the MAYA II automaton

Tic-tac-toe is a deterministic game of perfect information, amenable to representation of possible games 
in a game tree wherein nodes depict orderings of move decisions for each player.  The automaton 
adversary was directed to play all possible games with a perfect  non-losing strategy and was given the 
upper hand by always playing the first move into the center square.   All root-to-leaf paths through the 
game tree ended in either victory or a draw for the automaton.  These paths, encoded into a set of Boolean 
logic formulas, were physically realized in solution as deoxyribozyme-based logic gates.

In total, 76 games were divided into four subsets of 19 games such that  each subset represented game tree 
paths arising from different corner and side plays executed as the second overall move of the game, and 
first  play for the human opponent.   Human moves corresponded to introduction of DNA oligonucleotide 
inputs into a test tube well representing a square of the game.  Eight  solution wells, representing the eight 
open squares at game outset, were preloaded with deoxyribozyme-based gate constructs designed to carry 
out the specific Boolean formulae for human play echo and automaton response.  With each input 
introduction into the system, exactly two gate/input  interactions were designed to occur:  one in the well 
where the human intended to mark a square, and the other in a different  well where the automaton 
intended to mark its response.  Move detection and display was accomplished via secondary 



oligonucleotide substrate cleavage by the gate producing red tetramethylrhodamine (TAMRA) or green 
fluorescein visible fluorescence.  The ∆F/min  signal directly reflected achieving a threshold concentration 
of cleavage product, which depended on correct hybridization between input and gate oligonucleotides.  

1.2 Handling combinatorics of MAYA-II oligonucleotide populations

A central goal in reconstruction has been to account for all potential interactions that could occur 
incidentally or deliberately over the course of playing out  each game.  The notion of interaction involves 
an ordering of certain events.  For each event, we further attempt  to estimate levels of participation 
amongst the different  nucleic acid reactants, as well as to quantify products.  To get  from introduction of 
an input into each of the wells, to detection of fluorescent output, 1) deoxyribozyme gates must  correctly 
fold to the designed secondary structure stem-loop conformations, 2) inputs must seek out  and bind to the 
gates in the loop regions connected to stem sections, 3) the stem loop must undergo a conformational 
change wherein it opens, and 4) the exposed remainder of the stem section must  bind and cleave substrate 
molecules.  The critical steps are gates attaining expected secondary structure and inputs correctly binding 
to gates, each of which is designed on the basis of minimization of predicted free energies of the gates and 
gate/input complex formations.  Other relevant factors, which are no less important, are gate and input 
concentrations, diffusion, temperature, kon and koff binding and unbinding efficiencies, and the chemical 
kinetics involved for either hybridization or cleavage reactions.  These are beyond the scope of the 
present paper, and will be addressed in the ongoing evolution of our ensemble model. 

We have initially focused our efforts on accounting for all the possible ways gates and inputs might come 
together, as either positive in terms of one or more inputs correctly binding to a gate which has folded 
properly, or negative for any other combination, including inputs binding to other inputs, gates binding to 
other gates, or inputs binding to the wrong gates.  Figure 1 illustrates a single positive reaction (bold text) 
competing with a number of negative reactions (plain text).

For a full accounting and individual evaluation, we enumerate potential reactions as follows.  Given the 
sets of all games, all plays within each game, and all active wells, the sets of inputs I and gates G are:

Figure 1: Sampling of possible hybridizations following input introduction.  Well 8 Yes gates (one input), And gates (two 
inputs), and AndNot gates (two inputs, absence of third) are designed to activate or remain quiescent based on their 
encoded target recognition regions.  Direct homology match to inputs I61 and I12 initiates signaling from gate 

Play 1: 
Input_61
Play 2:

Input_12

AndNot_61_12_82 + Input_61 + Input_I12 -> {Substrate Cleavage, Signal}
Yes_81 + Input_61 -> { }
Yes_81 + Input_12 -> { }
Yes_82 + Input_61 -> { }
Yes_82 + Input_12 -> { }
...
And_13_74 + Input_61 + Input_61 -> { }
And_13_74 + Input_61 + Input_12 -> { }
And_13_74 + Input_12 + Input_12 -> { }
...
AndNot_61_32_62 + Input_61 + Input_61 + Input_61 -> { }
AndNot_61_32_62 + Input_61 + Input_61 + Input_12 -> { }
AndNot_61_32_62 + Input_61 + Input_12 + Input_12 -> { }
AndNot_61_32_62 + Input_12 + Input_12 + Input_12 -> { }
...

wells = {1,2,3,4,6,7,8,9}, games = {1,...,76}, plays = {1,2,3,4},

I = {inputi,j,k|i ∈ wells, j ∈ games, k ∈ plays}

GY ES = {gatei,j,k1 |i ∈ wells, j ∈ games, k1 ∈ plays}
GAND = {gatei,j,k1,k2 |i ∈ wells, j ∈ games, k1, k2 ∈ plays}
GANDANDNOT = {gatei,j,k1,k2,k3 |i ∈ wells, j ∈ games, k1, k2, k3 ∈ plays}

G = GY ES ∪GAND ∪GANDANDNOT

1



where Yes Gates admit  one input, And Gates admit  two inputs, and And-And-Not Gates admit  three inputs.  
We consider reaction sets I, the set  of inputs alone, G, the set  of gates alone, G x G, the set of pairs of 
gates, GYES x I, the set  of pairs of Yes Gates and inputs, GAND x I x I, the Cartesian product  set  of And 
Gates and input pairs, and finally, GANDANDNOT x I x I x I, the Cartesian product set of And-And-Not Gates 
and input  triples.  For each game, inputs are added to all of the wells, but we index the set  of inputs with 
the well number reflecting where either player desired to mark a well in a particular play.

1.3 Development of Pyxis as an ensemble modeling tool

For evaluating and testing reconstruction combinations, and relating back to empirical evidence, we 
determined that conceiving of any new DNA domain-specific model or physical simulation was not 
warranted.   Instead, we needed a way to semi-automatically account  for the prohibitory complexity 
arising from using different  deoxyribozymes and oligonucleotides together in non-trivial ways.  Further 
we both wished for a more general way to evaluate arbitrary combinations using existing models, and  
observed that greater functionality chemical computing is moving towards more complicated circuits and 
more circuits networked together.  This implies substantially greater numbers of distinct species, which 
would prove untenable for exhaustive laboratory testing during development.  Additionally, inferring 
function and behavior from nucleic acid structure alone falls short  for all but  the very simplest of 
combinations involving only a few participating elements.  System parameters are interdependent  and 
must be addressed as such as closely as possible prior to testing in the laboratory.  

Our solution is development  of Pyxis, an ensemble modeling tool which serves as a framework for 
enumerating combinations of elements, testing against  a suite of models, collating results and correlating 
results from different  models where possible.  Pyxis is encoded as a pure Python application [13] fronting 
a PostgreSQL database which houses domain model test  results and all deoxyribozyme and 
oligonucleotide elements.  Existing models may be dropped in, input interfacing via command line or 
files is automatically handled, as is harvesting of data from output files.  Users are not required to manage 
the fine details for each model and are directed to provide only the essential details, such as selection of 
deoxyribozymes from the database, temperature, and similar relevant parameters.  Pyxis brokers all model 
executions and stores results back into the database for later uses such as plotting, computing statistics, 
and results comparison where appropriate.

Database:
Deoxyribozyme Library, 

Model Results

Comparison 
Plots

Summary 
Statistics

Reaction Kinetics 
Model

DNA Geometry 
Model

Thermodynamics 
Model

User Directed 
Interaction

Set up model 
experiments, 

direct executions, 
store and retrieve 

from database

Figure 2: Pyxis architecture.  Single or batch experiments are directed towards requested models.  Models remain in 
natively encoded languages, input and output is packaged by the program.



The first  model incorporated into Pyxis is NUPACK [6].  NUPACK builds on MFold [18] nucleic acid 
folding and hybridization prediction software and extends prediction from a single nucleic strand to an 
arbitrary number of nucleic acid strands.  NUPACK was not available during engineering of MAYA-II 
and is appropriate for understanding the large number of possible hybridizations which we would like to 
account for.  NUPACK develops a multistranded secondary structure model where different  strands are 
placed end to end and evaluated on a circular polymer graph.  Permutations of all strand orderings are 
considered, and for any one ordering dynamic programming recursions are employed to correct  for 
overcounting of free energy contributions from base pairing evaluation.

2 Results

We show results for MAYA-II Yes gates generated using Pyxis to both deduce all combinations of gates 
and inputs, and test  each using NUPACK.  Two different  deoxyribozyme designs were used in the design 
of the Yes Gates.  The stem-loop portions of each are displayed in Figure 3.  For human moves, the 8.17.1 
core was employed which uses a 10 nucleotide (nt) stem around the 15 nt  input target  subsequence loop.  
For automaton moves, the E6 core was employed which uses a 6-8 nt  stem around the 15 nt  input  target 
subsequence loop.  The stem region, alternatively termed critical structure, must pair-bind as shown, such 
that no gaps, puckers or otherwise ill-formed bindings occur, leaving the loop exposed for the later input  
recognition reaction.  The loop region must  itself be free of any pair bindings.  Attaining these 
configurations constitutes optimal structure folding.

All the Yes gates were analyzed individually for self-hybridization and optimal folding.  The evaluation 
shows all gates folding properly within the critical structure, over half (55%, Table 1) show small 
amounts of additional binding within the loop region intended for input recognition.  These additional 
bindings use between two and four pairs of nucleotides within the loop region, and were observed for 
both core types.  There was no preferential location along the loop region for these extra bindings.

Figure 3: Stem-loop portions of Yes-Gate deoxyribozymes.  The 8.17.1 design (left) 10 nt stem supports a 15 nt loop input 
recognition region.  The E-6 design (right) 6 nt stem also supports a 15 nt loop input recognition region.  In some cases, 
input dependent adjustments of the E-6 resulted in 7 and 8 nt stems lengths.  Not shown past nt 30 is the core region used 
for substrate cleavage.  Diagrams courtesy of the DinaMelt web based server [15].
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Next, we used Pyxis to run NUPACK and test  for cross-hybridization of gates with both intended and 
unintended inputs.  Gates tested with intended inputs constitute a positive set, whereas gates tested with 
unintended inputs they were not  designed for constitute a negative set.  For MAYA-II, 40 Yes gates 
combinations were positive, and 1240 were negative.  Despite some gates alone showing a limited 
tendency to bind within their input  regions, when tested together with the intended inputs, the bindings 
occur perfectly in all cases.  The predicted minimum free energy structures MFE for all combinations are 
summarized in Table 2, and displayed in Figure 4.  The difference in average MFE in gates with designed 
inputs (-28.3 kcal/mol 8.17.1, -31.48 kcal/mol E6) compared to MFE of the gate alone (- 12.13 kcal/mol 
8.17.1, -12.45 kcal/mol E6) is significant. We expect  this value could be used as a predictive value for 
indicating activation of a gate, whether through intended or unintended input binding.

(kcal/mol) 8.17.1 core 
alone

8.17.1 core 
with design 

input

8.17.1 core 
with 

incidental 
input

E6 core alone E6 core with 
design input

E6 core with 
incidental 

input

Average MFE

St. Dev. MFE

Min MFE

Max MFE

-12.13 -28.3 -18.99 -12.45 -31.48 -19.71

0.67 1.76 1.47 0.81 2.12 1.96

-13.74 -32.76 -23.63 -14.54 -28.23 -26.3

-11.09 -24.23 -15.98 -11.88 -34.83 -15.73

E6 cores combined with unintended inputs show some tendency to approach the threshold of positive 
combinations, designed for wells 6 through 9.

Predicted secondary structures for each core type exhibit  different tendencies.  Thirty-three percent of the 
gates show no affinity for any unintended input, and their critical structures remain intact.  Fifty percent 
of the gates show the previously noted tendency to yield a few pairs binding within the input  regions, but 
not to the unintended inputs themselves.  Eighteen percent of the gates,  most of which were made of the 
E6 core, show varying affinities for inputs they were not designed for.  Some exhibit  partial input binding 
in the loop input region of the gates, and a few exhibit  partial input binding to the stem portions of the 
gates.  Generally, the secondary structures of the 8.17.1 cores have their stems (the critical region) remain 
intact in combination with incorrect  inputs, whereas the E6 cores have far greater variability.  The data 
supports the observation that the shorter critical region of E6 cores were less stable and prone to 
unintended bindings.   Some of the high variability and unintended bindings occurred with gates 
composed of particularly rich GC content in the loop regions as well.

Table 1:  Number of nucleotide pairs bound within input loop regions

Table 2:  Minimum Free Energy Secondary Structures



3. Discussion

During the MAYA-II development time, the design process only allowed for limited assessment of the 
system as a whole. Gates were manually designed by modeling an individual deoxyribozyme structure 
with 15 nt  sequences of interest inserted into one or more input  binding regions depending on gate type.  
Free energy of one or more input bindings had never before been determined, nor was the system 
evaluated in terms of all potential reactions other than bioinformatics-based filtering to ensure sequence 
separation.  During the experimentation process, time-consuming effort was expended on adjusting gate 
concentrations, and making small incremental changes to the basic gate designs in order to fine-tune the 
fluorescent  signal output  and avoid noisy combinations.  These changes, as documented in [14], were 
based on laboratory experimentation alone and involved replacing inputs in a few cases, reversing loops, 
and adding or removing single nucleotides.  Part  of our reconstruction involves evaluating each of these 
incremental changes analytically, and then comparing directly with previous empirical observations, to 
see how well we can correlate model predictions to results, or, as the case may be, where the correlation 
fails.  In both respects we obtain feedback not  only on model predictiveness, but also on minute 
modifications of relatively simple reactions in analytical terms.

These critically important, but  essentially very fine details, are now incorporated into a high-throughput 
approach to deoxyribozyme gate design.  Our process is general such that millions of sequences can be 
tested, not  only for optimal individual gate folding structures, but also for targeted binding to desired 
input, and lack of binding to other inputs that  might be present  in the mix.  Moreover, our evaluation 
framework is modular, and designed to accommodate additional non-thermodynamic models which we 
feel will augment understanding of the underlying physical processes at  work.  We are actively working to 
tie new modeling results to empirical evidence.  To the best  of our knowledge, this approach has not been 
undertaken elsewhere and represents a verifiable, concrete path towards large-scale whole-system design. 
We view Pyxis as a dynamic tool, which can and should grow as different designs are proposed and 
evaluated.  MAYA-II provides an excellent starting point and opportunity for deep probing, which can 

Figure 4: Distribution of minimum free energies for most probable deoxyribozyme gate and oligonucleotide input 
hybridization reactions.



now be fully captured and used in subsequent  projects to shift the fine tuning more towards silicon 
testing.

We have answered here several basic questions for the simplest of MAYA-II gates.  Yes gates fold 
properly while exhibiting some variable binding tendencies within loop regions.  The MAYA input 
binding regions were pre-designed to provide open loop structures.  However we expect  collection of this 
loop secondary structure information to be useful in future gate designs, since it  is expected that loop 
regions showing significant secondary structure would hamper input binding. Input  secondary structure is 
a necessary parameter to be assessed in future input/gate designs, and future modeling will hopefully 
determine maximum binding parameters of successful gates. 

Inputs preferentially bind to gates they were designed for.  We saw that  E6 gates had more variability in 
folding structures in the case of negative input binding, compared to the 8.17.1 core.  This is most  likely 
due to the smaller stem required by the E6 gate, which makes it  functionally harder to design for.  Model 
results show variability in binding with negative inputs which corresponds to experimental data generated 
during the original MAYA-II construction in two ways.  Firstly, E6 gates required more manipulation of 
the stem region, as well as higher concentrations to obtain perfect digital behavior.  Secondly, 
occasionally spurious signaling was noted early on after input introduction.  The false signals tended to 
die down, and were later overtaken by the intended signal.  Our current modeling suggest that  use of the 
E6 cores may have been partly responsible for some of this behavior.  The extra three nucleotides in the 
8.17.1 core yielded reliable results for both positive and negative combinations.  We expect  that  careful 
examination of the rest  of the gates in various combination contexts, as well as gate designs that  were 
rejected, will produce further inferences that  can actively inform the design process.  This work serves 
purpose in developing gates which can be pulled off the shelf and readily combined to suit logic goals; in 
essence it enables the development of a reusable oligonucleotide library.

3.1 Assessing modeling approaches

Historically, the basic design problem for molecular computing with nucleic acids has centered around 
sequence selection to achieve a particular target secondary structure.   Design optimization methodologies 
dictate maximal probability of target  structure stability based on energy considerations.  Considering 
minimum free energy predicted structures or complexes is the necessary first step for thermodynamic 
evaluation of arbitrary collections of deoxyribozymes and oligonucleotides interactions.  The next  step we 
will take, however, is consideration of the remaining mass of possible, less probable complex formations, 
and determination of how much separation exists in terms of free energy compared to the predicted MFE 
complex.  The MFE complex could in reality be dominated by the remaining possible complex 
formations, any one of which might  not lead to the desired reaction, either in the positive or negative 
sense.  We note that theoretical models such as DNA code words and strand algebra [2, 4, 9] which strive 
to formally codify notions of biological function and molecular computing strictly based on Watson-Crick 
base-pairing, do not  capture the underlying jostling between competing structures which must be 
accounted for in the laboratory to actually make things work.

Outside of thermodynamics there are other modeling approaches and optimization possibilities, some or 
all of which can be codified into design rules.  Strand secondary structure specific considerations [5] are 
GC content, Shannon entropy, and symmetry minimization.  Strand tertiary structure considerations 
include DNA curvature, and base pairing and stacking where the nucleic acid geometries [8] are taken 
into account.  Finally, the chemical kinetics of folding, cleavage, and hybridization [7] dictate how fast  or 
slow reactions occur.  We consider this aspect crucial since although energy considerations may yield the 
most stable structure or hybridization complex, in solution a faster reaction can deplete reactants and 
minimize formation of the predicted most stable one.  Ultimately, our goal is to infer a weighting scheme 
for all factors determined to be the most  relevant  over the whole of a system, rather than relying on 
energy considerations alone and considering a system as a sum of individual non-interdependent physical 



effects.  Exploitation of this understanding suggests alternative control mechanisms as well where the 
energy landscape is intentionally kept highly variable, binding affinities are calibrated with deliberately 
inserted mismatches, or faster reactions are introduced to control the amount  of products available for 
later reactions. 
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