Object Lifetime Prediction in Java

Hajime Inoue =~ Darko Stefanovi¢ Stephanie Forrest

Department of Computer Science
University of New Mexico
Albuquerque, NM 87106
{hinoue, darko, forrest}@cs.unm.edu

Technical Report TR-CS-2003-28
May 2003

Abstract

Accurately predicting the lifetimes of objects in object-oriented and functional languages is im-
portant because such predictions can be used to improve memory management performance at
run-time. A typical approach to this prediction problem is first to observe object lifetimes by
tracing a sample program execution, then to construct a predictor function based on these ob-
servations, and finally to test the predictions on reference program executions. Four quantitative
measures characterize this approach: coverage, the proportion of objects in the reference program
execution for which the predictor function is defined; accuracy, the fraction of predicted lifetimes
that are correct; precision, the granularity of the predictions; and size, the size of the predictor itself.
These four properties are not independent; for example, increased precision often leads to less
coverage and accuracy.

We describe a fully precise prediction method and report experimental results on its perfor-
mance. By “fully precise” we mean that the granularity of predictions is equal to the smallest unit
of allocation. We show that for a number of benchmark programs in the Java programming lan-
guage, fully precise prediction can be achieved, together with high coverage and accuracy. Our
results also show that a significant proportion of objects have a measured lifetime of zero, a fact
which a dynamic compiler could use to avoid explicit allocation. The method described here is
the first to combine high-precision and efficiency in a single lifetime predictor.

1 Introduction

Garbage-collected languages, such as C# and
Java are increasingly important. Garbage col-
lection (GC) improves developers’ productivity
by removing the need for explicit memory recla-
mation, thereby eliminating a significant source
of programming errors. However, garbage-
collected languages incur increased overhead,
and consequently, improvement in their per-
formance is essential to continuing adoption
of these languages. Many algorithms have
been proposed over the several decades since
GC became available, but their performance
has been heavily application-dependent. For
example, Fitzgerald and Tarditi showed that
a garbage collector must be “tuned” to fit a
program (Fitzgerald and Tarditi, 2000). Such
application sensitivity limits the usefulness of
garbage-collection methods. Another approach
relies on larger heap sizes and simply runs the
collection algorithms less frequently. However,
this does not always result in better perfor-
mance (Brecht et al., 2001). GC algorithms typ-
ically make certain assumptions about the life-
times of the application’s objects, and tailor the
collection algorithm to these assumptions. If
the assumptions are not borne out, poor per-
formance is the outcome. What is needed is
the ability to make good predictions about ob-
ject lifetimes and to incorporate these predic-
tions into a general GC method which works on
a wide range of applications.

The overhead of GC, compared to explicit
deallocation, arises from the cost of identifying
which objects are still active (live) and which
are no longer needed (dead). GC algorithms,
therefore, go to some lengths to collect regions
of memory that are mostly dead. The “ideal”
garbage collector would collect regions where
all the objects died recently—so that heap space
isn’t wasted by dead objects and living objects
are not processed unnecessarily. To do this, the
allocator would need to know the exact death
time of an object at the time it was allocated, and

then it could allocate it to a region occupied by
objects with the same death time. To date, this
has been accomplished only in a limited way by
a process called “pre-tenuring”. Pre-tenuring
algorithms make coarse predictions of the life-
times of objects, predicting which allocations
will result in long-lived objects and then allo-
cating them to regions that are not frequently
collected. For example, in Blackburn’s pre-
tenuring scheme (Blackburn et al., 2001), objects
are allocated into short-lived, long-lived, and
eternal regions.

Modern language runtimes provide a wealth
of profiling information, which we believe can
be used to improve object lifetime prediction. In
virtual machine (VM) environments, such as C#
and Java, profiling is an important part of the
just-in-time (JIT) compilation process; here we
show how information available to the VM can
be leveraged to improve object lifetime predic-
tion.

In this paper we demonstrate, using profil-
ing information, that there is a significant cor-
relation between the state of the stack at an
allocation point and the allocated object’s life-
time. Next, we describe how this information
can be used to predict object lifetimes at the
time they are allocated. Using this technique,
we then show that a significant proportion of
objects have zero lifetime. We discuss poten-
tial applications of this technique, both of mem-
ory management and dynamic compilation sys-
tems. Finally, we speculate on how these results
can be used for anomaly intrusion detection for
computer security.

2 Obiject Lifetime Prediction

As stated above, one goal of object lifetime pre-
diction is to aid in optimization, by providing
run-time advice to the memory allocation sub-
system about the likely lifetime of an object at
the time it is allocated. To accomplish this,
we construct a predictor, which bases its object
lifetime predictions on information available at

allocation time. This includes the context of
the allocation request, namely the dynamic se-
quence of method calls that led to the request,
and the actual type of the object being allocated.
This information is referred to as an allocation
site; if the observed lifetimes of all objects allo-
cated at a site are the same, then the predictor
should predict that value at run-time for all ob-
jects allocated at the site. We do not yet have
predictors built into the memory allocation sub-
system, so our testing is trace-driven and not
performed at run-time.

We consider two circumstances for
prediction—self prediction and true prediction.
Self prediction uses the same program trace
for training (predictor construction) and for
testing (predictor use). Self-prediction allows
us to measure how useful the information in an
allocation site is with respect to object lifetimes.
True prediction uses a different (and smaller)
training trace for predictor construction, and
a larger one from the same program (but with
different inputs) for testing. If self-prediction
performance is poor, true prediction will also be
poor. Yet if self prediction works well, it is still
possible that true prediction will be poor. This
largely depends on how different inputs affect
the behavior of the program. If a program is
completely data-driven, it is possible that true
prediction will not perform well, regardless of
the success of self prediction.

We evaluate predictor performance using
four quantities: precision, coverage, accuracy,
and size.

o Precision is the granularity of the prediction
in bytes.! A predictor with exact granu-
larity predicts with a precision of one byte;
e.g., it may predict that a certain allocation

IThe load on the memory management subsystem is
determined by the heap allocation and death events, and
is independent of other computational effects of the pro-
gram. Therefore, the lifetime of an object in garbage col-
lection studies is defined as the sum of the sizes of other
objects allocated between the given object’s allocation and
death, and is expressed in bytes or words.

site always yields objects with a lifetime of
10304 bytes. A less precise predictor might
predict a range such as 10000-10999, or,
more commonly, a range from a set of geo-
metrically proportioned bins, such as 8192-
16383. Our aim is to achieve high preci-
sion (narrow ranges); in practice, the de-
sired precision will depend on the manner
in which the memory allocation subsystem
exploits the predictions.

Coverage is the percentage of predicted ob-
jects for which the system has a prediction.
In other words, we are prepared to con-
struct a predictor that, at run-time, does not
always make a prediction. For certain al-
location sites (presumably those which we
cannot predict with confidence) we make
no prediction, rather than making one that
is wrong too often. Clearly, the memory
allocation subsystem will need to have a
fallback allocation strategy for these cases.
Note that, although the decision whether
to predict is made per allocation site, the
natural measure of coverage is not the per-
centage of sites at which we predict (a static
count) but the percentage of object alloca-
tion events predicted (a dynamic count).
We desire the coverage to be as high as pos-
sible.

Accuracy is the percentage of predicted ob-
jects for which a predictor produces a cor-
rect lifetime. Among all objects allocated
at run-time for which a prediction is made,
some will have a true lifetime that falls in
the same range as the predicted lifetime;
the range being defined by the precision
parameter. We desire the accuracy to be as
high as possible.

Size is the number of entries the predictor
contains; each entry is a pair consisting of a
descriptor of an allocation site and a predic-
tion for the lifetimes for that site. Since the
predictor will incur space and time over-
head at run-time, we desire the size to be

small.

There are tradeoffs between the characteris-
tics of precision, coverage, accuracy, and size.
A highly precise predictor may cover less or be
less accurate. Its size may also be greater. Al-
ternatively, a predictor with a lower precision
may be able to cover a larger proportion of ob-
jects with greater accuracy despite smaller size.
Intuitively, decreasing the precision creates a
larger, easier to hit target (coverage and accu-
racy). Similarly, a smaller target (a precise pre-
dictor), is harder to hit, and it seems reasonable
that a predictor would need more information,
resulting in a larger size.

The predictors are constructed as follows. For
each benchmark, we collect a trace. This trace
includes, among other things, accurate records
for object allocation and object death events.
At each allocation event, we record the object
identifier, its type, and the execution context.
The execution context consists of the identi-
tiers of the methods on the stack. This is re-
ferred to as the stack string; later in the con-
struction of predictors, we reduce the amount
of information by using only a prefix of the
stack string and explore the effects of varying
the length of the prefix. We record each death
accurately, to a precision of 1 byte. This pre-
cision of granularity is unusual in object life-
time traces. Object lifetimes traces reported in
the literature usually have coarse granularity in
garbage-collected languages because objects are
known to be dead only at the point of collection,
and collections are relatively infrequent events.
We are able fully precisely to determine the life-
times of our objects by using an implementation
of the Merlin trace algorithm (Hertz et al., 2002)
within the JikesRVM open-source Java virtual
machine (Alpern et al., 2000).

The trace is used to construct a predictor for
the corresponding program. For each alloca-
tion for which that all objects allocated at the
site have the same lifetime up to the desired
precision, we include in the predictor an entry
that predicts that objects allocated at the site will

have that lifetime. Note that if any two objects
allocated at an allocation site have different life-
times, or collide, the predictor refuses to make a
prediction for that allocation site.

This type of predictor is computationally ef-
ficient and tunable. For example, the num-
ber of entries in these predictors is often large,
and mostly populated by singletons. These are
entries in predictor that saw only one object
allocated, so no collisions could knock them
out. These entries might be removed to form a
smaller predictor without greatly reducing cov-
erage. Beyond this, it is possible to examine
each entry in the predictor to best trade off cov-
erage and size.

We look at three aspects of lifetime prediction:

e Exact Lifetime Prediction: The predictor
attempts to predict the lifetime of an object
to the exact byte.

e Granulated Lifetime Prediction: The pre-
dictor has lower precision: it bins lifetimes
using the scheme bin = log, (lifetime + 1).
Note that since most objects die young, the
granularity is still very fine.

e Zero Lifetime Prediction: We discovered
that some benchmarks generate a large
number of objects that die before the next
object allocation. Predicting zero lifetime
objects is an interesting subproblem of ex-
act prediction.

We illustrate these concepts on the example of
the benchmark pseudojbb.? In Figure 1 we show
the dependence of achieved predictor cover-
age and of required predictor size, as the stack
string prefix (SSP) length is varied from 0 to 20;
we used exact lifetime prediction, and we kept
the singletons in the predictor. In Figure 1(a),
we have plotted the SSP length along the hori-
zontal axis. For each SSP length, we examined
the trace and synthesized a predictor. The cov-
erage of the predictor, i.e., the percentage of the

2See Section 3 for a description of the benchmarks we
use.

coverage

Predictor size (entries)

Figure 1: Benchmark pseudojbb: prediction in- Figure 2: Benchmark pseudojbb: prediction ex-

60

50

40

30

20

10

30000]
20000 -

10000

T T
5 10 15 20

stack string prefix length
(a) Predictor coverage

Stack string prefix length
(b) Predictor size

cluding singletons.

Predictor size (entries)

coverage

60
............
[]
50
o
40 o
30
[]
20
[]
° o
10
0Ie"'l""l""l""l
0 5 10 15 20
stack string prefix length
(a) Predictor coverage
30000
20000
10000
.....’.QQQQ.’Q
0 5 10 15 20

Stack string prefix length
(b) Predictor size

cluding singletons.

e000000 0 044 *
. ' ¢ °
° ® ® e 0006000 00
[]
80
[]
o ¥ g
[]
g g 0.2
o 20
3 8
© 40+
[]
20
[]
[]
[2N
0 -4 LJ L L
0’—‘—‘—’—‘—1‘—‘—'—'—'—!—'—'—'—'—!—'—'—'—'—15 T T 1 0 5 10 15 20
)) stack string prefix length
stack string prefix length .
. (a) Predictor coverage
(a) Predictor coverage
4 L]
ee 0000 1 °
400000 300 . .
E e 00000000
) .
g 300000 E °
g 8 200
@ g]
» I
ot 5]
3 200000 5 :
3 B ¢
o @ 100
100000]
] °
0]] i
AR AT T IR S NI
Stack string prefix length Stack string prefix length
(b) Predictor size (b) Predictor size

Figu.re 33_ Benchmark perimeter: prediction in- Figure 4: Benchmark perimeter: prediction ex-
cluding singletons. cluding singletons.

dynamic count of objects allocated for which the
predictor makes a prediction, is plotted along
the vertical axis. The predictor coverage im-
proves with increasing SSP length, as more in-
formation is available to disambiguate alloca-
tion sites. However, a plateau is already reached
for an SSP of length about 10, indicating that
that is a sufficient SSP length. In Figure 1(b),
we show the growth of predictor size, i.e., the
number of entries, with increasing SSP length.

In Figure 2 we show the plots for the same
metrics for a predictor that excludes singletons.
Note that the predictor coverage is almost un-
changed, but the size requirement for the pre-
dictor is drastically reduced.

In general, when singletons are excluded,
predictor size and coverage are closely linked
by SSP length. There is a tradeoff between colli-
sions and singletons—if the SSP is too short, too
many objects will collide; too long and the SSP
will convert entries into singletons. We can see
this on the example of the perimeter benchmark,
in Figure 4(a), which has a maximum at around
SSP length 8, and then decays to a plateau. This
effect is more dramatic in Figure 4(b). A sharp
peak defines the area between the regime of col-
lisions and singletons.?

Our results are reported in terms of object
counts, rather than bytes. Bytes are often used
in the garbage collector literature, and we col-
lected these data as well. The results are simi-
lar. In other words, object size is not signifcantly
correlated with the predictability of object life-
time.

3 Benchmarks

We use two sets of benchmarks: the Olden
benchmarks (Carlisle and Rogers, 1995; Rogers
etal., 1995), ported to Java (Cahoon and McKin-
ley, 1999), and the SPECjvm98 and SPECjbb2000
benchmarks (SPEC, 1999). The Olden bench-
marks emphasize pointer manipulation but do

3Figure 3 is included for completeness.

so with algorithms consistent with useful com-
putation. They consist of traditional problems
such as traveling salesman and Voronoi trian-
gle decomposition, as well as simulations such
as the Colombian health care bureaucracy. The
SPEC benchmarks are much larger and more re-
alistic than the Olden set. They consist of useful
“real world” programs (with the exception of
db) and are intended to be representative of real
applications run on Java virtual machines. Ta-
ble 1 describes the individual benchmarks and
Table 2 gives some general run-time character-
istics of the benchmarks.

4 Self-Prediction

We now consider the results of self-prediction
experiments for exact granularity as well as for
logarithmic granularity, and consider the effects
of including or excluding singletons from the
predictors.

4.1 Exact Granularity
4.1.1 Predictors including singletons

On the Olden benchmarks the exact granular-
ity predictor that includes singletons achieves
high coverage (about 90%) on bh, perimeter,
power, bisort, and tsp. We originally used traces
that recorded only a 16-long prefix of the stack
string, but we noticed that for bisort, treeadd,
and voronoi, a longer SSP length was required,
because as the SSP reaches 16, the size and
coverage of the predictors are still increasing.
Barret and Zorn (Barrett and Zorn, 1993)found
that a short string, on the order of length four,
was acceptable. It is interesting that a much
longer string is required for our benchmarks,
even for those cases that can be predicted well.
The increase may be due to the greater distance
between an object’s allocation and its use in
object-oriented languages. Em3d and mst show
some level of predictability (16 and 28%, respec-
tively), but for one benchmark, health, it is not
possible to predict well even though the size

Benchmark | Description

bh N-body problem solved using hierarchical methods
bisort Bitonic sort both forwards and backwards

em3d Simulates electromagnetic waves propagation in 3d
health Simulates the Colombian health care system

mst Computes minimum spanning tree of a graph
perimeter Computes perimeter of quad-tree encoded image
power Solves the Power-System-Optimization problem
treeadd Sums a tree by recursively walking it

tsp The traveling salesman problem

VOronoi Voronoi triangle decomposition

compress Uses Lempel-Ziv to compress and decompress some strings
jess Expert shell based on NASA’s CLIPS system

db Emulates database operations on a memory resident database

javac The Java compiler from jdk 1.0.2

mpegaudio Decodes mpeg layer3 (mp3) files

mtrt Multi-threaded raytracer draws a scene with a dinosaur
jack Java parser generator is a lex and yacc equivalent
pseudojbb Java Business Benchmark altered for GC research

Table 1: The benchmarks and a short description.

and coverage data show that we have a suffi-
cient SSP length.

All of the SPEC benchmarks show some level
of predictability. The predictor does particu-
larly well on the synthetic benchmark db. It
achieves greater than 50% coverage on compress,
mpegaudio, mtrt, pseudojbb, and jack, and more
than 20% on the remaining two, jess and javac.
The greater realism of the SPEC programs sug-
gests that exact prediction will have some level
of success on most programs. Unfortunately,
the predictor achieved greater than 90% cover-
age only on the synthetic benchmark. Perhaps
the type of performance seen in perimeter, power,
and db would not be typical of “real” programs.

4.1.2 Predictors excluding singletons

If the predictor is constructed to exclude sin-
gleton entries, coverage drops. On the Olden
benchmarks the predictor works well only for
bh and power, with tsp falling by about 30% to
60% coverage and perimeter to less than 1%. This
reveals that a large proportion of the capabil-
ity of our predictor is due to singletons. For
some benchmarks, the predictor can be vastly
reduced in size without a corresponding loss of

coverage. The size of the predictor for power
drops by 85% compared to a loss of less than
1% coverage, and bh drops 94% in size with a
corresponding loss of less than a tenth percent
coverage.

For bisort, treeadd, and wvoronoi, plots of SSP
length versus predictor size excluding single-
tons are similarly shaped to those including
them, but have smaller maxima. Coverage be-
haves similarly. For em3d, health, and mst, pre-
dictor size shows a maximum between SSPs
of length 7 and 10 before falling off slightly,
with coverage following a similar distribu-
tion as with singletons, but reduced. Bench-
marks perimeter and tsp show what are best de-
scribed as phase transitions in predictor size,
and voronoi shows a phase transition in cover-
age. Interestingly, the maximum coverage does
not correspond to maximum predictor size. In
each, the maximum coverage is achieved with
an SSP shorter than the SSP that corresponds
to the maximum predictor size. This is use-
tul, since it means that smaller predictors some-
times cover more than larger predictors.

In general, coverage with predictors exclud-
ing singletons is much better on the SPEC
benchmarks than on the Olden benchmarks. As

Testing and self-prediction
Benchmark | Command line Objects allocated | Bytes allocated | Static sites
bh -b 2048 -m 6728211 162842400 530
bisort -5 250000 -m 137896 3383612 418
em3d -n 2000 -d 100 -m 23863 7582636 439
health -15-t500 -s 1-m 1205975 22990756 457
mst -v 1024 -m 10578 7074760 437
perimeter -116 -m 462220 15388636 441
power -m 792772 22972476 475
treeadd -120 -m 1055004 21710584 412
tsp -c 10000 -m 57837 2667280 452
V010101 -n 20000 -m 1442667 36670008 488
compress -s100 24206 111807704 707
jess -s100 5971861 203732580 1162
db -s100 3234616 79433536 719
mpegaudio -s100 39763 3579980 1867
mtrt -s100 6538354 147199132 897
javac -s100 7287024 228438896 1816
raytrace -s100 6399963 142288572 992
jack -s100 7150752 288865804 1184
pseudojbb 70000 transactions 8729665 259005968 1634
Training
Benchmark | Command line Objects allocated | Bytes allocated | Static sites
bh -b 512 -m 1132767 28214644 530
jess -s1 125955 6978524 1143
javac -s1 20457 2641064 1188
mtrt -s1 328758 11300528 989
jack -s1 512401 21911316 1183
pseudojbb 10000 transactions 2778857 103683020 1634

Table 2: Trace statistics. For each trace, the number of objects allocated and the total size of all
allocated objects are given. Also given is the number of allocation sites; each site is counted only
once, even if executed more than once, but sites that are not executed in these particular runs are
not counted. The top part of the table lists the traces used for the self-prediction study (Section 4).
The bottom part of the table lists the training traces used in the true prediction study (Section 5);
for testing the true prediction we reuse the traces from the top part.

Benchmark Exact Logarithmic
incl. singletons excluding singletons incl. singletons excluding singletons

size | coverage size | coverage | SSP size | coverage size | coverage | SSP
bh 4626 92.09 65 91.99 4 5139 92.67 955 92.61 11
bisort 133367 97.11 55 0.43 9 | 133800 99.73 518 3.09 10
em3d 2864 16.00 137 4.57 8 3298 64.53 601 53.35 10
health 3225 0.43 138 0.17 7 3701 0.96 637 0.71 9
mst 2748 27.55 104 6.54 8 3180 56.12 565 35.57 10
perimeter 456707 99.11 343 0.41 8 | 457159 99.90 | 76108 11.55 9
power 4038 96.47 988 96.08 29 5036 99.88 11986 9949 | 29
treeadd 1050673 99.63 50 0.04 9 | 1051102 99.97 509 0.39 10
tsp 51943 92.67 281 59.65 7 52384 98.94 1133 65.71 9
0010101 318676 22.28 | 9099 1.72 14 | 329215 30.46 | 24336 11.06 14
compress 9133 67.78 792 33.33 10 9692 85.66 1381 84.84 10
jess 24999 2340 | 3326 23.03 24 25873 34.87 4197 34.51 26
db 8847 90.36 73 89.91 3 9474 90.56 348 90.09 4
raytrace 14761 41.61 325 41.27 4 15509 42.36 514 41.97 4
javac 109357 28.63 | 75571 28.17 | 32| 144844 45.72 | 111058 4525 | 32
mpegaudio 17550 7842 | 1931 39.67 8 18260 89.68 2704 51.12 9
mtrt 12490 50.11 | 1566 49.79 3 13167 50.92 306 50.53 3
jack 29542 61.25 | 14126 61.04 20 31659 66.30 | 14600 65.90 17
pseudojbb 32044 57.52 | 3861 57.20 14 33158 63.65 4861 63.23 14

Table 3: Self-prediction behavior of the benchmarks. For the columns including singletons, the
size refers to the number of entries in the predictor using an SSP length of 20, except where the
SSP of the predictors excluding singletons is greater than 20. In these cases, the SSP length used
for predictors including singletons is the same as that for the predictor excluding them.

in the full predictor case, all the benchmarks
show some level of self-prediction, with jess
having the smallest level of coverage at 23%.
In fact, jess, db, javac, and mtrt show little drop-
off in coverage, even though the predictor size
decreases by an average of 64%. The remain-
ing programs show a sizable drop-off in cov-
erage, but none shows the negligible coverage
that some of the Olden predictors excluding sin-
gletons showed. Again, this may be due to
the larger size and greater realism of the SPEC
benchmarks.

For no benchmarks was type alone enough
(an SSP of length zero). Benchmarks jess and
mtrt needed at least the method containing the
allocation site (an SSP of length one) to have sig-
nificant coverage, and the rest needed more.*

Is type required at all? Type is probably required
in our predictors because type also disambiguates allo-
cations made in the same method. Note that we are us-
ing a flow-insensitive notion of the stack, recording only

In summary, the exact predictors were able
to cover significant fractions of objects in both
sets of benchmarks. With singletons excluded,
the predictors still have significant coverage for
three of the Olden benchmarks and all of SPEC.
Although self-prediction is not really “predict-
ing,” it does indicate the degree of correlation
the stack has with the lifetime of the object allo-
cated at that point, which is evidence that true
prediction is possible.

4.2 Logarithmic Granularity

The behavior of the logarithmic predictors was
better than the exact predictors’. Looking at
predictors with logarithmic granularity, cover-
age remained high for perimeter, power, and tsp
among the Olden benchmarks, but did not im-
prove significantly. Benchmarks em3d and mst

the method and not the bytecode within the method that
makes the next call.

showed large coverage increases with the pre-
dictor covering over 50% of objects. The predic-
tor still had no ability to cover health. Coverage
improved for all SPEC benchmarks, with cov-
erage ranging from about 35% for jess to about
90% for db and mpegaudio.

Coverage excluding singletons decreased less
than in the exact case, though the behavior was
qualitatively similar. There was some ability to
cover in all benchmarks except for bisort, health
and treeadd. Compared to the exact case, most of
the gains came in benchmarks where even if the
factor of improvement was large, the absolute
coverage was still modest, as in bisort, health,
and perimeter. However, substantial increases
were seen in em3d and mst.

The behavior of the granulated predictors is
qualitatively similar to the exact predictors. As
expected, their coverage is significantly better.
Granulated prediction is much more likely to be
useful than exact prediction since tracing can, in
principle, be done much faster than in the exact
case. Because of our logarithmic bin size, how-
ever, the predictors are still very precise for the
large number of short-lived objects.

5 True Prediction

Barrett and Zorn found that accuracy in true
prediction is high in benchmarks with high cov-
erage in self-prediction that are not data-driven.
We tested true prediction against a subset of the
benchmarks to see if this correlation held true
even with the extreme change of precision. We
used bh, jess, javac, mtrt, jack, and pseudojbb. We
used SSP lengths as in Table 3 and included
singletons. This is not meant as an exhaustive
study, but a demonstration that true prediction
performs well, with similar results to the Barrett
and Zorn study.

Results for the six examples are shown in Ta-
ble 4. For both exact and logarithmic gran-
ularity, all the predictors are highly accurate.
For three of the benchmarks, the high accuracy
comes at the price of coverage. Coverage is in-

significant for jess, javac, and mtrt. The other
benchmark predictors show considerable cov-
erage. The difference in coverage is probably
due to the degree the program is data-driven.
For example, the training run of jess is quite dif-
ferent from its text run. In pseudojbb, the only
difference is in the length of the run. Although
these are not exhaustive, these examples are evi-
dence that highly precise, true prediction is pos-
sible for some applications.

6 Zero-Lifetime Objects

Table 5 shows the fraction of zero-lifetime ob-
jects generated by each benchmark and the frac-
tion self-predicted. Many of the benchmarks al-
locate large numbers of zero-lifetime objects. A
zero-lifetime object is one that is allocated and
then dies before the next object is allocated. Of
the Olden benchmarks, bh, health, power, tsp, and
voronoi allocate large numbers of zero-lifetime
objects. All the SPEC benchmarks allocate a sig-
nificant percentage of them, with jack allocating
the least at 13%. This peculiar result could only
be obtained through the use of exact traces!

On Olden, the predictor does well at pre-
dicting zero-lifetime objects with the excep-
tion of health. This is because health is re-
ally a micro-benchmark of linked-list traversals
(Zilles, 2001), with the lifetime of objects being
data-driven by random insertions and removals
from the list. On the SPEC benchmarks, cov-
erage (% predicted of possible) of zero-lifetime
objects is greater than 50% on all but jack. On
the whole, the predictor is able to cover a large
fraction of zero-lifetime objects.

7 Prediction and Object Types

We undertook a simple classification of allo-
cated objects according to their type. We divide
them into application types, library types, and
virtual machine types (since the virtual machine
we use is written in Java itself). Library types

10

Benchmark Exact Logarithmic
Coverage | Accuracy | Coverage | Accuracy
bh 47.31 99.99 48.45 98.35
jess 0.05 99.54 0.11 100.00
javac 0.04 99.53 0.09 100.00
mtrt 0.04 99.33 0.10 99.97
jack 19.20 99.89 20.33 99.74
pseudojbb 56.87 99.99 63.00 99.85

Table 4: True prediction.

Benchmark | % of all objects | % predicted | % predicted of possible
bh 46.01 45.14 98.11
bisort 0.33 0.32 96.32
em3d 3.30 3.23 97.84
health 51.99 0.15 0.28
mst 13.08 4.84 37.02
perimeter 0.26 0.26 97.82
power 24.14 24.12 99.91
treeadd 0.03 0.03 96.95
tsp 58.67 58.54 99.78
V01010i 50.13 50.12 95.94
compress 21.72 20.86 96.03
jess 39.63 19.96 50.36
db 45.06 45.01 99.97
mpegaudio 25.98 25.29 97.34
mtrt 40.01 33.37 83.39
javac 12.95 10.48 80.93
raytrace 41.30 29.57 71.60
jack 43.44 0.22 0.49
pseudojbb 20.82 18.75 90.04

Table 5: Frequency of zero-lifetime objects, the percentage predicted, and success of their predic-
tion using exact granularity with the SSP lengths used for prediction in Table 3.

11

are those classes belonging to the j ava hierar-
chy. VM classes are easily identified by their VM
prefix. Application classes are all others.

As Table 6 shows, global coverage (greater
than 90%) is usually associated with high cov-
erage of application types. This makes sense,
since for most benchmarks, application types
dominate. The exceptions, tsp and db, allocate a
lot of library types, which also have high cover-
age. A predictor’s ability to cover is a result of
predicting types resulting from application be-
havior, rather than the underlying mechanisms
of the compiler or VM.

8 Related Work

Using simulation, Hayes (Hayes, 1991; Hayes,
1993) examined which objects were “entry”
objects into clusters of objects that die when
the “keyed” object dies. For choosing auto-
matically what objects are “keyed”, he sug-
gested random selection, monitoring the stack
for when pointers are popped, creating key ob-
jects, and doing processing during promotion
in generational garbage collection. Cohn and
Singh (Cohn and Singh, 1997) revisited the re-
sults of Barrett and Zorn, using decision trees
based on the top n words of the stack to clas-
sify short-lived and long-lived objects. They
did better than Barret and Zorn; it is not clear,
however, that the system described could be
implemented other than off-line. Seidl and
Zorn (Seidl and Zorn, 1997, Seidl and Zorn,
1998) sought to predict objects according to the
categories highly referenced, short-lived, low refer-
enced, and other. Their prediction scheme was
based on the stack, but not ordered. Their goal
was to improve paging rather than cache per-
formance. They emphasized that during profil-
ing, it was important to choose the right depth
of the stack predictor: too shallow is not pre-
dictive enough and too deep results in over-
specialization. The results were mixed, with
larger programs giving better results. Cheng et
al. (Cheng et al., 1998) describe pretenuring us-

ing a simple algorithm that looks at allocation
sites by profiling beforehand and using gener-
ational stack collection—that is, caching por-
tions of the root set so that not the entire stack
needs to be scanned each time. Dieckmann and
Holzle (Dieckman and Hoélzle, 1998; Dieckmann
and Holzle, 2001) studied the allocation behav-
ior of the SPECjvm98 benchmarks by creating a
heap simulator. They found that more than 50%
of the heap was used by non-references (prim-
itives), and that alignment and extra header
words expanded heap size significantly, since
objects tended to be small. They confirm the
weak generational hypothesis for Java, though
not as firmly as in other languages (up to 21%
of all objects were still alive after 1 MB of al-
location). Cannarozzi et al. (Cannarozzi et al.,
2000) use a single-threaded program model and
keep track of the lowest stack frame that ref-
erenced an object or other objects. In many
ways this is similar to our use of Merlin, since
they use roots to keep track of when objects are
“touched”. Fitzgerald and Tarditi (Fitzgerald
and Tarditi, 2000) demonstrated that memory
allocation behavior differs dramatically over a
variety of Java benchmarks. They pointed out
that performance would improve by at least
15% if they had chosen the appropriate collec-
tor. The biggest choice is whether to use a gener-
ational collector (and pay the penalty for write
barriers). Harris (Harris, 2000) attempted pre-
tenuring using only the current method signa-
ture and bytecode offset. He studied call-chains,
but decided they provided little information un-
less recursion is removed. He found that de-
tecting phase changes (from long-lived to short-
lived objects at allocation sites) helped in some
benchmarks. He speculated that using the class
hierarchy might be an easier and less expen-
sive way to predict lifetimes. The approach
was implemented in Sun’s Research VM. Black-
burn (Blackburn et al., 2001) applied coarse-
grain prediction in Java to construct pretenur-
ing advice for garbage collectors and found they
were able to reduce garbage collection times for

12

Benchmark VM Library Application % Predicted
% Alloc. | % Pred. | % Alloc. | % Pred. | % Alloc. | % Total Pred.
bh 0.08 51.26 0.02 53.56 99.90 92.14 92.09
bisort 2.27 30.05 0.45 38.59 97.28 98.94 97.11
em3d 15.00 36.68 3.01 43.53 81.98 11.20 16.00
health 0.31 38.66 0.07 48.07 99.62 0.28 0.43
mst 25.85 34.02 38.22 6.39 34.93 45.72 27.55
perimeter 0.90 28.33 0.20 51.76 98.90 99.72 99.11
power 0.54 44.94 0.11 48.94 99.34 96.80 99.47
treeadd 0.28 27.16 0.05 37.87 99.67 99.87 99.64
tsp 6.96 41.19 58.07 98.67 34.97 92.96 92.67
v0ronoi 0.34 49.62 0.07 51.45 99.58 22.16 22.28
compress 37.97 63.63 11.89 53.41 50.14 74.33 67.78
jess 0.57 78.90 19.69 99.01 79.74 5.25 23.40
db 0.29 61.47 94.83 94.78 4.88 94.78 90.36
mpegaudio 42.48 70.51 10.16 66.57 47.37 88.05 78.42
mtrt 0.19 68.40 1.94 67.01 97.87 49.74 50.11
javac 15.91 5.86 26.54 3221 57.54 33.28 28.63
raytrace 0.22 67.97 1.03 66.68 98.76 41.29 41.61
jack 3.22 96.94 48.26 42.99 48.52 77.05 61.25
pseudojbb 0.53 73.35 33.19 33.81 66.27 88.43 57.52

Table 6: Prediction for three categories of objects according to object type. For each of the three
categories of types (virtual machine, library, application), the percentage of total allocated objects
that fall in the category is given, together with the percentage of objects in the category that are
predicted. Rightmost column is the overall percentage of objects predicted.

several types of garbage collection algorithms.
Hirzel (Hirzel et al., 2002) looked at connectivity
in the heap to discover correlations among ob-
ject lifetimes. They found that objects accessible
from the stack have short lifetimes, objects ac-
cessible from globals are immortal or very long-
lived, and objects connected via pointers usu-
ally die at about the same time, as might be ex-
pected.

9 Discussion and Conclusions

Most GC algorithms are effective when their as-
sumptions about lifetimes match the actual be-
havior of the applications—beyond crude pre-
dictions like pretenuring, they do little to “tune”
themselves to their applications. The “ideal”
garbage collector would know the lifetime of
every object at their birth. We move toward this
goal by showing that for some applications, we
can predict the lifetime of many objects to the
byte.

It is remarkable that exact prediction works
at all. Previous attempts at prediction used a
much larger granularity, in the thousands of
bytes. In particular, Barrett and Zorn used a
two-class predictor with a division at the age
of 32KB. It is not surprising that the predictor
they described worked well, given that 75% of
all objects lived to less than that age. Cohn and
Singh’s decision trees (Cohn and Singh, 1997)
worked very well at the cost of much greater
computational complexity. Blackburn’s pre-
tenuring scheme (Blackburn et al., 2001), used a
coarse granularity. The method described here
is the first to attempt high-precision and effi-
cient lifetime prediction together.

Our results show that a significant percentage
of all objects live for zero bytes, a result that re-
quired the use of exact traces. Because our pre-
dictors are able to cover zero-lifetime allocation
sites, the zero-lifetime results have clear appli-
cations in code optimization. Zero-lifetime ob-
ject prediction could be used to guide stack es-

13

cape analysis so that objects are allocated on the
stack instead of on the heap.

Object lifetime prediction could also be used
as a hinting system, both for where an alloca-
tor should place an object and when the garbage
collector should try to collect it. This would
be a more general procedure than pretenur-
ing, and it would support more sophisticated
garbage collection algorithms, such as multiple-
generation collectors and the Beltway collec-
tor (Blackburn et al., 2002).

Beyond optimization, object-lifetime predic-
tion could have applications to computer secu-
rity. Anomaly intrusion-detection systems use a
variety of techniques to model normal (secure)
behavior of a system empirically]. Anomaly-
detection systems have previously used many
different observables to define a model of nor-
mal behavior, including patterns of system calls
(Forrest et al., 1996), network traffic (Heber-
lein et al., 1990; Mukherjee et al., 1994), and
method invocations in a JVM (Inoue and For-
rest, 2002). Few, if any, of these systems have
analyzed the behavior of a memory manage-
ment system. Accurate object prediction, to-
gether with a carefully chosen precision, might
allow us to construct a new type of anomaly
intrusion-detection system, which responds to
anomalous objects, rather than anomalous code.
We are currently investigating this possibility.

More generally, we are interested in build-
ing compact models of program behavior, inde-
pendent of any direct application. Our earlier
work in intrusion detection has convinced us
that programs behave much more regularly at
execution time than is commonly believed, and
that it is possible to build reasonably accurate
and very compact models of program behavior.
Such models might be useful for predicting the
aggregate behavior of large collections of inter-
acting programs. Our results on object-lifetime
prediction provide a new substrate from which
to construct such models.

10 Acknowledgments

The authors gratefully acknowledge the sup-
port of the National Science Foundation (grants
ANIR-9986555, CCR-0219587, CCR-0085792,
and EIA-0218262), the Office of Naval Re-
search (grant N00014-99-1-0417), Defense Ad-
vanced Projects Agency (grant AGR F30602-
00-2-0584), Sandia National Laboratories, Mi-
crosoft Research, Intel Corporation, Hewlett-
Packard, and the Santa Fe Institute. We are
grateful to Matthew Hertz for creating and pro-
viding to us the Merlin algorithm implementa-
tion. We thank Kathryn McKinley, Amer Di-
wan, and Dennis Chao for valuable comments
on the text of the paper.

References

Alpern, B., Attanasio, D., Barton, J., Burke, M.,
Cheng, P, Choi, J., Cocchi, A., Fink, S.,
Grove, D., Hind, M., Hummel, S., Lieber,
D., Litvinov, V,, Ngo, T., Mergen, M.,
Sarkar, V., Serrano, M., Shepherd, J., Smith,
S., Sreedhar, V., Srinivasan, H., and Wha-
ley, J. (2000). The Jalapefio virtual machine.
IBM Systems Journal, 39(1).

Barrett, D. A. and Zorn, B. G. (1993). Using life-
time predictors to improve memory alloca-
tion performance. In SIGPLAN Conference
on Programming Language Design and Imple-
mentation, pages 187-196.

Blackburn, S. M., Jones, R., McKinley, K. S.,
and Moss, J. E. B. (2002). Beltway: Get-
ting around garbage collection gridlock. In
Proceedings of the 2002 ACM SIGPLAN Con-
ference on Programming Language Design and
Implementation (PLDI), ACM SIGPLAN No-
tices. ACM Press.

Blackburn, S. M., Singhai, S., Hertz, M., McKin-
ley, K. S., and Moss, J. E. B. (2001). Pretenur-
ing for Java. In Proceedings of SIGPLAN 2001
Conference on Object-Oriented Programming,

14

Languages, & Applications, volume 36(10)
of ACM SIGPLAN Notices, pages 342-352,
Tampa, FL. ACM Press.

Brecht, T., Arjomandi, E., Li, C., and Pham, H.
(2001). Controlling garbage collection and
heap growth to reduce the execution time
of java applications. In OOPSLA, pages
353-366.

Cahoon, B. and McKinley, K. (1999). Tolerat-
ing latency by prefetching Java objects. In
Workshop on Hardware Support for Objects
and Microarchitectures for Java.

Cannarozzi, D. J., Plezbert, M. P., and Cytron,
R. K. (2000). Contaminated garbage collec-
tion. In Proceedings of the 2000 ACM SIG-
PLAN Conference on Programming Language
Design and Implementation (PLDI), pages
264-273.

Carlisle, M. C. and Rogers, A. (1995). Soft-
ware caching and computation migration
in Olden. In Proceedings of the Fifth ACM
SIGPLAN Symposium on Principles and Prac-
tice of Parallel Programming, pages 29-38,
Santa Barbara, CA.

Cheng, P., Harper, R., and Lee, P. (1998). Gener-
ational stack collection and profile-driven
pretenuring. In Proceedings of SIGPLAN’98
Conference on Programming Languages De-
sign and Implementation, volume 33 of SIG-
PLAN Notices, pages 162-173, Montreal,
Québec, Canada. ACM Press.

Cohn, D. A. and Singh, S. (1997). Predicting life-
times in dynamically allocated memory. In
Mozer, M. C., Jordan, M. 1., and Petsche,
T., editors, Advances in Neural Information
Processing Systems, volume 9, page 939. The
MIT Press.

Dieckman, S. and Holzle, U. (1998). A study of
the allocation behavior of the SPECjvm98
Java benchmarks. In Jul, E., editor,
ECOOP’98 - Object-Oriented Programming,

15

12th European Conference, Brussels, Belgium,
July 20-24, 1998, Proceedings, volume 1445
of Lecture Notes in Computer Science, pages
92-115. Springer-Verlag.

Dieckmann, S. and Holzle, U. (2001). The al-
location behavior of the SPECjvm98 Java
benchmarks. In Eigenman, R., editor, Per-
formance Evaluation and Benchmarking with
Realistic Applications. The MIT Press.

Fitzgerald, R. P. and Tarditi, D. (2000). The case
for profile-directed selection of garbage col-
lectors. In Proceedings of the Second Inter-
national Symposium on Memory Management
(ISMM), pages 111-120.

Forrest, S.,, Hofmeyr, S., Somayaji, A., and
Longstaff, T. (1996). A sense of self for
unix processes. In Proceedings of the 1996
IEEE Symposium on Computer Security and
Privacy. IEEE Press.

Harris, T. L. (2000). Dynamic adaptive pre-
tenuring. In Proceedings of the Second Inter-
national Symposium on Memory Management
(ISMM), pages 127-136.

Hayes, B. (1991). Using key object oppor-
tunism to collect old objects. In Proceed-
ings of SIGPLAN 1991 Conference on Object-
Oriented Programming, Languages, & Appli-
cations, volume 26(11) of ACM SIGPLAN
Notices, pages 33—40, Phoenix, AZ. ACM
Press.

Hayes, B. (1993). Key Objects in Garbage Collec-
tion. PhD thesis, Stanford University, Stan-
ford, California.

Heberlein, L. T.,, Dias, G. V., Levitte, K. N,,
Mukherjee, B., Wood, J., and Wolber, D.
(1990). A network security monitor. In Pro-
ceedings of the IEEE Symposium on Security
and Privacy. IEE Press.

Hertz, M., Blackburn, S. M., Moss, J. E. B,
M®Kinley, K. S., and Stefanovi¢, D. (2002).

Error-free garbage collection traces: How
to cheat and not get caught. In SIGMET-
RICS 2002 International Conference on Mea-
surement and Modeling of Computer Systems,
volume 30(1) of ACM Performance Evalua-
tion Review, pages 140-151, Marina Del Rey,
CA. ACM Press.

Hirzel, M., Henkel, J., Diwan, A., and Hind, M.
(2002). Understanding the connectivity of
heap objects. In Proceedings of the Third In-
ternational Symposium on Memory Manage-
ment (ISMM), pages 36—49.

Inoue, H. and Forrest, S. (2002). Anomaly intru-
sion detection in dynamic execution envi-
ronments. In Proceedings of the New Security
Paradigms Workshop 2002. ACM Press.

Mukherjee, B., Heberlein, L. T., and Levitt, K. N.
(1994). Network intrusion detection. IEEE
Network, pages 26—41.

Rogers, A., Carlisle, M., Reppy,]. H., and Hen-
dren, L. J. (1995). Supporting dynamic
data structures on distributed-memory ma-
chines. ACM Transactions on Programming
Languages and Systems, 17(2):233-263.

Seidl, M. L. and Zorn, B. (1997). Predicting
references to dynamically allocated objects.
Technical Report CU-CS-826-97, University
of Colorado.

Seidl, M. L. and Zorn, B. G. (1998). Segregat-
ing heap objects by reference behavior and
lifetime. In Proceedings of the Eighth Interna-
tional Conference on Architectural Support for
Programming Languages and Operating Sys-
tems, pages 12-23.

SPEC (1999). SPECjvm98 Documentation. Stan-
dard Performance Evaluation Corporation,
release 1.03 edition.

Zilles, C. B. (2001). Benchmark health consid-
ered harmful. ACM Computer Architecture
News, 29(3):4-5.

16

