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Abstract

We describe a method of measuring lifetime characteristics of
heap objects, and discuss ways in which such quantitative object
behaviour measurements can help improve language implementa-
tions, especially garbage collection performance. For Standard ML
of New Jersey, we find that certain primary aspects of object be-
haviour are qualitatively the same across benchmark programs, in
particular the rapid object decay. We show that the heap-only al-
location implementation model is the cause of this similarity. We
confirm the weak generational hypothesis for SML/NJ and discuss
garbage collector configuration tuning. Our approach is to obtain
object statistics directly from program execution, rather than sim-
ulation, for reasons of simplicity and speed. Towards this end,
we exploit the flexibility of the garbage collector toolkit as a mea-
surement tool. Careful numerical analysis of the acquired data is
necessary to arrive at relevant object lifetime measures. This study
fills a gap in quantitative knowledge of the workings of heap-based
compilers and their run-time systems, and should be useful to func-
tional language implementors.

1 Introduction

Having fine-grained data on heap object lifetime behaviour is a
requirement for the analysis of garbage collection algorithms per-
formance and for optimal heap configuration in parametrisable col-
lectors. Previous research has used object statistics, but those were
often too coarse or incomplete. Taking advantage of increased pro-
cessing power available today, we have developed a framework for
finer-grained volumetric heap object analysis.

Applying our methodology to Standard ML of New Jersey,
we characterised quantitatively the behaviour of several classes of
allocated objects. The results indicate that under the current heap-
based compilation model the allocation region should be kept at a
fixed size of around one megabyte, but otherwise justify Appel’s
simple garbage collection scheme [1].

The advantages of using type-safe languages with a well-defined
formal semantics, such as the mostly functional language Standard
ML, are well recognised. The one disadvantage often perceived as
an insuperable obstacle is the inefficiency of programs written in
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higher-order functional languages. More precisely, the implemen-
tation techniques currently available for these languages lag behind
those for traditional imperative languages, such as C. Sometimes,
programs performing the same task, employing the same algorithm,
and even similarly coded (when this is possible) nevertheless ex-
hibit significantly better performance when written in a traditional
language.

Apart from suboptimal code generation, an important factor
limiting the overall speed of SML programs is memory management
and memory subsystem performance. The SML/NJ system using
its standard garbage collector (generational garbage collector with
two dynamically sized generations) is well-known for its bad paging
behaviour when running on platforms with insufficient memory
(where sufficient memory may be a large amount by conventional
language standards). Even when there is enough physical memory
to avoid paging entirely, the pauses caused by “major collections”
are intolerably long [9, 20].

Cache performance of SML/NJ was also suspected to be bad.
It was speculated that 40% of execution time was spent waiting
for main memory access, a 66% overhead. Recent work [11] has
shown that this is not altogether true, at least for some current ar-
chitectures and memory subsystem organisations. In particular, the
cache performance on the DECStation 5000/200 is reasonably good
across all benchmarks reported, at a 17% overhead. Although object
behaviour has a bearing on cache performance, cache simulation
studies are beyond the scope of this paper.

Intensive allocation characterises most implementations of func-
tional programming languages. The allocation consists of objects
visible to the programmer and of function closure objects (corre-
sponding to activation records in the parlance of block-structured
languages). The latter may in fact dominate due to the small size
of individual functions and high frequency of calls. Allocation (of
function closure objects) on the stack is often perceived as giving
deallocation for free, the only cost being the adjustment of a stack
frame pointer.1 Furthermore, the semantics of the language may
preclude imposing a stack discipline for closures (the upward fu-
narg problem), so that at least some must be allocated on the heap.
Allocation on the heap carries a higher price of deallocation, usually
garbage collection. SML/NJ avoids using the stack entirely, and
allocates all closure records on the heap. Whether this kind of strat-
egy is better or worse than stack-based implementations remains an
open question [4]. As a result, the allocation rate is greatly increased
(Section 3.2), and so is the burden on the garbage collector. For
example, running the standard collector accounts for 5 – 24% (10%
on the average) of total execution cost in the SML/NJ system [25].
Consequently, the importance of having a good garbage collector

1There is a hidden cost of processing the stack when the heap is collected, but this
need not be great.



becomes even greater.

1.1 Object dynamics

The effectiveness of generational garbage collectors hinges on the
assumption, termed the generational hypothesis, that young objects
die more quickly than old objects [18, 26]. Hayes refined this into
a weak and a strong generational hypothesis [14]. Qualitatively
expressed, the weak hypothesis is that newly created objects have
a much lower survival rate than objects that are older; the strong
hypothesis is that even if the objects are not newly created, the rela-
tively younger objects have a lower survival rate than the relatively
older objects. The weak hypothesis has been confirmed repeatedly
in several heap-allocating systems, and our results below do it again
in the context of SML. It justifies the use of a simple generational
collector with a new space and an old space: the collection effort is
concentrated in the new space where there is high gain; the effort is
reduced (collections less frequent) in the old space. However, hav-
ing more generations is justified only under the strong hypothesis.
We now turn to an analytical model of the temporal behaviour of
heap-allocated objects, following the lead of Baker [6].

The intensity of heap allocation – the rate at which new objects
are created – varies from one language implementation to another,
from one application program to another, and from one program
execution phase to another. For a class of performance considera-
tions, the latter variation is important. For example, opportunistic
garbage collection [30] takes advantage of idle periods in an in-
teractive application to run the collector. In such a setting, heap
behaviour must be characterised in terms of real, wall-clock time.
Otherwise, the load on the collector can be defined by the amount
of data created. Thus, the time variable in our model is quantified
as the amount allocated since the start of execution. The age of an
object is the amount allocated since object creation.

The most direct study of object dynamics tracks each object
from creation through promotions to the point when it becomes
unreachable2 to the point when it is collected [31]. This technique
demands an enormous computational expense, especially in a lan-
guage such as SML/NJ, with a very high allocation rate; we have
not attempted it. Instead we study the dynamics of objects by vol-
ume, as a useful approximation. We do this by tracking groups of
objects of similar age as a unit.3

The maximum amount of data that can be allocated in between
successive garbage collections is determined by the size of the nurs-
ery. For any given collection, the nursery survival ratio (sometimes
termed promotion ratio) is the ratio of the amount of data promoted
out of the nursery to the amount of data originally in the nursery. In
a copying collector this ratio is closely tied to the cost of collection,
since the overwhelming component of this cost is due to copying
promoted objects. The survival rate is certainly not uniform dur-
ing a program run, but for the purpose of analysis we introduce an
aggregate measure defined for a program run, the nursery survival
rate, equal to the ratio of the total amount promoted out of the nurs-
ery over all collections to the total amount allocated in the run. The
variation along the additional axis of time (phase of execution) is
beyond the scope of this paper. As defined, the nursery survival rate
depends on the choice of collection points in the particular program
run. We assume further that under uniform nursery size (i.e., uni-
form spacing of collection points) this rate is determined by nursery
size, and little influenced by the positioning of points. Therefore we

2To be precise, one could consider the object useless immediately after the last
reference to it is made, even if it remains reachable. This leads into the domain of
compile-time garbage collection which is beyond the scope of this study.

3It has been suggested that a hybrid scheme – tracking newer objects by group, and
older objects (which are fewer) individually – could be used.

consider the nursery survival rate as a function of nursery size. Fur-
thermore, we abstract from the discrete (whole number of words)
values of nursery size, amount allocated, and amount promoted, and
assume continuous, smooth functions. Experimental results show
that for a broad range of values, this is a reasonable assumption.
For a given age, the object survival rate is the fraction of objects
(by volume) which survive to be that age or older. Thus, object sur-
vival rate is a function of age. As above, we abstract to a continuous
model. There is a simple relationship between the nursery survival
rate s(x) and the object survival rate so(x). Just before a collection,
a nursery of size M contains objects whose age ranges between 0

and M . The amount promoted out of the nursery is
R M

0 so(x)dx:

The nursery survival rate is s(M) =

1
M

R M
0 so(x)dx: Differentiating

with respect to M we obtain the solution so(x) = s(x)+xs0

(x): Note
that both survival rates are nonincreasing functions by definition, so
that s0

(x) � 0 and therefore the object survival rate is everywhere
lower than the nursery survival rate.

We define object mortality, a function of object age, to be the
probability of objects of that age dying within the next infinitesi-

mal time increment. Formally, mo(x) = �

so0

(x)
so(x) = �

d
dx ln so(x):

By analogy, we define nursery mortality to be m(x) = �

s0

(x)
s(x) =

�

d
dx ln s(x): We interpret nursery mortality, from the implemen-

tor’s standpoint, as the marginal yield in the volume of dead data
as the nursery size is increased. We are currently working on the
problem of finding closed-form expressions which fit experimen-
tally observed forms of the above functions, and which are based
on an understanding of the structure of computation.

Having defined the mathematical models offered above, we
proceed to describe how one can set up experiments to derive them
numerically for particular programs. A flexible garbage collector
will be our experimentation instrument.

2 Experimental setup

In the study of heap behaviour, one might choose to track the history
of individual objects. This approach requires generating program
traces and then extracting various statistics. An alternative is to col-
lect less precise, aggregate data, thus tracking groups of objects. In
the absence of object type information, the only interesting param-
eters which guide object grouping are object age and size. We note
below that size can be abstracted away if we consider allocation
by volume, not by number of objects. With age as the remaining
relevant parameter, it turns out that a generational garbage collector,
properly instrumented, can serve as the analysis tool we need [22].

2.1 Toolkit collector

The garbage collector used for the studies reported here is the
UMass Language-Independent Garbage Collector Toolkit, to which
we added language-specific code to interface it with the SML/NJ
system. To summarise the relevant features of the toolkit: the heap
is organised into a number of generations, 0 being the youngest;
each generation consists of a number of steps, and each step may
have any number of blocks. A block is a contiguous, fixed-size,
piece of memory. The number of blocks in a step may vary over
time. A separate space hosts large objects which do not fit in a
block. A contiguous, arbitrarily large part of memory (the nursery)
serves as the allocation region. It may be guarded on either side by
write-protected pages. The nursery logically belongs to a step.
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2.2 Interfacing the toolkit with SML/NJ

Data presented to the garbage collector in SML/NJ come in three
varieties: 1) objects allocated on the heap by the ML code, 2) static
data allocated by the run-time system, and 3) precompiled ML code
(in the text segment of the executable image).

SML/NJ allocates in a contiguous allocation region. The rate
of allocation is very high: on a DECStation 5000/200, a typical
value is 16 megabytes/second. A large part of allocation is due
to function closure records and callee-save register records; less
than a quarter is due to data records, and a large fraction of these
are three words long, that is, cons-cells [12]. There is no check
for allocation overflow on individual allocations; instead, checks
are performed at function entry points only. A function in the
SML/NJ intermediate representation has one entry point, several
exit points and no loops. The compiler can statically determine the
maximum possible allocation in a function, and prefix each with
an overflow check.4 If the remaining space is not sufficient, the
garbage collector is invoked. Upon return from the collector, the
check is repeated. We implemented ML’s allocation region as a
nursery in step 0 (generation 0). All objects, regardless of size, are
allocated in this region.

For each non-initialising store, that is, whenever it writes a word
into an already existing object, SML/NJ allocates a special 4-word
record on the heap, containing the address of the object and the
offset of the word. All such records are linked together into the
store list. A dedicated register points to the head of the list. This
mechanism makes assignments very expensive [25], and discour-
ages imperative-style programming, in keeping with the philosophy
of functional programming. With programmers avoiding the im-
perative features, the frequency of updates in ML is extremely low
relative to the rate of allocation, and the store list becomes a feasible
way to implement the write barrier of generational collection. We
decided to keep this mechanism intact, but had to augment it with
intergenerational remembered sets for our multi-generational setup.

We equipped the collector with statistics gathering code which
we execute just before launching an actual collection, and just after
it is complete. We go over all the generations and all the steps in
each. To compute the amount of data in a step, we follow its list of
blocks, and add up the used space in each block. We follow the list
of large objects associated with the step and add them as well. The
resulting step size statistics are analysed off-line.

2.3 Experiments using the toolkit

Above we have seen how SML/NJ works with the collection toolkit.
Here we show how the flexibility of the toolkit is exploited to de-
vise special configurations, which, although not recommended for
efficient program execution, are useful for object statistics measure-
ments.

Here we describe two main experiments which we performed
on all our benchmark programs; we shall later mention other ex-
periments. The first is designed to measure the object behaviour
of newly allocated objects, whereas the second measures long-term
behaviour. Measuring promotion rates for newly alocated objects
serves to determine how large to make the allocation region: if it
is too small, objects have not had a chance to die, so too many are
copied; if it is too large, too much memory is used. We shall see that
there is a range of sizes giving good performance across all studied
benchmarks. Measuring long-term behaviour serves to find good
arrangements of older generations in a multigenerational copying
collector: the paramount desire is to balance excessive copying
against excessive garbage retention.

4It can also perform across-function analyses to eliminate redundant checks.

2.3.1 Young objects

The analysis in Section 1.1 shows that the relevant object character-
istics can be obtained from the nursery survival rate. We designed
the SML-toolkit interface to allow setting the size of the nursery
to an arbitrary number of bytes. Unfortunately, the construction
of ML precludes running these experiments for very small nurs-
eries. Specifically, the nursery must be large enough so that each
allocation request can be met without having to change the size
dynamically. Indeed, the absolute lower limit is 32K bytes, since
this size is required whenever ML calls C functions.

To span the range of nursery sizes up to 20 megabytes, we
used about 480 points with spacing close to uniform on a logarith-
mic scale. For each point we ran the benchmark recording exact
amounts allocated and promoted. The nursery survival rate was
estimated as the ratio of total promotion out of the nursery to total
program allocation. The approach has its drawbacks. Assuming
deterministic execution, a given benchmark allocates a definite dis-
crete sequence of objects, regardless of the garbage collector setup.
A choice of nursery size imposes a partition of these objects into
groups. As a result of unevenness of these groups, we have some
discretisation noise in the observed nursery survival data – occa-
sional small increases, which are not possible in theory. Careful
numerical analysis (Section 2.5) takes care of this essentially ran-
dom noise. Also, in the age region around 5 megabytes and above,
as the total number of collections becomes small for certain bench-
marks, we encounter the behaviour characteristic of older objects,
where survival ratios greatly depend on the choice of collection
points. For this reason, we shall only display the results for the
region below 3 megabytes as representative of young object be-
haviour.

2.3.2 Older objects

To examine dynamics of longer-lived objects, we need to know not
only the time of object allocation, but also the time of object demise;
we can do that if we do a full collection (collecting the entire heap)
frequently enough. We devised a setup in which a nursery of some
size M is followed by a large number N of steps, each allowed to
grow up to a maximum size of M. Thus each of these steps can
safely contain the contents of the nursery. We set up promotion
policies so that objects are promoted from the nursery to the first
of these steps, and from the i-th step into the i+1-st step on each
collection. All these steps belong to generation 0 and are always
collected. Thus, the age of objects in step i is roughly proportional
to i. In choosing the parameters M and N, we had to ensure that
MN � T, where T is the total amount allocated by the program at
hand. Therefore, objects never need to be promoted beyond step N.
We chose nursery size M based on the temporal granularity desired
and the computational cost we could afford (since each collection
collects the entire heap, this cost is inversely proportional to M). For
the benchmarks reported here, we had a nursery of 100 kilobytes
and 10000 steps in generation 1, which allowed up to 1 gigabyte of
allocation.

For each collection, we record the size of each step before
and after. A run with N collections and thus N steps requires
O(N2

) numbers to be recorded; we use a differential encoding and
compression scheme to make this feasible for values of N in the
thousands. We note that the size of step i at collection j can be
recorded as a delta from the size of step i � 1 at collection j � 1.
Furthermore, since most of the mortality is for the youngest steps,
many of the deltas will not only be small, but zero. So we truncate
the all-zeroes tail of the series of deltas. This already reduces
the space required to quasi-linear in the number of collections.
We use standard compression techniques to reduce the remaining
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Figure 1: Joint time–age distribution for a segment of Leroy.

A study of object dynamics necessarily gathers large quantities
of object statistics data. A way to display the entire data set,
for modest values of N, is a three-dimensional plot, as illustrated
in Figure 1. Here the execution time flows along one horizontal
axis, and object age along the other; total object volume is the
vertical axis. This kind of plot is useful for noting macroscopic
behaviour. In the plot, a section perpendicular to the time axis (such
as the foreground section) shows the instantaneous distribution of
objects by age. A section perpendicular to the age axis shows live
objects of a certain age (such as the rear-most section, which shows
the live objects which just survived the nursery). The diagonal
view (downward) corresponds to the evolution of groups of objects
allocated at the same time. This is a good way to distinguish long-
lived data structures. An important characteristic of long-term
behaviour is the profile of total live data against time; it is here that
programs will show striking differences – see Figures 3, 4a, 7a.

2.4 Experiments using the modi�ed SML compiler

The run-time data format in the SML/NJ system has a header word
for each heap-allocated object. The word contains a 4-bit tag field,
which distinguishes different kinds of objects, and a length field.
The tags, however, do not distinguish between “user” records and
records introduced by the compiler in the closure conversion phase.
We rebuilt the compiler with a modified descriptor scheme, adding
1 bit to the tag, and we now separate from ordinary records the
closure records for escaping functions, closure records for known
functions, and callee-save continuation closures. Since only the
header word is changed, the modified system executes the same
instructions as the original and has the same allocation behaviour.5

Statistics for individual object classes can be obtained in the same
manner as above.

2.5 Data analysis

As outlined above, of the several interesting object lifetime func-
tions, the nursery survival rate is the only one we measure directly,
and we only measure it at a necessarily limited number of points. In
the presence of round-off noise for small nursery sizes (relative to

5The length field lost one bit, halving maximum record length, but this did not
cause any difficulties.

object granularity) and opportunism interference for large nursery
sizes (relative to total benchmark allocation), we must use good
data analysis to derive the remaining object lifetime functions. In
physical sciences, the existence of an underlying law of nature and
its simple mathematical model justifies the use of interpolation and
smoothing. We cannot predicate such a model yet, and the jus-
tification for smoothing must rest in the apparent goodness of fit.
Starting with the nursery survival rate data, we re-express the nurs-
ery size on a logarithmic scale since we span three decades (35 �103

– 20 � 106 bytes) [19]. We then compute a fitting cubic spline, care-
fully adjusting the minimisation functional for a balance between
goodness of fit and degree of smoothness [17, 21]. Using the an-
alytical expression of the spline, we compute its derivatives, and
then, inverting the logarithmic scale, compute the nursery mortality,
object survival and object mortality rates.

2.6 Benchmark programs

The benchmark suite we used draws upon Appel’s collection, and
adds some further scientific programs. Table 1 (adapted from
[2, 11]) summarises the individual benchmarks. Due to space con-
straints, results will be presented and discussed for a subset of the
benchmarks consisting of Leroy, Yacc, and ML .

3 Results

We shall look at the results obtained from our main two experiments,
first the promotion analysis for young objects and then the lifetime
analysis for older objects. We shall discover, as expected, that object
decay is faster than exponential for new objects. In other words,
the weak generational hypothesis is confirmed. The investigation
in Section 3.2 will further qualify this result, showing that it is the
function closure objects which exhibit the generational behaviour
most strongly. Our analysis of older objects is not conclusive.
On the one hand, the benchmarks have wildly different behaviour
patterns, with no immediately perceptible common characteristics.
On the other, these benchmarks are still too short-running to reveal
true long-term behaviour. Further work will be needed to elucidate
these points.

3.1 Behaviour of young objects

Let us examine the behaviour of young objects as revealed in the
survival and mortality curves. For example, let us look at the
Leroy benchmark, Figure 2. We see the fast drop in survival in
the region of new objects (Figure 2a). From a value of 100% at 0,
the nursery survival is down to 2% for the smallest size we mea-
sured, 35 kilobytes. The curve slowly levels and is close to flat
by 2 megabytes. The nursery mortality curve (Figure 2c) corre-
spondingly falls from its initial high values, and by the time the
nursery is sized at 500 kilobytes to 1 megabyte, it is quite low. The
object survival curve (Figure 2b) has a sharp knee even earlier than
nursery survival, at the age of around 100 kilobytes.

Looking at other benchmarks, we note qualitatively the same
behaviour. What is different is the age at which the survival curve
starts levelling off, and what level is reached. For instance, ML
(Figure 4) has a much higher nursery survival rate and the knee in the
object survival rate curve, although present at around 150 kilobytes,
is not as sharp. Likewise, the corresponding mortality curves lie
much lower than for Leroy.

The conclusion is that the newly allocated objects behave in
substantially the same way across all benchmarks. We explain this
as a result of the overwhelming number of function-closure objects
as opposed to user-level objects. These objects are for the most part
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Program Description

CW The Concurrency Workbench [8] is a tool for analysing networks of finite state processes expressed in Milner’s Calculus
of Communicating Systems, processing a sample session input.

Leroy An implementation of the Knuth-Bendix completion algorithm, implemented by Gérard Huet, processing some axioms
of geometry.

Lexgen A lexical-analyser generator, implemented by James S. Mattson and David R. Tarditi [3], processing the lexical description
of Standard ML.

ML The SML/NJ compiler compiling the Leroy benchmark.
Modula A compiler translating a Modula-like language [23] into GNU C. The input is a 1400-line source program.
PIA The Perspective Inversion Algorithm [28] decides the location of an object in a perspective video image.
Simple A spherical fluid-dynamics program, developed as a “realistic” FORTRAN benchmark [10], translated into ID [13], and

then translated into Standard ML by Lal George.
VLIW A Very-Long-Instruction-Word instruction scheduler written by John Danskin.
Yacc A LALR(1) parser generator, implemented by David R. Tarditi [24], processing the grammar of Standard ML.

Table 1: Benchmark Programs
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Figure 2: Leroy: lifetime statistics.
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short-lived, as they represent what in other implementations would
be the active area on top of the stack. Hence their statistics mask
those of the user-level data, which are application-specific. The
lesson for collector setup is that the marginal utility of increasing
the nursery size diminishes very quickly. The designer will weigh
this fact against available memory, and will not spend more than
1 or 2 megabytes on the nursery even if the most demanding appli-
cations (such as the compiler) are expected. A much smaller area,
500 – 700 kilobytes will suffice in many cases.

3.2 A re�nement: object statistics by class

There are many dimensions to explore in heap behaviour; we have
undertaken additional experiments in some promising directions, in-
cluding simulations, cost models, cache performance, opportunism
analysis, and refined promotion analysis. Some of these are done
by further examination of the data already described, whereas some
require new data to be gathered beyond what is straightforwardly
available from the toolkit. Due to space constraints, we shall only
consider the last point here.

The experimental setup described so far dealt with properties
of objects en masse; we would like to have information at least
somewhat more refined. A straightforward modification in the
language-collector interface allows gathering allocation and pro-
motion statistics based on any criterion encoded or derivable from
object contents at run-time. We will concentrate on two such crite-
ria: object size and object tag, both directly encoded in the object
header word as described in Section 2.4 above.

The distribution of allocated objects by size is shown by means
of histograms (Figures 4b and 7b). Small objects completely dom-
inate allocation in these programs. This situation is favourable to a
simple collector which minimises per-object overhead [1]. The dis-
tribution of allocated objects by tag is shown in Figures 4c and 7c.

Table 2 gives the allocation as determined by scanning the heap
and counting all objects actually allocated. (The entry " means
that there are some objects in the given category, but the number
is below reportable.) Tables 3, 4, and 5 give the breakdown of
allocation by size (sizes contributing more than 0.1% of volume are
listed).

Previously, there have been measurements of the distribution of
allocated objects by kind for SML [25]. In addition to this, we are
in a position to assess the difference in temporal object behaviour
by kind. The same analysis as in Section 1.1 applies here, but for
individual object classes. The nursery survival data classified by
object tag are shown in Figures 5 and 6, for those tags contributing
more than 5% of the allocation in the particular program.

We can now see clearly that user records survive much longer

than closures; over 8% are still alive after 2 megabytes of allocation
in Yacc. This part of the allocation more closely resembles that
found in conventional language implementations. On the other
hand, closures have extremely short lifetimes. We speculate that the
differences amongst them (namely, 16- and 20-bytes large closures
live considerably longer than 40- and 44-bytes large ones) are due
to iterative (tail-recursive) execution where particular size closures
are associated with particular functions. Thus, closures for “inner”
functions are shorter-lived than those for “outer”. The nursery
survival rate for callee-save continuation records is already below
1% at 80000 bytes of total allocation, which corresponds to 43600
bytes of allocated callee-save continuation records. If an alternative
implementation allocated callee-save continuation records on the
stack, then the active top of the stack area could be estimated to be
well within 45000 bytes. Note that this size is sufficiently small to
fit in present-day data caches.

3.3 Behaviour of older objects

Each program leaves a characteristic signature in its live data profile.
Inspection of these curves reveals phases of program execution,
building-up of temporary data structures and their disposal, etc. For
example, the curve for ML (Figure 4d) shows the parsing and type
checking phases first, followed by repeated optimisation passes,
and code generation and instruction scheduling passes. On the
other hand, Leroy (Figure 3) shows a steady accumulation of data.
It would be worthwhile to explore the reference pattern to the data:
are objects kept because they are truly used in computations, or just
because they are pointed to by some long-lived object (a dictionary
or symbol table)?

4 Directions for further exploration

The studies reported here point to several promising directions for
further in-depth investigation. We showed the applicability of the
garbage collection toolkit in the context of a functional language
with intensive heap allocation. We developed a methodology for
gathering object statistics, taking advantage of the flexibility in-
herent to the toolkit. This methodology and the test-bed design
will carry over to other languages, but the behaviours we expect to
observe, in object-oriented languages for example, may be quite dif-
ferent. We identified the patterns of heap behaviour characteristic
of SML/NJ, and confirmed that the weak generational hypothesis
uniformly holds. We investigated ways to take advantage of it
by applying different heap management policies. We found that
uniformly sizing the nursery in the range of one megabyte gives
satisfactory results. This global observation is supported and ex-
plained by the analysis of individual object classes. More explo-
ration is needed, however, in the area of older space management.
We touched briefly on cache behaviour issues, and we plan to inves-
tigate the interaction of heap organisation and cache configuration
more fully in forthcoming research. Finally, with more efficient
simulation techniques, it should be possible to use longer-running
benchmark programs than we have been able to.

5 Related work

Many authors have examined issues of garbage collection perfor-
mance at the macroscopic level, while some have tried to char-
acterise it theoretically in terms of statistical properties of object
allocation. We believe that both approaches, in addition to finer
granularity measurements described here, are needed to inspire the-
oretical models, and should be used to validate them. Ungar [27]
reported on the performance of garbage collection in a Smalltalk

6



system and investigated the tradeoffs in nursery size selection. The-
oretical models of behaviour have been proposed by Baker [5].
Zorn conducted statistical studies in the context of Lisp [31]; his
methodology is based on object-level simulation, and lifetimes are
estimated from object reference points. We improve on his Dis-
crete Interval Simulator by taking advantage of complete liveness
information. For a more detailed discussion of the UMass Garbage
Collector Toolkit consult the original design report [16] and a later
article on the Smalltalk system [15]. For a broader overview of
garbage collection algorithms and generational techniques, consult
Wilson’s survey paper [29].
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Program Allocation
(megabytes)

record
(%)

array
(%)

string
(%)

bytearray
(%)

realdarray
(%)

pair
(%)

reald
(%)

escaping
(%)

callee-
save
(%)

known
(%)

Leroy 268.34 0.15 0.02 " " 0 12.90 0 36.72 50.08 0.11
ML 194.78 12.30 1.51 0.06 " 0 12.36 0 12.40 51.79 9.58
Yacc 69.45 5.15 0.11 0.54 " 0 22.13 0 2.38 56.54 13.14

Table 2: Allocation characteristics of benchmark programs: breakdown by kind of object

Size 12 16 20 24 28 32 36 40 44 48 64
Volume (%) 19.65 25.65 11.32 7.87 5.31 13.04 0.66 0.66 15.18 0.27 0.12

Table 3: Allocation characteristics of benchmark Leroy: breakdown by object size

Size 8 12 16 20 24 28 32 36 40 44 48 52
Volume (%) 1.20 16.76 14.12 8.10 7.08 5.35 7.67 4.42 2.08 7.14 3.50 1.67

Size 56 60 64 68 72 76 80 84 88 92 96 112
Volume (%) 3.34 1.45 6.74 0.44 0.96 0.77 1.40 0.10 1.05 0.21 0.13 1.61

Size 120 132 140 144 156 164 276
Volume (%) 0.58 0.72 0.12 0.10 0.17 0.18 0.45

Table 4: Allocation characteristics of benchmark ML: breakdown by object size

Size 8 12 16 20 24 28 32 36 40 44 48 52
Volume (%) 0.27 23.07 10.17 6.91 2.09 3.96 3.23 4.13 8.79 15.18 6.38 0.55

Size 60 64 68 72 80 84 88 92 96 104
Volume (%) 0.37 3.39 0.34 0.16 0.86 3.75 3.89 0.84 0.89 0.11

Table 5: Allocation characteristics of benchmark Yacc: breakdown by object size
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Figure 4: ML.
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Figure 5: ML: nursery survival for various kinds of objects.
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Figure 6: Yacc: nursery survival for various kinds of objects.
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Figure 7: Yacc.
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