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1. INTRODUCTION

Standardized machine instruction sets provide consistent interfaces between
software and hardware, but they are a double-edged sword. Although they yield
great productivity gains by enabling independent development of hardware and
software, the ubiquity of well-known instructions sets also allows a single at-
tack designed around an exploitable software flaw to gain control of thousands
or millions of systems. Such attacks could be stopped or greatly hindered if each
protected system could be economically destandardized, so that a different at-
tack would have to be created specifically for each new target, using information
that was difficult or impossible for an outsider to obtain. The automatic diver-
sification we explore in this paper is one such destandardization technique.

Many existing defenses against machine code injection attacks block the
known routes by which foreign code is placed into a program’s execution path.
For example, stack defense mechanisms [Chiueh and Hsu 2001; Cowan et al.
1998; Etoh and Yoda 2000, 2001; Forrest et al. 1997; Frantzen and Shuey 2001;
Nebenzahl and Wool 2004; Prasad and Chiueh 2003; Vendicator 2000; Xu et al.
2002] protect return addresses and defeat large classes of buffer overflow at-
tacks. Other mechanisms defend against buffer overflows elsewhere in pro-
gram address space [PaX Team 2003], against alternative overwriting meth-
ods [Cowan et al. 2001], or guard from known vulnerabilities through shared
interfaces [Avijit et al. 2004; Baratloo et al. 2000; Lhee and Chapin 2002; Tsai
and Singh 2001]. Our approach is functionally similar to the PAGEEXEC fea-
ture of PaX [PaX Team 2003], an issue we discuss in Section 6.

Rather than focusing on any particular code injection pathway, a comple-
mentary approach would disrupt the operation of the injected code itself. In this
paper we describe randomized instruction set emulation (RISE), which uses a
machine emulator to produce automatically diversified instruction sets. With
such instruction set diversification, each protected program has a different and
secret instruction set, so that even if a foreign attack code manages to enter
the execution stream, with very high probability the injected code will fail to
execute properly.

In general, if there are many possible instruction sets compared to the num-
ber of protected systems and the chosen instruction set in each case is externally
unobservable, different attacks must be crafted for each protected system and
the cost of developing attacks is greatly increased. In RISE, each byte of pro-
tected program code is scrambled using pseudorandom numbers seeded with
a random key that is unique to each program execution. Using the scrambling
constants it is trivial to recover normal instructions executable on the physical
machine, but without the key it is infeasible to produce even a short code se-
quence that implements any given behavior. Foreign binary code that manages
to reach the emulated execution path will be descrambled without ever having
been correctly scrambled, foiling the attack, and producing pseudorandom code
that will usually crash the protected program.

1.1 Threat Model

The set of attacks that RISE can handle is slightly different from that of many
defense mechanisms, so it is important to identify the RISE threat model clearly.
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Our specific threat model is binary code injection from the network into an exe-
cuting program. This includes many real-world attack mechanisms, but explic-
itly excludes several others, including the category of attacks loosely grouped
under the name “return into libc” [Nergal 2001] which modify data and ad-
dresses so that code already existing in the program is subverted to execute the
attack. These attacks might or might not use code injection as part of the attack.
Most defenses against code injection perform poorly against this category as it
operates at a different level of abstraction; complementary defense techniques
are needed, and have been proposed, such as address obfuscation [Bhatkar et al.
2003; Chew and Song 2002; PaX Team 2003], which hide and/or randomize ex-
isting code locations or interface access points.

The restriction to code injection attacks excludes data only attacks such as
nonhybrid versions of the “return into libc” class mentioned above, while fo-
cusing on binary code excludes attacks such as macro viruses that inject code
written in a higher-level language. Finally, we consider only attacks that arrive
via network communications and therefore we treat the contents of local disks
as trustworthy before an attack has occurred.

In exchange for these limitations, RISE protects against all binary code injec-
tion attacks, regardless of the method by which the machine code is injected. By
defending the code itself, rather than any particular access route into the code,
RISE offers the potential of blocking attacks based on injection mechanisms
that have yet to be discovered or revealed.

This threat model is related to, but distinct from, other models used to char-
acterize buffer overflow attacks [Cowan et al. 2000, 2001]. It includes any at-
tack in which native code is injected into a running binary, even by means that
are not obviously buffer overflows, such as misallocated malloc headers, footer
tags [Security Focus 2003; Xu et al. 2003], and format string attacks that write a
byte to arbitrary memory locations [Gera and Riq 2002; Newsham 2000]. RISE
protects against injected code arriving by any of these methods. On the other
hand, other defense mechanisms, such as the address obfuscation mentioned
above, can prevent attacks that are specifically excluded from our code injection
threat model.

We envision the relatively general code-based mechanism of RISE being used
in conjunction with data and address diversification-based mechanisms to pro-
vide deeper, more principled, and more robust defenses against both known and
unknown attacks.

1.2 Overview

This paper describes a proof-of-concept RISE system, which builds randomized
instruction set support into a version of the Valgrind IA32-to-IA32 binary trans-
lator [Nethercote and Seward 2003; Seward and Nethercote 2004]. Section 2
describes a randomizing loader for Valgrind that scrambles code sequences
loaded into emulator memory from the local disk using a hidden random key.
Then, during Valgrind’s emulated instruction fetch cycle, fetched instructions
are unscrambled, yielding the unaltered IA32 machine code sequences of the
protected application. The RISE design makes few demands on the supporting
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emulator and could be easily ported to any binary-to-binary translator for which
source code is available.

Section 3 reports empirical tests of the prototype and confirms that RISE
successfully disrupts a range of actual code injection attacks against otherwise
vulnerable applications. In addition, it highlights the extreme fragility of typical
attacks and comments on performance issues.

A basic property of the RISE defense mechanism is that if an attack manages
to inject code by any means, essentially random machine instructions will be
executed. Section 4 investigates the likely effects of such an execution in several
different execution contexts. Experimental results are reported and theoretical
analyses are given for two different architectures. There is always a possibility
that random bits could create valid instructions and instruction sequences. We
present empirical data suggesting that the majority of random code sequences
will produce an address fault or illegal instruction quickly, causing the program
to abort. Most of the remaining cases throw the program into a loop, effectively
stopping the attack. Either way, an attempted takeover is downgraded into a
denial-of-service attack against the exploitable program.

Unlike compiled binary code, which uses only a well-defined and often rela-
tively small selection of instructions, random code is unconstrained. The behav-
ior of random code execution in the IA32 architecture can involve the effects
of undocumented instructions and whatever instruction set extensions (e.g.,
MMX, SSE, and SSE2) are present, as well as the effects of random branch
offsets combined with multibyte, variable-length instructions. Although those
characteristics complicate a tight theoretical analysis of random bit executions
on the IA32, models for more constrained instruction set architectures, such as
the PowerPC, lead to a closer fit to the observed data.

Section 6 summarizes related work, Section 7 discusses some of the impli-
cations and potential vulnerabilities of the RISE approach, and Section 8 con-
cludes the paper.

2. TECHNICAL APPROACH AND IMPLEMENTATION

This section describes the prototype implementation of RISE using Valgrind
[Nethercote and Seward 2003; Seward and Nethercote 2004] for the Intel IA32
architecture. Our strategy is to provide each program copy its own unique and
private instruction set. To do this, we consider what is the most appropriate
machine abstraction level, how to scramble and descramble instructions, when
to apply the randomization and when to descramble, and how to protect in-
terpreter data. We also describe idiosyncrasies of Valgrind that affected the
implementation.

2.1 Machine Abstraction Level

The native instruction set of a machine is a promising computational level for
automated diversification because all computer functionality can be expressed
in machine code. This makes the machine-code level desirable to attack and
protect. However, automated diversification is feasible at higher levels of ab-
straction, although there are important constraints on suitable candidates.
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Language diversification seems most promising for languages that are in-
terpreted or executed directly by a virtual machine. Randomizing source code
for a compiled language would protect only against injections at compile time.
An additional constraint is the possibility of crafting attacks at the selected
language level. Although it is difficult to evaluate this criterion in the abstract,
we could simply choose languages for which those attacks have already been
shown to exist, such as Java, Perl, and SQL [Harper 2002]. And in fact, propos-
als for diversifying these higher levels have been made [Boyd and Keromytis
2004; Kc et al. 2003]. Macro languages provide another example of a level that
could be diversified to defeat macro viruses.

Finally, it is necessary to have a clear trust boundary between internal and
external programs so that it is easy to decide which programs should be random-
ized. The majority of programs should be internal to the trust boundary, or the
overhead of deciding what is trusted and untrusted will become too high. This
requirement eliminates most web-client scripting languages such as Javascript
because a user decision about trust would be needed every time a Javascript
program was going to be executed on a client. A native instruction set, with a
network-based threat model, provides a clear trust boundary, as all legitimately
executing machine code is stored on a local disk.

An obvious drawback of native instruction sets is that they are tradition-
ally physically encoded and not readily modifiable. RISE therefore operates
at an intermediate level, using software that performs binary-to-binary code
translation. The performance impact of such tools can be minimal [Bala et al.
2000; Bruening et al. 2001]. Indeed, binary-to-binary translators sometimes
improve performance compared to running the programs directly on the native
hardware [Bala et al. 2000].

For ease of research and dissemination, we selected the open-source emula-
tor, Valgrind, for our prototype. Although Valgrind is described primarily as a
tool for detecting memory leaks and other program errors, it contains a com-
plete IA32-to-IA32 binary translator. The primary drawback of Valgrind is that
it is very slow, largely owing to its approach of translating the IA32 code into
an intermediate representation and its extensive error checking. However, the
additional slowdown imposed by adding RISE to Valgrind is modest, and we are
optimistic that porting RISE to a more performance-oriented emulator would
yield a fully practical code defense.

2.2 Instruction Set Randomization

Instruction set randomization could be as radical as developing a new set of
opcodes, instruction layouts, and a key-based toolchain capable of generating
the randomized binary code. And, it could take place at many points in the
compilation-to-execution spectrum. Although performing randomization early
could help distinguish code from data, it would require a full compilation envi-
ronment on every machine, and recompiled randomized programs would likely
have one fixed key indefinitely. RISE randomizes as late as possible in the
process, scrambling each byte of the trusted code as it is loaded into the emula-
tor, and then unscrambling it before execution. Deferring the randomization to
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load time makes it possible to scramble and load existing files in the executable
and linking format (ELF) [Tool Interface Standards Committee . 1995] directly,
without recompilation or source code, provided we can reliably distinguish code
from data in the ELF file format.

The unscrambling process needs to be fast, and the scrambling process must
be as hard as possible for an outsider to deduce. Our current default approach
is to generate at load time a pseudorandom sequence the length of the overall
program text using the Linux /dev/urandom device [Tso 1998], which uses a
secret pool of true randomness to seed a pseudorandom stream generated by
feedback through SHA1 hashing. The resulting bytes are simply XORed with
the instruction bytes to scramble and unscramble them. In addition, it is pos-
sible to specify the length of the key, and a smaller key can be tiled over the
process code. If the underlying truly random key is long enough, and as long
as it is infeasible to invert SHA1 [Schneier 1996], we can be confident that
an attacker cannot break the entire sequence. The security of this encoding is
discussed further in Section 7.

2.3 Design Decisions

Two important aspects of the RISE implementation are how it handles shared
libraries and how it protects the plaintext executable.

Much of the code executed by modern programs resides in shared libraries.
This form of code sharing can significantly reduce the effect of the diversifi-
cation, as processes must use the same instruction set as the libraries they
require. When our load-time randomization mechanism writes to memory that
belongs to shared objects, the operating system does a copy-on-write, and a pri-
vate copy of the scrambled code is stored in the virtual memory of the process.
This significantly increases memory requirements, but increases interprocess
diversity and avoids having the plaintext code mapped in the protected pro-
cesses’ memory. This is strictly a design decision, however. If the designer is
willing to sacrifice some security, it can be arranged that processes using RISE
share library keys, and so library duplication could be avoided.

Protecting the plaintext instructions inside Valgrind is a second concern.
As Valgrind simulates the operation of the CPU, during the fetch cycle when
the next byte(s) are read from program memory, RISE intercepts the bytes and
unscrambles them; the scrambled code in memory is never modified. Eventually,
however, a plaintext piece of the program (semantically equivalent to the block
of code just read) is written to Valgrind’s cache. From a security point of view, it
would be best to separate the RISE address space completely from the protected
program address space, so that the plaintext is inaccessible from the program,
but as a practical matter this would slow down emulator data accesses to an
extreme and unacceptable degree. For efficiency, the interpreter is best located
in the same address space as the target binary, but of course this introduces
some security concerns. A RISE-aware attacker could aim to inject code into a
RISE data area, rather than that of the vulnerable program. This is a problem
because the cache cannot be encrypted. To protect the cache its pages are kept
as read-and-execute only. When a new translated basic block is ready to be

ACM Transactions on Information and System Security, Vol. 8, No. 1, February 2005.



Randomized Instruction Set Emulation • 9

written to the cache, we mark the affected pages as writable, execute the write
action, and restore the pages to their original nonwritable permissions. A more
principled solution would be to randomize the location of the cache and the
fragments inside it, a possibility for future implementations of RISE.

2.4 Implementation Issues

Our current implementation does not handle self-modifying code, but it has
a primitive implementation of an interface to support dynamically generated
code. We consider arbitrary self-modifying code as an undesirable programming
practice and agree with Valgrind’s model of not allowing it. However, it is de-
sirable to support legitimate dynamically generated code, and eventually we
intend to provide a complete interface for this purpose.

An emulator needs to create a clear boundary between itself and the process
to be emulated. In particular, the emulator should not use the same shared li-
braries as the process being emulated. Valgrind deals with this issue by adding
its own implementation of all library functions it uses, with a local modified
name for example, VGplain printf instead of printf. However, we discovered
that Valgrind occasionally jumped into the target binary to execute low-level
functions (e.g., umoddi and udivdi). When that happened, the processor at-
tempted to execute instructions that had been scrambled for the emulated pro-
cess, causing Valgrind to abort. Although this was irritating, it did demonstrate
the robustness of the RISE approach in that these latent boundary crossings
were immediately detected. We worked around these dangling unresolved refer-
ences by adding more local functions to Valgrind and renaming affected symbols
with local names (e.g., rise umoddi instead of “%” (the modulo operator)).

A more subtle problem arises because the IA32 does not impose any data and
code separation requirement, and some compilers insert dispatch tables directly
in the code. In those cases, the addresses in such internal tables are scrambled
at load time (because they are in a code section), but are not descrambled at
execution time because they are read as data. Although this does not cause
an illegal operation, it causes the emulated code to jump to a random address
and fail inappropriately. At interpretation time, RISE looks for code sequences
that are typical for jump-table referencing and adds machine code to check for
in-code references into the block written to the cache. If an in-code reference
is detected when the block is executing, our instrumentation descrambles the
data that was retrieved and passes it in the clear to the next (real) instruction in
the block. This scheme could be extended to deal with the general case of using
code as data by instrumenting every dereference to check for in-code references.
However, this would be computationally expensive, so we have not implemented
it in the current prototype. Code is rarely used as data in legitimate programs
except in the case of virtual machines, which we address separately.

An additional difficulty was discovered with Valgrind itself. The thread sup-
port implementation and the memory inspection capabilities require Valgrind
to emulate itself at certain moments. To avoid infinite emulation regress, it has
a special workaround in its code to execute some of its own functions natively
during this self-emulation. We handled this by detecting Valgrind’s own address
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ranges and treating them as special cases. This issue is specific to Valgrind, and
we expect not to encounter it in other emulators.

3. EFFICACY AND PERFORMANCE OF RISE

The results reported in this section were obtained using the RISE prototype,
available under the GPL from http://cs.unm.edu/~immsec. We have tested
RISE’s ability to run programs successfully under normal conditions and its
ability to disrupt a variety of machine code injection attacks. The attack set
contained 20 synthetic and 15 real attacks.

The synthetic attacks were obtained from two sources. Two attacks, pub-
lished by Fayolle and Glaume [2002], create a vulnerable buffer—in one case
on the heap and in the other case on the stack—and inject shellcode into it.
The remaining 18 attacks were executed with the attack toolkit provided by
Wilander and Kamkar and correspond to their classification of possible buffer
overflow attacks [Wilander and Kamkar 2003] according to technique (direct or
pointer redirection), type of location (stack, heap, BSS, or data segment), and
attack target (return address, old base pointer, function pointer, and longjump
buffer). Without RISE, either directly on the processor or using Valgrind, all of
these attacks successfully spawn a shell. Using RISE, the attacks are stopped.

The real attacks were launched from the CORE impact attack toolkit [CORE
Security 2004]. We selected 15 attacks that satisfied the following requirements
of our threat model and the chosen emulator: the attack is launched from a
remote site; the attack injects binary code at some point in its execution; and,
the attack succeeds on a Linux OS. Because Valgrind runs under Linux; we
focused on Linux distributions, reporting data from Mandrake 7.2 and versions
of RedHat from 6.2 to 9.

3.1 Results

All real (nonsynthetic) attacks were tested on the vulnerable applications before
retesting with RISE. All of them were successful against the vulnerable services
without RISE, and they were all defeated by RISE (Table I).

Based on the advisories issued by CERT in the period between 1999 and
2003, Xu et al. [2003] classify vulnerabilities that can inject binary code into
a running process according to the method used to modify the execution flow:
buffer overflows, format string vulnerabilities, malloc/free, and integer manip-
ulation errors. Additionally, the injected code can be placed in different sections
of the process (stack, heap, data, BSS). The main value of RISE is its impervi-
ousness to the entry method and/or location of the attack code, as long as the
attack itself is expressed as binary code. This is illustrated by the diversity of
vulnerability types and shellcode locations used in the real attacks (columns 3
and 4 of Table I).

The available synthetic attacks are less diverse in terms of vulnerability
type. They are all buffer overflows. However, they do have attack code location
variety (stack, heap, and data), and more importantly, they have controlled
diversity of corrupted code address types (return address, old base pointer,
function pointer, and longjump buffer as either local variable or parameter),
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Table I. Results of Attacks Against Real Applications Executed under RISE

Linux Location of Stopped by
Attack Distribution Vulnerability Injected Code RISE
Apache OpenSSL SSLv2 RedHat 7.0 & 7.2 Buffer overflow Heap

√
and malloc/free

Apache mod php RedHat 7.2 Buffer overflow Heap
√

Bind NXT RedHat 6.2 Buffer overflow Stack
√

Bind TSIG RedHat 6.2 Buffer overflow Stack
√

CVS flag insertion RedHat 7.2 & 7.3 Malloc/free Heap
√

heap exploit
CVS pserver double free RedHat 7.3 Malloc/Free Heap

√
PoPToP Negative Read RedHat 9 Integer error Heap

√
ProFTPD xlate ascii RedHat 9 Buffer overflow Heap

√
write off-by-two

rpc.statd format string RedHat 6.2 Format string GOT
√

SAMBA nttrans RedHat 7.2 Buffer overflow Heap
√

SAMBA trans2 RedHat 7.2 Buffer overflow Stack
√

SSH integer overflow Mandrake 7.2 Integer error Stack
√

sendmail crackaddr RedHat 7.3 Buffer overflow Heap
√

wuftpd format string RedHat 6.2–7.3 Format string Stack
√

wuftpd glob “˜{” RedHat 6.2–7.3 Buffer overflow Heap
√

Column 1 gives the exploit name (and implicitly the service against which it was targeted).
The vulnerability type and attack code (shellcode) locations are included (columns 3 and 4, respectively).
The result of the attack is given in column 5.

and offer either direct or indirect execution flow hijacking (see Wilander and
Kamkar [2003]). All of Wilander’s attacks have the shellcode located in the
data section. Both of Fayolle and Glaume’s exploits use direct return address
pointer corruption. The stack overflow injects the shellcode on the stack, and
the heap overflow locates the attack code on the heap. All synthetic attacks
are successful (spawn a shell) when running natively on the processor or over
unmodified Valgrind. All of them are stopped by RISE (column 5 of Table II).

When we originally tested real attacks and analyzed the logs generated by
RISE, we were surprised to find that nine of them failed without ever executing
the injected attack code. Further examination revealed that this was due to
various issues with Valgrind itself, which have been remedied in later versions.
The current RISE implementation in Valgrind 2.0.0 does not have this behavior.
All attacks (real and synthetic) are able to succeed when the attacked program
runs over Valgrind, just as they do when running natively on the processor.

These results confirm that we successfully implemented RISE and that a ran-
domized instruction set prevents injected machine code from executing, without
the need for any knowledge about how or where the code was inserted in process
space.

3.2 Performance

Being emulation based, RISE introduces execution costs that affect application
performance. For a proof-of-concept prototype, correctness and defensive power
were our primary concerns, rather than minimizing resource overhead. In this
section, we describe the principal performance costs of the RISE approach,
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Table II. Results of the Execution of Synthetic Attacks under RISE

Type of Shellcode Number of �= Stopped by
Overflow Location Exploit Origin Pointer Types RISE
Stack direct Data Wilander and Kamkar [2003] 6 6 (100%)
Data direct Data Wilander and Kamkar [2003] 2 2 (100%)
Stack indirect Data Wilander and Kamkar [2003] 6 6 (100%)
Data indirect Data Wilander and Kamkar [2003] 4 4 (100%)
Stack direct Stack Fayolle and Glaume [2002] 1 1 (100%)
Stack direct Heap Fayolle and Glaume [2002] 1 1 (100%)

Type of overflow (column 1) denotes the location of the overflowed buffer (stack, heap or data) and the type
of corruption executed: direct modifies a code pointer during the overflow (such as the return address), and
indirect modifies a data pointer that eventually is used to modify a code pointer.
Shellcode location (column 2) indicates the segment where the actual malicious code was stored.
Exploit origin (column 3) gives the paper from which the attacks were taken.
The number of pointer types (column 4) defines the number of different attacks that were tried by varying
the type of pointer that was overflowed.
Column 5 gives the number of different attacks in each class that were stopped by RISE.

which include a once-only time cost for code randomization during loading,
time for derandomization while the process executes, and space overheads.

Although in the following we assume an all-software implementation, RISE
could also be implemented with hardware support, in which case we would
expect much better performance because the coding and decoding could be
performed directly in registers rather than executing two different memory
accesses for each fetch.

The size of each RISE-protected process is increased because it must have its
own copy of any library it uses. Moreover, the larger size is as much as doubled
to provide space for the randomization mask.1

A software RISE uses dynamic binary translation, and pays a runtime
penalty for this translation. Valgrind amortizes interpretation cost by stor-
ing translations in a cache, which allows native-speed execution of previously
interpreted blocks.

Valgrind is much slower than binary translators [Bala et al. 2000; Bruening
et al. 2001] because it converts the IA32 instruction stream into an intermediate
representation before creating the code fragment. However, we will give some
evidence that long-running, server-class processes can execute at reasonable
speeds, and these are precisely the ones for which RISE is most needed.

As an example of this effect, Table III provides one data point about the
long-term runtime costs of using RISE, using the Apache web server in the face
of a variety of nonattack workloads. Classes 0 to 3, as defined by SPEC Inc.
[1999], refer to the size of the files that are used in the workload mix. Class 0
is the least I/O intensive (files are less than 1 KB long), and class 3 is the one
that uses the most I/O (files up to 1000 KB long). As expected, on I/O bound
mixes, the throughput of Apache running over RISE is closer to Apache running

1A RISE command-line switch controls the length of the mask, which is then tiled to cover the pro-
gram. A 1000-byte mask, for example, would be a negligible cost for mask space, and very probably
would provide adequate defense. In principle, however, it might open a within-run vulnerability
owing to key reuse.
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Table III. Comparison of the Average Time Per Operation between Native
Execution of Apache and Apache over RISE

Native Execution Execution over RISE RISE/
Mix Type Mean (ms) Std. Dev. Mean (ms) Std. Dev. Native
Class 0 177.32 422.22 511.73 1,067.79 2.88
Class 1 308.76 482.31 597.11 1,047.23 1.93
Class 2 1,230.75 624.58 1,535.24 1,173.57 1.25
Class 3 10,517.26 3,966.24 11,015.74 4,380.26 1.05
Total 493.80 1,233.56 802.63 1,581.50 1.62

Presented times were obtained from the second iteration in a standard SPECweb99
configuration (300 s warm up and 1200 s execution).

directly on the processor.2 Table III shows that the RISE prototype slows down
by a factor of no more than 3, and sometimes by as little as 5%, compared with
native execution, as observed by the client. These results should not be taken
as a characterization of RISE’s performance, but as evidence that cache-driven
amortization and large I/O and network overheads make the CPU performance
hit of emulation just one (and possibly not the main) factor in evaluating the
performance of this scheme.

By contrast, short interactive jobs are more challenging for RISE perfor-
mance, as there is little time to amortize mask generation and cache filling.
For example, we measured a slowdown factor of about 16 end-to-end when
RISE protecting all the processes invoked to make this paper from LATEX source.

Results of the Dynamo project suggest that a custom-built dynamic binary
translator can have much lower overheads than Valgrind, suggesting that a
commercial-grade RISE would be fast enough for widespread use; in long-
running contexts where performance is less critical, even our proof-of-concept
prototype might be practical.

4. RISE SAFETY: EXPERIMENTS

Code diversification techniques such as RISE rely on the assumption that
random bytes of code are unlikely to execute successfully. When binary code
is injected by an attacker and executes, it is first derandomized by RISE.
Because the attack code was never prerandomized, the effect of derandom-
izing is to transform the attack code into a random byte string. This is invisible
to the interpretation engine, which will attempt to translate, and possibly ex-
ecute, the string. If the code executes at all, it clearly will not have the effect
intended by the attacker. However, there is some chance that the random bytes
might correspond to an executable sequence, and an even smaller chance that
the executed sequence of random bytes could cause damage. In this section,
we measure the likelihood of these events under several different assumptions,
and in the following section we develop theoretical estimates.

Our approach is to identify the possible actions that randomly formed in-
structions in a sequence could perform and then to calculate the probabilities

2The large standard deviations are typical of SPECweb99, as web server benchmarks have to model
long-tailed distributions of request sizes [Nahum 2002; SPEC Inc. 1999].
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for these different events. There are several broad classes of events that we con-
sider: illegal instructions that lead to an error signal, valid execution sequences
that lead to an infinite loop or a branch into valid code, and other kinds of er-
rors. There are several subtle complications involved in the calculations, and
in some cases we make simplifying assumptions. The simplifications lead to a
conservative estimate of the risk of executing random byte sequences.

4.1 Possible Behaviors of Random Byte Sequences

First, we characterize the possible events associated with a generic processor
or emulator attempting to execute a random symbol. We use the term symbol
to refer to a potential execution unit, because a symbol’s length in bytes varies
across different architectures. For example, instruction length in the PowerPC
architecture is exactly 4 bytes and in the IA32 it can vary between 1 and 17
bytes. Thus, we adopt the following definitions:

(1) A symbol is a string of l bytes, which may or may not belong to the in-
struction set. In a RISC architecture, the string will always be of the same
length, while for CISC it will be of variable length.

(2) An instruction is a symbol that belongs to the instruction set.

In RISE there is no explicit recognition of an attack, and success is measured
by how quickly and safely the attacked process is terminated. Process termi-
nation occurs when an error condition is generated by the execution of random
symbols. Thus, we are interested in the following questions:

(1) How soon will the process crash after it begins executing random symbols?
(Ideally, in the first symbol.)

(2) What is the probability that an execution of random bytes will branch to
valid code or enter an infinite loop (escape)? (Ideally, 0.)

Figure 1 illustrates the possible outcomes of executing a single random sym-
bol. There are three classes of outcome: an error that generates a signal, a
branch into executable memory in the process space that does not terminate in
an error signal (which we call escape), and the simple execution of the symbol
with the program pointer moving to the next symbol in the sequence. Graph
traversal always begins in the start state, and proceeds until a terminating
node is reached (memory error signal, instruction-specific error signal, escape,
or start).

The term crash refers to any error signal (the states labeled invalid opcode,
specific error signal, and memory error signal in Figure 1). Error signals do
not necessarily cause process termination due to error, because the process
could have defined handlers for some of the error signals. We assume, however,
that protected processes have reasonable signal handlers, which terminate the
process after receiving such a signal. We include this outcome in the event
crash.

The term escape describes a branch from the sequential flow of execution
inside the random code sequence to any executable memory location. This event
occurs when the instruction pointer (IP) is modified by random instructions to
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Fig. 1. State diagram for random code execution. The graph depicts the possible outcomes of
executing a single random symbol. For variable-length instruction sets; the start state represents
the reading of bytes until a nonambiguous decision about the identity of the symbol can be made.

point either to a location inside the executable code of the process, or to a location
in a data section marked as executable even if it does not typically contain code.

An error signal is generated when the processor attempts to decode or execute
a random symbol in the following cases:

(1) Illegal instruction: The symbol has no further ambiguity and it does not
correspond to a defined instruction. The persymbol probability of this event
depends solely on the density of the instruction set. An illegal instruction is
signaled for undefined opcodes, illegal combinations of opcode and operand
specifications, reserved opcodes, and opcodes undefined for a particular
configuration (e.g., a 64-bit instruction on a 32-bit implementation of the
PowerPC architecture).

(2) Illegal read/write: The instruction is legal, but it attempts to access a mem-
ory page to which it does not have the required operation privileges, or the
page is outside the process’ virtual memory.

(3) Operation error: Execution fails because the process state has not been
properly prepared for the instruction; for example, division by 0, memory
errors during a string operation, accessing an invalid port, or invoking a
nonexistent interrupt.

(4) Illegal branch: The instruction is of the control transfer type and attempts
to branch into a nonexecutable or nonallocated area.

(5) Operation not permitted: A legal instruction fails because the rights of the
owner process do not allow its execution, for example, an attempt to use a
privileged instruction in user mode.

There are several complications associated with branch instructions, depend-
ing on the target address of the branch. We assume that the only dangerous
class of branch is a correctly invoked system call. The probability of randomly
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invoking a system call in Linux is 1
256 × 1

256 ≈ 1.52 × 10−5 for IA32, and at most
1

232 ≈ 2.33×10−10 for the 32-bit PowerPC. This is without adding the restriction
that the arguments be reasonable. Alternatively, a process failure could remain
hidden from an external observer, and we will see that this event is more likely.

A branch into the executable code of the process (ignoring alignment issues)
will likely result in the execution of at least some instructions, and will perhaps
lead to an infinite loop. This is an undesirable event because it hides the at-
tack attempt even if it does not damage permanent data structures. We model
successful branches into executable areas (random or nonrandom) as always
leading to the escape state in Figure 1. This conservative assumption allows
us to estimate how many attack instances will not be immediately detected.
These “escapes” do not execute hostile code. They are simply attack instances
that are likely not to be immediately observed by an external process monitor.
The probability of a branch resulting in a crash or an escape depends at least
in part on the size of the executing process, and this quantity is a parameter in
our calculations.

Different types of branches have different probabilities of reaching valid code.
For example, if a branch has the destination specified as a full address constant
(immediate) in the instruction itself, it will be randomized, and the probability
of landing in valid code will depend only on the density of valid code in the total
address space, which tends to be low. A return takes the branching address
from the current stack pointer, which has a high probability of pointing to a
real-process return address.

We model these many possibilities by dividing memory accesses, for both
branch and nonbranch instructions into two broad classes:

(1) Process-state dominated: When the randomized exploit begins executing,
the only part of the process that has been altered is the memory that holds
the attack code. Most of the process state (e.g., the contents of the regis-
ters, data memory, and stack) remains intact and consistent. However, we
do not have good estimates of the probability that using these values from
registers and memory will cause an error. So, we arbitrarily assign proba-
bilities for these values and explore the sensitivity of the system to different
probabilities. Experimentally we know that most memory accesses fail (see
Figure 2).

(2) Immediate dominated: If a branch calculates the target address based on a
full-address size immediate, we can assume that the probability of execution
depends on the memory occupancy of the process, because the immediate
is just another random number generated by the application of the mask
to the attack code.

We use this classification in empirical studies of random code execution
(Section 4.2). These experiments provide evidence that most processes termi-
nate quickly when random code sequences are inserted. We then describe a
theoretical model for the execution of random IA32 and PowerPC instructions
(Section 5), which allows us to validate the experiments and provides a frame-
work for future analysis of other architectures.
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Fig. 2. Executing random blocks on native processors. The plots show the distribution of runs by
type of outcome for (a) IA32 and (b) Power PC. Each color corresponds to a different random block
size (rb): 4, 16, 28, 40, and 52 bytes. The filler is set such that the total process density is 5% of the
possible 232 address space. The experiment was run under the Linux operating system.

4.2 Empirical Testing

We performed two kinds of experiments: (1) execution of random blocks of bytes
on native processors, and (2) execution of real attacks in RISE on IA32.

4.2.1 Executing Blocks of Random Code. We wrote a simple C program
that executes blocks of random bytes. The block of random bytes simulates a
randomized exploit running under RISE. We then tested the program for differ-
ent block sizes (the “exploit”) and different degrees of process space occupancy.
The program allocates a prespecified amount of memory (determined by the
filler size parameter) and fills it with the machine code for no operation (NOP).
The block of random bytes is positioned in the middle of the filler memory.

Figure 2 depicts the observed frequency of the events defined in Section 4.1.
There is a preponderance of memory access errors in both architectures,
although the less dense PowerPC has an almost equal frequency of illegal
instructions. Illegal instructions occur infrequently in the IA32 case. In both
architectures, about one-third of legal branch instructions fail because of an
invalid memory address, and two-thirds manage to execute the branch. Condi-
tional branches form the majority of branch instructions in most architectures,
and these branches have a high probability of executing because of their very
short relative offsets.

Because execution probabilities could be affected by the memory occupancy
of the process, we tested different process memory sizes. The process sizes used
are expressed as fractions of the total possible 232 address space (Table IV).

Each execution takes place inside GDB (the GNU debugger), single stepping
until either a signal occurs or more than 100 instructions have been executed.
We collect information about type of instruction, addresses, and types of signals
during the run. We ran this scenario with 10,000 different seeds, five random
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Table IV. Process Memory Densities (Relative to Process Size)

Process Memory Density 0.0002956 0.0036093 0.0102365 0.0234910 0.0500000
(as a fraction of 232 bytes)

Values are expressed as fractions of the total possible 232 address space. They are based on observed process
memory used in two busy IA32 Linux systems over a period of two days.

Fig. 3. Probability that random code escapes when executed for different block sizes (the x-axis)
for (a) IA32 and (b) Power PC. Block size is the length of the sequence of random bytes inserted
into the process. Each set of connected points represents a different memory density (q). Solid lines
represent the fraction of runs that escaped under our definition of escape, and dotted lines show
the fraction of “true” escaped executions (those that did not fail after escaping from the exploit
area).

block sizes (4, 8, 24, 40, and 56 bytes), and five total process densities (see
Table IV), both for the PowerPC and the IA32.

Figure 3 plots the fraction of runs that escaped according to our definition
of escape (given in Section 4.1) for different memory densities. An execution
was counted as an escape if a jump was executed and did not fail immediately
(that is, it jumped to an executable section of the code). In addition, it shows
the proportion of escapes that did not crash within a few bytes of the exploit
area (“true” escapes: for example when the execution is trapped into an infinite
loop). Escapes that continued executing for more than 100 instructions were
terminated. The figure shows that for realistic block sizes (over 45 bytes), the
proportion of true escapes is under 10% (IA32). In the Power PC case, although
the fraction of escaped runs is smaller, most of the escapes do not fail afterwards,
so the curves overlap.

A second observation (not shown) is that memory density has a negligible
effect on the probability of escape, even though we created an environment that
maximizes successful escapes. This is likely because the process sizes are still
relatively small compared to the total address space and because only a minor-
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Fig. 4. Proportion of runs that fail after exactly n instructions, with memory density 0.05, and
random block (simulated attack) size 52 bytes, for (a) IA32 and (b) PowerPC. On the right, the
proportion of escaped vs. crashed runs is presented for comparison.

ity of memory accesses are affected by this density (those that are immediate
dominated).

Figure 4 shows the proportion of failed runs that die after executing exactly
n instructions. On the right side of the graph, the proportion of escaped versus
failed runs is shown for comparison. Each instruction length bar comprises five
subbars, one for each simulated attack size. We plot them all to show that the
size of the attack has almost no effect on the number of instructions executed,
except for very small sizes. On the IA32, more than 90% of all failed runs died
after executing at most 6 instructions and in no case did the execution continue
for more than 23 instructions. The effect is even more dramatic on the Power
PC, where 90% of all failed runs executed for fewer than 3 instructions, and the
longest failed run executed only 10 instructions.

4.2.2 Executing Real Attacks under RISE. We ran several vulnerable ap-
plications under RISE and attacked them repeatedly over the network, mea-
suring how long it took them to fail. We also tested the two synthetic attacks
from Fayolle and Glaume [2002]. In this case the attack and the exploit are
in the same program, so we ran them in RISE for 10,000 times each, collect-
ing output from RISE. Table V summarizes the results of these experiments.
The real attacks fail within an average of two to three instructions (column 4).
Column 3 shows how many attack instances we ran (each with a different ran-
dom seed for masking) to compute the average. As column 5 shows, most attack
instances crashed instead of escaping. The synthetic attacks averaged just un-
der two instructions before process failure. No execution of any of the attacks
was able to spawn a shell.

Within the RISE approach, one could avoid the problem of accidentally viable
code by mapping to a larger instruction set. The size could be tuned to reflect the
desired percentage of incorrect unscramblings that will likely lead immediately
to an illegal instruction.

ACM Transactions on Information and System Security, Vol. 8, No. 1, February 2005.



20 • E. G. Barrantes et al.

Table V. Survival Time in Executed Instructions for Attack Codes in
Real-Applications Running under RISE

No. of Avg. no. Crashed Before
Attack Name Application Attacks of Insns. Escape (%)
Named NXT Bind 8.2.1-7 101 2.24 85.14

resource
record overflow
rpc.statd format nfs-utils 0.1.6-2 102 2.06 85.29

string
Samba trans2 smbd 2.2.1a 81 3.13 73.00

exploit
Synthetic heap N/A 10,131 1.98 93.93

exploit
Synthetic stack N/A 10,017 1.98 93.30

exploit

Column 4 gives the average number of instructions executed before failure (for instances
that did not “escape”).
Column 5 summarizes the percentage of runs crashing (instead of “escaping”).

5. RISE SAFETY: THEORETICAL ANALYSIS

This section develops theoretical estimates of RISE safety and compares them
with the experiments reported in the previous section. A theoretical analysis
is important for several reasons. Diversified code techniques of various sorts
and at various levels are likely to become more common. We need to under-
stand exactly how much protection they confer. In addition, it will be help-
ful to predict the effect of code diversity on new architectures before they are
built. For example, analysis allows us to predict how much increase in safety
could be achieved by expanding the size of the instruction space by a fixed
amount.

In the case of a variable-size instruction set, such as the IA32, we compute
the aggregate probabilities using a Markov chain. In the case of a uniform-
length instruction set, such as the PowerPC, we can compute the probabilities
directly.

5.1 IA32 Instruction Set

For the IA32 instruction set, which is a CISC architecture, we use the published
instruction set specification [Intel Corporation 2004] to build a Markov chain
used to calculate the escape probability of a sequence of m random bytes (with
byte-length b = 8 bits). Our analysis is based on the graph of event categories
shown in Figure 1, but it is specialized to include the byte-to-byte symbol
recognition transitions. A transition is defined as the reading of a byte by the
processor, and the states describe either specific positions within instructions
or exceptions. Appendix A provides the specifics of this particular Markov
chain encoding.

Apart from the complexity of encoding the large and diverse IA32 instruction
set, the major difficulty in the model is the decision of what to do when a symbol
crosses the boundary of the exploit area. It is conceivable that the result of the
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Fig. 5. Theoretical analysis of IA32 escape probability: The x-axis is the number of bytes in the
random sequence, and the y-axis is the probability of escaping from a random string of m bytes. Each
connected set of plotted points corresponds to one assumed probability of successfully executing
a process-state-dominated memory access (ps), with either strict or loose criterion of escape. The
memory density is fixed at 0.05. For comparison with empirical data, the dashed line with triangles
marks the observed average frequency of successful jumps (data taken from Figure 3 for the IA32
and memory density q = 0.05).

interpretation is still ambiguous at the byte that crosses the border. However,
the model needs to decide what happens to the execution at that moment. We
model this situation using both extremes: A loose escape declares the execution
as an escape if the bytes interpreted up to the crossing point have not caused
a crash; a strict escape declares that the execution of the partial instruction
ends in crash. A characterization of the states in terms of the Markov chain is
presented in Appendix A.

Figure 5 shows the probability of escape as a function of increasing sequence
length for both loose and strict criteria of escape for a fixed memory density
(0.05), and for different probabilities of a process state-dominated memory
access to execute. The plot reveals several interesting phenomena.

First, the plots converge to a steady state quickly—in less than 20 bytes.
This is consistent with the empirical data. Notably, the probability of escape
converges to a nonzero value. This means that independently of exploit or pro-
cess size, there will always be a nonzero probability that a sequence of random
code will escape.

A second observation revealed by the plot is the relatively small difference
between our loose and strict criteria for escape. The main difference between
both cases is how to interpret the last instruction in the sequence if the string
has not crashed before the exploit border. Not surprisingly, as sequences get
longer, the probability of reaching the last symbol diminishes, so the over-
all effect of an ambiguous last instruction in those few cases is respectively
smaller.
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Table VI. Partition of Symbols into Disjoint Sets

Set Name Type of Instructions in Set
U Undefined instructions.
P Privileged instructions.
BSR Small offset, relative branch
LD Legal instructions with no memory access and no branching. All branches

require memory access, so LD only contains linear instructions.
LM I Legal no-branch instructions with immediate-dominated memory access.
BM I Legal branch instructions with immediate-dominated memory-access.
LM P Legal no-branch instructions with process-state dominated memory-access.
BM P Legal branch instructions with process-state dominated memory access.

A third observation (data not shown in the figure) is that for different mem-
ory densities, the escape curves are nearly identical. This means that memory
size has almost no effect on the probability of escape at typical process memory
occupancies. In part, this reflects the fact that most jumps use process-state-
dominated memory accesses. In particular, immediate-dominated memory
accesses constitute a very small proportion of the instructions that use memory
(only 4 out of more than 20 types of jumps).

The fourth observation concerns the fact that the first data point in the
empirical run (block size of 4 bytes) differs markedly from all the strict and loose
predicted curves. Both criteria are extreme cases and the observed behavior is
in fact bounded by them. The divergence is most noticeable during the first 10
bytes, as most IA32 instructions have a length between 4 and 10 bytes. As noted
before, the curves for loose and strict converge rapidly as the effect of the last
instruction becomes less important, and so we see a much closer fit with the
predicted behavior after 10 bytes, as the bounds become tighter.

The final observation is that the parameter ps varies less than expected. We
were expecting that the empirical data would have an ever-increasing nega-
tive slope, given that in principle the entropy of the process would increase
as more instructions were executed. Instead, we get a close fit with ps = 0.6
after the first 20 bytes. This supports our approximation to the probability of
execution for process-state dominated instructions, as a constant that can be
determined with system profiling.

5.2 Uniform-Length Instruction Set Model

The uniform-length instruction set is simpler to analyze because it does not
require conditional probabilities on instruction length. Therefore, we can esti-
mate the probabilities directly without resorting to a Markov chain. Our anal-
ysis generalizes to any RISC instruction set, but we use the PowerPC [IBM
2003] as an example.

Let all instructions be of length b bits (usually b = 32). We calculate the
probability of escape from a random string of m symbols r = r1 . . . rm, each of
length b bits (assumed to be drawn from a uniform distribution of 2b possible
symbols). We can partition all possible symbols in disjoint sets with different
execution characteristics. Table VI lists the partition we chose to use. Figure 7
in Appendix B illustrates the partition in terms of the classification of events
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given in Section 4.1. S = U ∪ P ∪ BSR ∪ LD∪ LMI ∪ BMI ∪ LMP ∪ BMP is the set
of all possible symbols that can be formed with b bits. |S| = 2b. The probability
that a symbol s belongs to any given set I (where I can be any one of U , P ,
BSR, LD, LMI, BMI, LMP or BMP) is given by P{s ∈ I} = P (I ) = |I |

2b .
If there are a bits for addressing (and consequently the size of the address

space is 2a); EI is the event that a symbol belonging to set I executes; Mt is the
total memory space allocated to the process; Me is the total executable memory
of the process; and ps is the probability that a memory access dominated by
the processor state succeeds, then the probabilities of successful execution for
instructions in each set are

For illegal and privileged opcodes, P (EU ) = P (EP ) = 0.
For the remaining legal opcodes, P (ELD ) = P (EBSR ) = 1; P (ELMI ) = Mt

2a ;
P (EBM I ) = Me

2a ; P (ELMP ) = ps and P (EBMP ) = ps.

We are interested in the probability of a successful branch (escape) out of a
sequence of n random bytes. Let X n denote the event that an execution escapes
at exactly symbol n. This event requires that n−1 instructions execute without
branching and that the nth instruction branches successfully. In consequence,
P (X n) = (P (L))n−1 P (E), where P (L) = P (LD) + P (LM I )P (ELM I ) + P (LM P )
is the probability that a symbol executes a successful linear instruction, and
P (E) = P (BM I )P (EBMI ) + P (BM P ) + P (BSR) is the probability that a symbol
executes a valid branch.

If X �
n is the event that the execution of a random string r = r1 · · · rn escapes,

its probability P (X �
n) is given by (Appendix B:

P (X �
n) = P (E)

1 − P (L)n+1

1 − P (L)
+ P (L)n

P (X �
n) is plotted in Figure 6 for different values of ps, increasing random code

sizes and a given memory density (0.05 as in the IA32 case). The comparable
data points from our experiments are shown for comparison. We did not plot
results for different memory densities because the difference among the curves
is negligible. The figure shows that the theoretical analysis agrees with our
experimental results. The parameters were calculated from the published doc-
umentation of the PowerPC instruction set [IBM 2003], for the 32-bit case:
b = 32, a = 32, P (LD) ≈ 0.25, P (LM I ) = 0, P (LM P ) ≈ 0.375, P (BM I ) ≈ 0.015,
P (BM P ) ≈ 0.030, P (BSR) ≈ 0.008.

It can be seen that the probability of escape converges to a nonzero value.
For a uniform-length instruction set, this value can be calculated as

lim
n→∞ P (X �

n) = P (E)
1 − P (L)

.

The limit value of P (X �
n) is the lower bound on the probability of a sequence

of length n escaping. It is independent of n, so larger exploit sizes are no more
likely to fail than smaller ones in the long run. It is larger than 0 for any
architecture in which the probability of successful execution of a jump to a
random location is larger than 0.
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Fig. 6. Theoretical probability of escape for a random string of n symbols. Each curve plots a
different probability of executing a process-state-determined memory access (ps) for the PowerPC
uniform-length instruction set. Process memory occupancy is fixed at 0.05. The large triangles
are the measured data points for the given memory occupancy (data taken from Figure 3 for the
PowerPC and memory density q = 0.05), and the dotted lines are the predicted probabilities of
escape.

6. RELATED WORK

Our randomization technique is an example of automated diversity, an idea that
has long been used in software engineering to improve fault tolerance [Avizienis
1995; Avizienis and Chen 1977; Randell 1975] and more recently has been
proposed as a method for improving security [Cohen 1993; Forrest et al. 1997;
Pu et al. 1996]. The RISE approach was introduced in Barrantes et al. [2003],
and an approach similar to RISE was proposed in Kc et al. [2003].

Many other approaches have been developed for protecting programs against
particular methods of code injection, including: static code analysis [Dor et al.
2003; Larochelle and Evans 2001; Wagner et al. 2000] and runtime checks, us-
ing either static code transformations [Avijit et al. 2004; Baratloo et al. 2000;
Chiueh and Hsu 2001; Cowan et al. 1998, 2001; Etoh and Yoda 2000, 2001; Jones
and Kelly 1997; Lhee and Chapin 2002; Nebenzahl and Wool 2004; Prasad and
Chiueh 2003; Ruwase and Lam 2004; Tsai and Singh 2001; Vendicator 2000; Xu
et al. 2002], dynamic instrumentation [Baratloo et al. 2000; Kiriansky et al.
2002], or hybrid schemes [Jim et al. 2002; Necula et al. 2002]. In addition,
some methods focus on protecting an entire system rather than a particular
program, resulting in defense mechanisms at the operating system level and
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hardware support [Milenković et al. 2004; PaX Team 2003; Xu et al. 2002].
Instruction-set randomization is also related to hardware code encryption
methods explored in Kuhn [1997] and those proposed for TCPA/TCG [TCPA
2004].

6.1 Automated Diversity

Diversity in software engineering is quite different from diversity for security.
In software engineering, the basic idea is to generate multiple independent
solutions to a problem (e.g., multiple versions of a software program) with the
hope that they will fail independently, thus greatly improving the chances that
some solution out of the collection will perform correctly in every circumstance.
The different solutions may or may not be produced manually, and the number
of solutions is typically quite small, around 10.

Diversity in security is introduced for a different reason. Here, the goal is to
reduce the risk of widely replicated attacks, by forcing the attacker to redesign
the attack each time it is applied. For example, in the case of a buffer overflow
attack, the goal is to force the attacker to rewrite the attack code for each new
computer that is attacked. Typically, the number of different diverse solutions
is very high, potentially equal to the total number of program copies for any
given program. Manual methods are thus infeasible, and the diversity must be
produced automatically.

Cowan et al. [2000] introduced a classification of diversity methods applied to
security (called “security adaptations”) which classifies diversifications based
on what is being adapted—either the interface or the implementation. Interface
diversity modifies code layout or access controls to interfaces, without changing
the underlying implementation to which the interface gives access. Implemen-
tation diversity, on the other hand, modifies the underlying implementation of
some portion of the system to make it resistant to attacks. RISE can be viewed
as a form of interface diversity at the machine code level.

In 1997, Forrest et al. presented a general view of the possibilities of diversity
for security [Forrest et al. 1997], introducing the idea of deliberately diversify-
ing data and code layouts. They used the example of randomly padding stack
frames to make exact return address locations less predictable, and thus more
difficult for an attacker to locate. Developers of buffer overflow attacks have
developed a variety of workarounds—such as “ramps” and “landing zones” of
no-ops and multiple return addresses. Automated diversity via random stack
padding coerces an attacker to use such techniques; it also requires larger
attack codes in proportion to the size range of random padding employed.

Other work in automated diversity for security has also experimented with
diversifying data layouts [Cohen 1993; Pu et al. 1996], as well as system
calls [Chew and Song 2002], and file systems [Cowan et al. 2000]. In addi-
tion, several projects address the code-injection threat model directly, and we
describe those projects briefly.

Chew and Song [2002] proposed a method that combines kernel and loader
modification on the system level with binary rewriting at the process level
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to provide system call number randomization, random stack relocation, and
randomization of standard library calls. This work has not been completely
evaluated to our knowledge.

Address space layout randomization (ASLR) [PaX Team 2003] and trans-
parent runtime randomization (TRR) [Xu et al. 2003] randomize the positions
of the stack, shared libraries, and heap. The main difference between the two
is the implementation level. ASLR is implemented in the kernel, while TRR
modifies the loader program. Consequently, TRR is more oriented to the end
user.

Bhatkar et al. [2003] describe a method that randomizes the addresses of
data structures internal to the process, in addition to the base address of the
main segments. Internal data and code blocks are permuted inside the seg-
ments and the guessing range is increased by introducing random gaps be-
tween objects. The current implementation instruments object files and ELF
binaries to carry out the required randomizations. No access to the source code
is necessary, but this makes the transformations extremely conservative. This
technique nicely complements that of RISE, and the two could be used together
to provide protection against both code injection and return-into-libc attacks
simultaneously.

PointGuard [Cowan et al. 2003] uses automated randomization of pointers
in the code and is implemented by instrumenting the intermediate code (AST
in GCC).

The automated diversity project that is closest to RISE is the system de-
scribed in Kc et al. [2003], which also randomizes machine code. There are
several interesting points of comparison with RISE, and we describe two of
them: (1) persystem (whole image) versus perprocess randomization; (2) Bochs
[Butler 2004] versus Valgrind as emulator. First, in the Kc et al. implemen-
tation, a single key is used to randomize the image, all the libraries, and any
applications that need to be accessed in the image. The system later boots from
this image. This has the advantage that in theory, kernel code could be random-
ized using their method although most code-injection attacks target application
code. A drawback of this approach lies in its key management. There is a single
key for all applications in the image, and the key cannot be changed during
the lifetime of the image. Key guessing is a real possibility in this situation,
because the attacker would be likely to know the cleartext of the image. How-
ever, the Kc et al. system is more compact because there is only one copy of
the libraries. On the other hand, if the key is guessed for any one application
or library, then all the rest are vulnerable. Second, the implementations differ
in their choice of emulator. Because Bochs is a pure interpreter it incurs a sig-
nificant performance penalty, while emulators such as Valgrind can potentially
achieve close-to-native efficiency through the use of optimized and cached code
fragments.

A randomization of the SQL language was proposed in Boyd and Keromytis
[2004]. This technique is essentially the same one used in the Perl random-
izer [Kc et al. 2003], with a random string added to query keywords. It is
implemented through a proxy application on the server side. In principle, there
could be one server proxy per database connection, thus allowing more key
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diversity. The performance impact is minimal, although key capture is theoret-
ically possible in a networked environment.

6.2 Other Defenses Against Code Injection

Other defenses against code injection (sometimes called “restriction methods”)
can be divided into methods at the program and at the system level. In turn,
approaches at the program level comprise static code analysis and runtime code
instrumentation or surveillance. System level solutions can be implemented in
the operating system or directly through hardware modifications. Of these, we
focus on the methods most relevant to RISE.

6.2.1 Program-Level Defenses Against Code Injection. Program-level ap-
proaches can be seen as defense-in-depth, beginning with suggestions for good
coding practices and/or use of type-safe languages, continuing with automated
analysis of source code, and finally reaching static or dynamic modification
of code to monitor the process progress and detect security violations. Com-
parative studies on program-level defenses against buffer overflows have been
presented by Fayolle and Glaume [2002], Wilander and Kamkar [2003], and
Simon [2001]. Several relevant defenses are briefly discussed below.

The StackGuard system [Cowan et al. 1998] modifies GCC to interpose a a
canary word before the return address, the value of which is checked before the
function returns. An attempt to overwrite the return address via linear stack
smashing will change the canary value and thus be detected.

StackShield [Vendicator 2000], RAD [Chiueh and Hsu 2001], install-
time vaccination [Nebenzahl and Wool 2004], and binary rewriting[Prasad and
Chiueh 2003] all use instrumentations to store a copy of the function return ad-
dress off the stack and check against it before returning to detect an overwrite.
Another variant, Propolice [Etoh and Yoda 2000, 2001] uses a combination of a
canary word and frame data relocation to avoid sensible data overwriting. Split
control and data stack [Xu et al. 2002] divides the stack in a control stack for
return addresses and a data stack for all other stack-allocated variables.

FormatGuard [Cowan et al. 2001] used the C preprocessor (CPP) to add
parameter-counting to printf-like C functions and defend programs against
format print vulnerabilities. This implementation was not comprehensive even
against this particular type of attacks.

A slightly different approach uses wrappers around standard library
functions, which have proven to be a continuous source of vulnerabilities.
Libsafe [Baratloo et al. 2000; Tsai and Singh 2001], TIED, and LibsafePlus
[Avijit et al. 2004], and the type-assisted bounds checker proposed by Lhee and
Chapin [2002] intercept library calls and attempt to ensure that their manip-
ulation of user memory is safe.

An additional group of techniques depends on runtime bounds checking
of memory objects, such as the Kelly and Jones bound checker [Jones and
Kelly 1997] and the recent C range error detector (CRED) [Ruwase and Lam
2004]. Their heuristics differ in the way of determining if a reference is still le-
gal. Both can generate false positives, although CRED is less computationally
expensive.
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The common theme in all these techniques is that they are specific defenses,
targeting specific points of entry for the injected code (stack, buffers, format
functions, and so on). Therefore, they cannot prevent an injection arriving from
a different source or an undiscovered vulnerability type. RISE, on the other
hand, is a generic defense that is independent of the method by which binary
code is injected.

There is also a collection of dynamic defense methods which do not require
access to the original sources or binaries. They operate directly on the process
in memory, either by inserting instrumentation as extra code (during the load
process or as a library) or by taking complete control as in the case of native-
to-native emulators.

Libverify [Baratloo et al. 2000] saves a copy of the return address to compare
at the function end, so it is a predecessor to install-time vaccination [Nebenzahl
and Wool 2004] and binary rewriting [Prasad and Chiueh 2003], with the differ-
ence that it is implemented as a library that performs the rewrite dynamically,
so the binaries on disk do not require modification.

Code shepherding [Kiriansky et al. 2002] is a comprehensive, policy-based
restriction defense implemented over a binary-to-binary optimizing emulator.
The policies concern client code control transfers that are intrinsically detected
during the interpretation process. Two of those types of policies are relevant to
the RISE approach.

Code origin policies grant differential access based on the source of the code.
When it is possible to establish if the instruction to be executed came from a
disk binary (modified or unmodified) or from dynamically generated code (orig-
inal or modified after generation), policy decisions can be made based on that
origin information. In our model, we are implicitly implementing a code origin
policy, in that only unmodified code from disk is allowed to execute. An advan-
tage of the RISE approach is that the origin check cannot be avoided—only
properly sourced code is mapped into the private instruction set so it executes
successfully. Currently, the only exception we have to the disk origin policy is
for the code deposited in the stack by signals. RISE inherits its signal manipu-
lation from Valgrind [Nethercote and Seward 2003]. More specifically, all client
signals are intercepted and treated as special cases. Code left on the stack is
executed separately from the regular client code fetch cycle so it is not affected
by the scrambling. This naturally resembles PaX’s special handling of signals,
where code left on the stack is separately emulated.

Also relevant are restricted control transfers in which a transfer is allowed
or disallowed according to its source, destination, and type. Although we use a
restricted version of this policy to allow signal code on the stack, in most other
cases we rely on the RISE language barrier to ensure that injected code will fail.

6.2.2 System-Level Defenses Against Code Injection. System level restric-
tion techniques can be applied in the operating system, hardware, or both. We
briefly review some of the most important system-level defenses.

The nonexecutable stack and heap as implemented in the PAGEEXEC fea-
ture of PaX [PaX Team 2003] is hardware assisted. It divides allocation into
data and code TLBs and intercepts all page-fault handlers into the code TLB.
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As with any hardware-assisted technique, it requires changes to the kernel.
RISE is functionally similar to these techniques, sharing the ability to random-
ize ordinary executable files with no special compilation requirements. Our
approach differs, however, from nonexecutable stacks and heaps in important
ways. First, it does not rely on special hardware support (although RISE pays
a performance penalty for its hardware independence). Second, although a sys-
tem administrator can choose whether to disable certain PaX features on a
perprocess basis, RISE can be used by an end-user to protect user-level pro-
cesses without any modification to the overall system.

A third difference between PaX and RISE is in how they handle applications
that emit code dynamically. In PaX, the process-emitting code requires having
the PAGEEXEC feature disabled (at least), so the process remains vulnerable
to injected code. If such a process intended to use RISE, it could modify the
code-emitting procedures to use an interface provided by RISE, and derived
from Valgrind’s interface for Valgrind-aware applications. The interface uses a
validation scheme based on the original randomization of code from disk. In a
pure language randomization, a process-emitting dynamic code would have to
do so in the particular language being used at that moment. In our approxima-
tion, the process using the interface scrambles the new code before execution.
The interface, a RISE function, considers the fragment of code as a new library,
and randomizes it accordingly. In contrast to nonexecutable stack/heap, this
does not make the area where the new code is stored any more vulnerable, as
code injected in this area will still be expressed in nonrandomized code and will
not be able to execute except as random bytes.

Some other points of comparison between RISE and PaX include

(1) Resistance to return-into-libc: Both RISE and PaX PAGEEXEC features
are susceptible to return-into-libc attacks when implemented as an iso-
lated feature. RISE is vulnerable to return-into-libc attacks without an
internal data structure randomization, and data structure randomization
is vulnerable to injected code without the code randomization. Similarly,
as the PaX Team notes, LIBEEXEC is vulnerable to return-into-libc with-
out ASLR (automatic stack and library randomization), and ASLR is vul-
nerable to injected code without PAGEEXEC [PaX Team 2003]. In both
cases, the introduction of the data structure randomization (at each cor-
responding granularity level) makes return-into-libc attacks extremely
unlikely.

(2) Signal code on the stack: Both PaX and RISE support signal code on the
stack. They both treat it as a special case. RISE in particular is able to detect
signal code as it intercepts all signals directed to the emulated process and
examines the stack before passing control to the process.

(3) C trampolines: PaX detects trampolines by their specific code pattern and
executes them by emulation. The current RISE implementation does not
support this, although it would not be difficult to add it.

StackGhost [Frantzen and Shuey 2001] is a hardware-assisted defense
implemented in OpenBSD for the Sparc architecture. The return address of
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functions is stored in registers instead of the stack, and for a large number
of nested calls StackGhost protects the overflowed return addresses through
write protection or encryption.

Milenković et al. [2004] propose an alternative architecture where linear
blocks of instructions are signed on the last basic block (equivalent to a line
of cache). The signatures are calculated at compilation time and loaded with
the process into a protected architectural structure. Static libraries are com-
piled into a single executable with a program, and dynamic libraries have their
own signature file loaded when the library is loaded. Programs are stored un-
modified, but their signature files should be stored with strong cryptographic
protection. Given that the signatures are calculated once, at compile time, if
the signature files are broken, the program is vulnerable.

Xu et al. [2002] propose using a secure return address stack (SRAS) that
uses the redundant copy of the return address maintained by the processor’s
fetch mechanism to validate the return address on the stack.

6.3 Hardware Encryption

Because RISE uses runtime code scrambling to improve security, it resem-
bles some hardware-based code encryption schemes. Hardware components to
allow decryption of code and/or data on-the-fly have been proposed since the
late 1970s [Best 1979, 1980] and implemented as microcontrollers for custom
systems (for example, the DS5002FP microcontroller [Dallas Semiconductor
1999]). The two main objectives of these cryptoprocessors are to protect code
from piracy and data from in-chip eavesdropping. An early proposal for the use
of hardware encryption in general-purpose systems was presented by Kuhn
[1997] for a very high threat level where encryption and decryption were per-
formed at the level of cache lines. This proposal adhered to the model of protect-
ing licensed software from users, and not users from intruders, so there was no
analysis of shared libraries or how to encrypt (if desired) existing open appli-
cations. A more extensive proposal was included as part of TCPA/TCG [TCPA
2004]. Although the published TCPA/TCG specifications provide for encrypted
code in memory, which is decrypted on the fly, TCPA/TCG is designed as a
much larger authentication and verification scheme and has raised controver-
sies about digital rights management (DRM) and end-users’ losing control of
their systems [Anderson 2003; Arbaugh 2002]. RISE contains none of the ma-
chinery found in TCPA/TCG for supporting DRM. On the contrary, RISE is
designed to maintain control locally to protect the user from injected code.

7. DISCUSSION

The preceding sections describe a prototype implementation of the RISE ap-
proach and evaluate its effectiveness at disrupting attacks. In this section, we
address some larger questions about RISE.

7.1 Performance Issues

Although Valgrind has some limitations, discussed in Section 2, we are opti-
mistic that improved designs and implementations of “randomized machines”
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would improve performance and reduce resource requirements, potentially
expanding the range of attacks the approach can mitigate. We have also ob-
served that even in its current version, the performance RISE offers could be
acceptable if the processes are I/O bound and/or use the network extensively.

In the current implementation, RISE safety is somewhat limited by the dense
packing of legal IA32 instructions in the space of all possible byte patterns. A
random scrambling of bits is likely to produce a different legal instruction.
Doubling the size of the instruction encoding would enormously reduce the risk
of a processor’s successfully executing a long enough sequence of unscrambled
instructions to do damage. Although our preliminary analysis shows that this
risk is low even with the current implementation, we believe that emerging soft-
hardware architectures such as Crusoe [Klaiber 2000] will make it possible to
reduce the risk even further.

7.2 Is RISE Secure?

A valid concern when evaluating RISE’s security is its susceptibility to key
discovery, as an attacker with the appropriate scrambling information could
inject scrambled code that will be accepted by the emulator. We believe that
RISE is highly resistant to this class of attack.

RISE is resilient against brute force attacks because the attacker’s work
is exponential in the shortest code sequence that will make an externally de-
tectable difference if it is unscrambled properly. We can be optimistic because
most IA32 attack codes are at least dozens of bytes long, but if a software flaw
existed that was exploitable with, say, a single 1-byte opcode, then RISE would
be vulnerable, although the process of guessing even a 1-byte representation
would cause system crashes easily detectable by an administrator.

An alternative path for an attacker is to try to inject arbitrary address ranges
of the process into the network, and recover the key from the downloaded
information. The download could be part of the key itself (stored in the pro-
cess address space), scrambled code, or unscrambled data. Unscrambled data
does not give the attacker any information about the key. Even if the attacker
could obtain scrambled code or pieces of the key (they are equivalent because
we can assume that the attacker has knowledge of the program binary), using
the stolen key piece might not be feasible. If the key is created eagerly, with a
key for every possible address in the program, past or future, then the attacker
would still need to know where the attack code is going to be written in process
space to be able to use that information. However, in our implementation, where
keys are created lazily for code loaded from disk, the key for the addresses tar-
geted by the attack might not exist, and therefore might not be discoverable.
The keys that do exist are for addresses that are usually not used in code
injection attacks because they are write protected. In summary, it would be ex-
tremely difficult to discover or use a particular encoding during the lifetime of a
process.

Another potential vulnerability is RISE itself. We believe that RISE would
be difficult to attack for several reasons. First, we are using a network-based
threat model (attack code arrives over a network) and RISE does not perform
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network reads. In fact it does not read any input at all after processing the run
arguments. Injecting an attack through a flawed RISE read is thus impossible.

Second, if an attack arises inside a vulnerable application and the attacker
is aware that the application is being run under RISE, the vulnerable points
are the code cache and RISE’s stack, as an attacker could deposit code and
wait until RISE proceeds to execute something from these locations. Although
RISE’s code is not randomized because it has to run natively, the entire area
is write protected, so it is not a candidate for injection. The cache is read-only
during the time that code blocks are executed, which is precisely when this
hypothetical attack would be launched, so injecting into the cache is infeasible.

Another possibility is a jump-into-RISE attack. We consider three ways in
which this might happen:3

(1) The injected address of RISE code is in the client execution path cache.
(2) The injected address of RISE code is in the execution path of RISE itself.
(3) The injected address of RISE code is in a code fragment in the cache.

In case 1, the code from RISE will be interpreted. However, RISE only al-
lows certain self-functions to be called from client code, so everything else will
fail. Even for those limited cases, RISE checks the call origin, disallowing any
attempt to modify its own structures.

For case 2, the attacker would need to inject the address into a RISE data
area in RISE’s stack or in an executable area. The executable area is covered
by case 3. For RISE’s data and stack areas we have introduced additional ran-
domizations. The most immediate threat is the stack, so we randomize its start
address. For other data structures, the location could be randomized using the
techniques proposed in Bhatkar et al. [2003], although this is unimplemented
in the current prototype. Such a randomization would make it difficult for the
attacker to guess its location correctly. An alternative, although much more
expensive, solution would be to monitor all writes and disallow modifications
from client code and certain emulator areas.

It is worth noting that this form of attack (targeting emulator data struc-
tures) would require executing several commands without executing a single
machine language instruction. Although such attacks are theoretically possi-
ble via chained system calls with correct arguments, and simple (local) attacks
have been shown to work [Nergal 2001], these are not a common technique
[Wilander and Kamkar 2003]. In the next version of RISE, we plan to include
full data structure address randomization, which would make these rare at-
tacks extremely difficult to execute.

Case 3 is not easily achieved because fragments are write protected. How-
ever, an attacker could conceivably execute an mprotect call to change writing
rights and then write the correct address. In such a case, the attack would exe-
cute. This is a threat for applications running over emulators, as it undermines
all other security policies [Kiriansky et al. 2002]. In the current RISE imple-
mentation, we borrow the solution used in Kiriansky et al. [2002], monitoring

3We rely on the fact that RISE itself does not receive any external input once it is running.
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all calls to the mprotect system call by checking their source and destination
and not allowing executions that violate the protection policy.

7.3 Code/Data Boundaries

An essential requirement for using RISE for improving security is that the dis-
tinction between code and data must be carefully maintained. The discovery
that code and data can be systematically interchanged was a key advance in
early computer design, and this dual interpretation of bits as both numbers
and commands is inherent to programmable computing. However, all that flex-
ibility and power turn into security risks if we cannot control how and when
data become interpreted as code. Code-injection attacks provide a compelling
example, as the easiest way to inject code into a binary is by disguising it as
data, for example, as inputs to functions in a victim program.

Fortunately, code and data are typically used in very different ways, so ad-
vances in computer architecture intended solely to improve performance, such
as separate instruction caches and data caches, also have helped to enforce good
hygiene in distinguishing machine code from data, helping make the RISE ap-
proach feasible. At the same time, of course, the rise of mobile code, such as
Javascript in web pages and macros embedded in word processing documents,
tends to blur the code/data distinction and create new risks.

7.4 Generality

Although our paper illustrates the idea of randomizing instruction sets at the
machine-code level, the basic concept could be applied wherever it is possible
to (1) distinguish code from data, (2) identify all sources of trusted code, and
(3) introduce hidden diversity into all and only the trusted code. A RISE for
protecting printf format strings, for example, might rely on compile-time de-
tection of legitimate format strings, which might either be randomized upon
detection, or flagged by the compiler for randomization sometime closer to
runtime. Certainly, it is essential that a running program interact with ex-
ternal information, at some point, or no externally useful computation can
be performed. However, the recent SQL attacks illustrate the increasing dan-
ger of expressing running programs in externally known languages [Harper
2002]. Randomized instruction set emulators are one step toward reducing that
risk.

An attraction of RISE, compared to an approach such as code shepherding,
is that injected code is stopped by an inherent property of the system, without
requiring any explicit or manually defined checks before execution. Although
divorcing policy from mechanism (as in code shepherding) is a valid design
principle in general, complex user-specified policies are more error prone than
simple mechanisms that hard code a well-understood policy.

8. CONCLUSIONS

In this paper we introduced the concept of a randomized instruction set emula-
tor as a defense against binary code injection attacks. We demonstrated the fea-
sibility and utility of this concept with a proof-of-concept implementation based
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on Valgrind. Our implementation successfully scrambles binary code at load
time, unscrambles it instruction-by-instruction during instruction fetch, and
executes the unscrambled code correctly. The implementation was successfully
tested on several code-injection attacks, some real and some synthesized, which
exhibit common injection techniques.

We also addressed the question of RISE safety—how likely are random byte
sequences to cause damage if executed. We addressed this question both ex-
perimentally and theoretically and conclude that there is an extremely low
probability that executing a sequence of random bytes would cause real dam-
age (say by executing a system call). However, there is a slight probability that
such a random sequence might escape into an infinite loop or valid code. This
risk is much lower for the Power PC instruction set than it is for the IA32,
due to the density of the IA32 instruction set. We thus conclude that a RISE
approach would be even more successful on the Power PC architecture than it
is on the IA32.

As the complexity of systems grows, and 100% provable overall system se-
curity seems an ever more distant goal, the principle of diversity suggests that
having a variety of defensive techniques based on different mechanisms with
different properties stands to provide increased robustness, even if the tech-
niques address partially or completely overlapping threats. Exploiting the idea
that it is hard to get much done when you do not know the language, RISE is an-
other technique in the defender’s arsenal against binary code injection attacks.

APPENDIX

A. ENCODING OF THE IA32 MARKOV CHAIN MODEL

In this appendix, we discuss the details for the construction of the Markov chain
representing the state of the processor as each byte is interpreted.

If X t = j is the event of being in state j at time t (in our case, at the reading
of byte t), the transition probability P{X t+1 = j |X t = i} is denoted pij and is
the probability that the system will be in state j at byte t + 1 if it is in state i
for byte t.

For example, when the random sequence starts (in state start), there is some
probability p that the first byte will correspond to an existing 1-byte opcode that
requires an additional byte to specify memory addressing (the Mod-Reg-R/M
(MRM) byte). Consequently, we create a transition from start to mrm with some
probability p: pstart,mrm = p. p is the number of instructions with one opcode
that require the MRM byte, divided by the total number of possibilities for the
first byte (256). In IA32 there are 41 such instructions, so pstart,mrm = 41

256 .
If the byte corresponds to the first byte of a 2-byte instruction, we transition

to an intermediate state that represents the second byte of that family of in-
structions, and so on. There are two exit states: crash and escape. The crash
state is reached when an illegal byte is read, or there is an attempt to use
invalid memory, for an operation or a jump. The second exit state, escape, is
reached probabilistically when a legitimate jump is executed. This is related to
the escape event.
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Because of the complexity of the IA32 instruction set, we simplified in some
places. As far as possible, we adhered to the worst-case principle, in which
we overestimated the bad outcomes when uncertainty existed (e.g., finding a
legal instruction, executing a privileged instruction, or jumping). The next few
paragraphs describe these simplifications.

We made two simplifications related to instructions. The IA32 has in-
struction modifiers called prefixes that can generate complicated behaviors
when used with the rest of the instruction set. We simplified by treating
all of them as independent instructions of length 1 byte, with no effect
on the following instructions. This choice overestimates the probability of
executing those instructions, as some combinations of prefixes are not al-
lowed, others significantly restrict the kind of instructions that can follow, or
make the addresses or operands smaller. In the case of regular instructions
that require longer low-probability pathways, we combined them into simi-
lar patterns. Privileged instructions are assumed to fail with probability of
1.0 because we assume that the RISE-protected process is running at user
level.

In the case of conditional branches, we assess the probability that the
branch will be taken, using the combination of flag bits required for the
particular instruction. For example, if the branch requires that two flags
have a given value (0 or 1), the probability of taking the branch is set to
0.25 . A nontaken branch transitions to the start state as a linear instruc-
tion. All conditional branches in IA32 use relative (to the current Instruc-
tion Pointer), 8- or 16-bit displacements. Given that the attack had to be in
an executable area to start with, this means that it is likely that the jump
will execute. Consequently, for conditional branches we transition to escape
with probability 1. This is consistent with the observed behavior of successful
jumps.

A.1 Definition of Loose and Strict Criteria of Escape

Given that the definition of escape is relative to the position of the instruction in
the exploit area, it is necessary to arbitrarily decide if to classify an incomplete
interpretation as an escape or as a crash. This is the origin of the loose and
strict criteria.

In terms of the Markov chain, the loose and strict classifications are defined
as follows:

(1) Loose escape: Starting from the start state, reach any state except crash, in
m transitions (reading m bytes).

(2) Strict escape: Reach the escape state in m or fewer transitions from the start
state (in m bytes).

If T is the transition matrix representing the IA32 Markov chain, then to
find the probability of escape from a sequence of m random bytes, we need to
determine if the chain is in state start or escape (the strict criterion) or not in
state crash (the loose criterion) after advancing m bytes. These probabilities are
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Fig. 7. Partition of symbols into disjoint sets based on the possible outcome paths of interest in
the decoding and execution of a symbol. Each path defines a set. Each shaded leaf represents one
(disjoint) set, with the set name noted in the box.

given by T m(start,start) + T m(start,escape) and 1−T m(start,crash), respectively,
where T (i, j ) is the probability of a transition from state i to state j .

B. ENCODING OF A UNIFORM-LENGTH INSTRUCTION SET

This appendix contains intermediate derivations for the uniform-length in-
struction set model.

B.1 Partition Graph

Figure 7 illustrates the partition of the symbols into disjoint sets using the
execution model given in Section 4.1.

B.2 Encoding Conventions

The set of branches that are relative to the current instruction pointer with a
small offset (defined as being less or equal than 2b−1) is separated from the rest
of the branches, because their likelihood of execution is very high. In the anal-
ysis we set their execution probability to 1, which is consistent with observed
behavior.

A fraction of the conditional branches are artificially separated into LMI and
LMP from their original BMI and BMP sets. This fraction corresponds to the
probability of taking the branch, which we assume is 0.5. This is similar to the
IA32 case, where we assumed that a non-branch-taking instruction could be
treated as a linear instruction.

To determine the probability that a symbol falls into one of the partitions, we
need to enumerate all symbols in the instruction set. For accounting purposes,
when parts of addresses and/or immediate (constant) operands are encoded in-
side the instruction, each possible instantiation of these data fields is counted
as a different instruction. For example, if the instruction “XYZ” has 2 bits spec-
ifying one of four registers, we count four different XYZ instructions, one for
each register encoding.
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B.3 Derivation of the Probability of a Successful Branch (Escape) Out of a
Sequence of n Random Bytes

P (X �
n) = ∑

i=1,...,n
P (X i) + P (L)n

= ∑
i=1,...,n

P (L)i P (E) + P (L)n

=
(

P (E)
∑

i=1,...,n
P (L)i

)
+ P (L)n

= P (E)
1 − P (L)n+1

1 − P (L)
+ P (L)n.

(1)

B.4 Derivation of the Lower Limit for the Probability of Escape

lim
n→∞ P (X �

n) = lim
n→∞ P (E)

1 − P (L)n+1

1 − P (L)
+ P (L)n

= P (E)
1 − P (L)

.

(2)
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