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A�������. The perturbation method is commonly used to approximate

solutions to dynamic economic models. Two types of Taylor series are con-

ventionally used: Taylor series in x and Taylor series in lnx. We combine the

perturbation method with a continuum of changes of variables and show that

substantially better expansions can be achieved at little extra cost.

Economists are studying increasingly complex dynamic stochastic models and

need more powerful and reliable computational methods. Most previous work has

focussed on computing linear approximations of equilibrium relations. Some recent

work (Judd and Guu (1993, 1997), Gaspar and Judd (1997), Judd (1998), Collard

and Juillard (2001), and Jin and Judd (2001)) have extended this approach by com-

puting Taylor series approximations of equilibrium relations and produce increasingly

accurate approximations through increasing the order of the Taylor series. However,

computational costs increase substantially as the order increases. This paper shows

how to use nonlinear changes of variables to improve the accuracy of perturbation

method solutions at low computational cost.

Linearization methods for dynamic models have been a workhorse of macroeco-

nomic analysis. Magill (1977) showed how to compute a linear approximation around

deterministic steady states and apply them to approximate spectral properties of sto-

chastic models. Kydland and Prescott (1982) applied a special case of the Magill

method to a real business cycle model. However, the approximations in Magill, and

Kydland and Prescott were just linear approximations of the deterministic model

applied to stochastic models; they ignored higher-order terms and were certainty

equivalent approximations, that is, variance had no impact on decision rules. The
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motivating intuition was also specific to the case of linear, certainty equivalent ap-

proximations. Kydland and Prescott (1982) motivated their procedure by replacing

the nonlinear law of motion with an equivalent linear law of motion1, replacing the

nonlinear payoff function with a quadratic approximation, and then applying linear-

quadratic dynamic programming methods to the approximate model. This motiva-

tion gives the impression that it is not easy to compute higher-order approximations,

particularly since computing the first-order terms requires solving a quadratic matrix

equation. In fact, Marcet(1994) dismissed the possibility that higher-order approxi-

mations be computed, stating that “perturbation methods of order higher than one

are considerably more complicated than the traditional linear-quadratic case ...”

Furthermore, little effort has been made to determine the conditions under which

certainty equivalent linearizations are valid. Linearization methods are typically used

in an application without examining whether they are valid in that case. This raises

questions about many of the applications, particularly since the conventional lin-

earization approach sometimes produces clearly erroneous results. For example, Tesar

(1995) uses the standard Kydland-Prescott method and found an example where

completing asset markets will make all agents worse off. This result violates general

equilibrium theory and can only be attributed to the numerical method used. Kim

and Kim (forthcoming) show that this will often occur in simple stochastic models.

Jin and Judd (2001) presents a portfolio-like example where casual applications of

higher-order procedures (such as those advocated by Sims, 2002, and Campbell and

Viciera, 2002) can easily produce answers inconsistent with the model they try to

approximate. These examples emphasize two important points. First, more flexible,

robust, and accurate methods based on sound mathematical principles are needed.

Second, we cannot blindly accept the results of a Taylor series approximation but

need ways to test an approximation’s reliability.

More recent work have used the implicit function theorem and Taylor series meth-

ods to go beyond the normal “linearize around the steady state” approximations

by adding both higher-order terms and deviations from certainty equivalence. This

work has shown that higher-order approximations are straightforward to do, even,

in some sense, easier to compute then the linear term. Judd and Guu (1993, 1997)

1They used a change of variables, not a linear approximation, to create the substitute problem.
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used Mathematica to examine perturbation methods for deterministic, continuous-

and discrete-time growth models in one capital stock, and stochastic growth models

in continuous time with one state. They find that the high-order approximations

can be used to compute highly accurate approximations which avoid the certainty

equivalence property of the standard linearization method. Judd and Gaspar (1997)

described perturbation methods for multidimensional stochastic models in continuous

time, and produced Fortran computer code for fourth-order expansions. Judd (1998)

presented the general method for deterministic discrete-time models and presented

a discrete-time stochastic example indicating the critical adjustments necessary to

move from continuous time to discrete time. In particular, the natural perturba-

tion parameter is the instantaneous variance in the continuous-time case, but the

standard deviation is the natural perturbation parameter for discrete-time stochas-

tic models. Jin and Judd (2001) extended these methods to more general rational

expectations models, focussing on the structure of the problem, existence issues, and

error evaluation procedures. The reader is referred to these papers and their mathe-

matical sources for key definitions and introductions to these methods. Higher-order

methods have been applied to a variety of particular problems. Collard and Juil-

lard (2001) computed a higher-order perturbation approximation of an asset-pricing

model. Kim and Kim (forthcoming) applied second-order approximation methods to

welfare questions in international trade. Sims (2000) and Grohe-Schmidt and Uribe

(2002) have generalized Judd (1998), Judd and Gaspar (1997), and Judd and Guu

(1993) by examining second-order approximations of multidimensional discrete-time

models.

These analyses have a common structure. Suppose that x is the state, or prede-

termined, variable, and u is a free variable. Equilibrium takes the form of a feedback

rule u = U (x). Together with the law of motion xt+1 = f (xt, ut), this leads to

an equilibrium law of motion xt+1 = f (xt, U (xt)). The linear approximation is

U (x) = u∗ + U ′ (x∗) (x− x∗), and higher-order approximations are similar Taylor

series. Sometimes economists execute this approach in terms of other variables. For

example, one can express equilibrium in terms of ln x and/or ln u. This will create

linear approximations of the form u = a lnx + b, ln u = ax + b, or the log-log form

lnu = a ln x+ b.
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There have been many reasons given for expressing equilibrium in one of these

alternatives. For example, a linear approximation to a consumption policy C (k) may

occasionally imply a negative consumption but a log-log approximation will guarantee

a positive consumption. Campbell (1994) argues that a log-linear approximation

“gives a simpler relation between the parameters of the underlying model and the

parameters that appear in the approximate solution.” But some of these reasons are

not important. For example, if the shocks to technology are so great that a linear

approximation produces a negative consumption then the linear approximation is

probably a poor one even when it produces positive consumption. Also, one can

use the linear approximations to produce simple relations between the solutions and

the model parameters (see, for example, Judd, 1987). This paper takes the view that

accuracy is the only appropriate objective in choosing among alternative Taylor series

expansions, and that conventional criterion are, at best, derivative of this accuracy

objective.

This paper first argues that these alternatives are all just a few examples of a

broad family of alternatives defined by nonlinear changes of variables. This point

is rather obvious but is largely ignored in the literature. The second point is that

one can convert a Taylor series in one form to a Taylor series in any other form at

little cost since the coefficients for one series are linearly related to the coefficients

of the ordinary Taylor series expansion. Third, one can also check the quality of

any of these polynomial approximations at little cost. Therefore, this paper studies

the following two-stage strategy. First, we first compute an ordinary Taylor series

approximation. This step can be expensive since it involves computing high-order

derivatives. Second, we compute alternative power series implied by several possible

changes of variables and examine their quality in terms of its implied Euler equation

errors. This step can be comparatively cheap.

We apply this strategy to a simple growth model. We find that one can quickly

find alternative expansions which dominate the usual ones by two orders of mag-

nitude. The problem of finding the absolute best nonlinear change of variable is

a difficult problem since the objective is multimodal. However, we find that it is

easy to find something that dominates the conventional choices. We show that the

multidimensional case is a straightforward extension of the one-dimensional case.
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The purpose of this paper is to introduce the reader to the basic ideas and explore

its potential value.

1. T����	 
�	��
 ���	���������
 ��� ��������	 ������
 �
 ��	�����


We first describe how to combine Taylor series approximations with changes of vari-

ables (COV) to produce asymptotically valid expressions in an arbitrary variable.

This will give us a general view of the problem and help us understand how standard

procedures fit into the more general approach described here.

1.1. Taylor Series Expansions and COVs. The Taylor series expansion of

f (x) at x = a is

f(a) + (x− a) f ′(a) +
(x− a)2 f ′′(a)

2
+

(x− a)3 f (3)(a)

6
+ ...

Define the nonlinear change of variables

y = Y (x)

where Y (x) is strictly increasing and nonlinear in x. The new variable y is related

nonlinearly to the initial variable x. We assume that Y is a nonlinear function; if

Y (x) were linear in x then the resulting series would be identical to the series in x.

Also define the corresponding inverse function

x = X (y)

We can express the function f (x) in terms of the new variable y by defining the

function g (y)

g (y) = f (X (y))

If we knew g (y) then we could use it to compute f since f (x) = g (Y (x)). We will

not know g explicitly but we can use a Taylor series approximation of g (y) based

at y = b = Y (a) to construct an approximation of f (x) near x = 1. The Taylor

series for g is constructed from its derivatives at y = b, which are derived by using
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the Chain Rule. The result is

g (y) = f (X (y))
.
= f(X(b)) + (y − b) f ′(X(b))X ′(b) +

1

2
(y − b)2

(
X ′(b)2 f ′′(X(b)) + f ′(X(b))X ′′(b)

)
+
1

6
(y − b)3

(
X ′(b) f ′′(X(b))X ′′(b) + 3X ′(b)3 f (3)(X(b)) + f ′(X(b))X(3)(b)

)
= f(a) + (y − b) f ′(a)X ′(b)

+
1

2
(y − b)2

(
X ′(b)2 f ′′(a) + f ′(a)X ′′(b)

)
+
1

6
(y − b)3

(
X ′(b) f ′′(a)X ′′(b) + 3X ′(b)3 f (3)(a) + f ′(a)X(3)(b)

)
The Taylor series for g is constructed from derivatives of f and X, both of which are

assumed to be known. Also, these derivatives are computed in a direct manner. In

fact, the derivatives are linear in the derivatives of f . Since f (x) = g (Y (x)) and

b = Y (a) we have the following Y (x)-expansion for f (x)

f (x) = g (Y (x))
.
= f(a) + (Y (x)− b) f ′(a)X ′(b)

+
1

2
(Y (x)− b)2

(
X ′(b)2 f ′′(a) + f ′(a)X ′′(b)

)
+
1

6
(Y (x)− b)3

(
X ′(b) f ′′(a)X ′′(b) + 2X ′(b)3 f (3)(a) + f ′(a)X(3)(b)

)
Again we see that the Y (x)-expansion is computed directly from the ordinary deriv-

atives of f , and, moreover, the coefficients are linear functions of those derivatives.

Therefore, constructing the Y (x)-expansion of f is a trivial computational task once

we know the ordinary Taylor series expansion of f at x = a.

More generally, we will want to transform both the the domain and range of f (x).

For example, economists often express a consumption policy C (k) by expressing

lnC (k) as a linear function of k. Specifically, this approach expresses some nonlinear

function of f (x) as a polynomial in some variable Y (x). This is formalized by finding

some function h such that

h (f (x)) = g (Y (x))

This implies

h (f (X (y))) = g (y)
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The derivatives of g (y) are given by the Chain Rule, and equal

g′ (y) = h′ (f (X (y))) f ′ (X (y))X ′ (y)

g′′ (y) = h′′ (f (X (y))) (f ′ (X (y))X ′ (y))
2

+h′ (f (X (y))) f ′′ (X (y))X ′ (y)2

+h′ (f (X (y))) f ′ (X (y))X ′′ (y)

the Taylor series of g (y) is

gTay (Y (x)) = h (f(a)) + (Y (x)− b) g′ (b) +
1

2
(Y (x)− b)2 g′′ (b) + ...

g′ (b) = h′ (f (a)) f ′ (a)X ′ (b)

g′′ (b) = h′′ (f (a)) (f ′ (a)X ′ (b))
2

+h′ (f (a)) f ′′ (a)X ′ (b)2

+h′ (f (a)) f ′ (a)X ′′ (b)

and the approximation of f (x) becomes

f (x) = h−1 (g (Y (x)))
.
= h−1

(
gTay (Y (x))

)
= h−1

(
h (f(a)) + (Y (x)− b) g′ (b) +

1

2
(Y (x)− b)2 g′′ (b) + ...

)

These formulas indicate the general idea. We now turn to some familiar and some

unfamiliar applications of these ideas.

1.2. Examples of COVs. Suppose we want to approximate a function f (x) near

x = x0. The normal Taylor series in levels is

f (x) = f(x0) + (x− x0) f
′(x0) +

(x− x0)
2 f ′′(x0)

2
+ ...

We next display polynomial approximations corresponding to some familiar and some

unfamiliar COVs.

Log-Log Expansion. A common example of this method is the construction

of log-log approximations. In our notation above, this implies Y (x) = lnx and
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h (z) = ln z. We can also use the derivatives of f at x = x0 to create the log-log

approximation. If we define the first- and second-order elasticities to be

η1 =
x0f

′ (x0)

f (x0)
, η2 =

x20f
′′ (x0)

f (x0)

then the second-order log-log approximation of f in terms of lnx can be expressed as

ln f (x)− ln f(x0)
.
= η1(ln x− ln x0) + (η1 (1− η1) + η2)

(ln x− ln x0)
2

2

The first portion of this approximation is the familar log-linear approximation. The

quadratic term is not so familiar but is a straightforward extension of the conventional

log-linear approximation of f .

Power Function Expansions. More generally, we can consider using the power

function in our the changes of variables. This implies the choices

Y (x) = xα, X (y) = y1/α

h (x) = xγ, h−1 (x) = x1/γ

Notice that we use different power functions for Y and h. We shall call this COV the

α−γ power function COV. This change of variables implies the first-order expansion

f (x)
.
=

(
f (x0)

γ + (xα − xα0 )
γx1−α0 f (x0)

−1+γ f ′ (x0)

α

)1/γ

if neither α nor γ is zero. In terms of the elasticity η1 this reduces to

f (x)
.
= f (x0)

(
1− η1

(
1−

(
x

x0

)α)
γ

α

)1/γ

The power-power expansions are generalizations of both the log-log and the ordinary

expansions. The choices α = γ = 1 produce the ordinary Taylor series expansion. In

a limiting sense, the log COV is the case of α = 0 (γ = 0). Therefore, when one is

implementing the power function COV, the case of α = 0 is a special case which is

the log COV.
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Other possibilities. We next display some other possibilities to illustrate the

large range of alternatives available to a modeller. We do not systematically explore

these possibilities in our example below, but we present them to emphasize the point

that we only need a function to be monotone increasing and easily invertible.

One simple possible choice is the canonical rational function,

y =
a+ bx

c+ dx

with inverse

x =
a− cy

dy − b

This change of variable is well-defined and monotone over any interval over which

c + dx is never zero. Without loss of generality, one could normalize this COV by

restricting the coefficients so that a+ b = c+ d = 1, implying the family

y =
a+ (1− a)x

c+ (1− c) x

with inverse

x =
a− cy

a− 1 + (1− c) y

Without loss of generality, two COV’s related by an affine transformation are equiv-

alent. Therefore, the canonical rational COV is really just the one-parameter family

y =
x

c+ (1− c) x

Another possibility is the quadratic rational function

y =
x+ ax2

b+ cx+ (1− b− c)x2

which is monotone over some intervals and has an explicit inverse. Our final example

is

y =

(
xα + ax2α

b+ cxα + (1− b− c)x2α

)γ

which has five free parameters and combines the quadratic rational function family

with the power-power family.
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2. A S����� G	���� M���� E������

We now illustrate how to use COVs in a simple perturbation problem. We use the

simple optimal growth problem

maxct
∑

∞

t=0
βt u(ct),

s.t. kt+1 = F (kt)− ct.
(1)

The solution can be expressed as a policy function, C(k), satisfying the Euler equation

u′ (C(k)) = β u′ (C (F (k)− C(k))) F ′ (F (k)− C(k)) . (2)

At the steady state, k∗, we have F (k∗)−C(k∗) = k∗, where (2) implies that u′ (C(k∗)) =

β u′ (C(k∗)) F ′(k∗), which in turn implies the steady state condition 1 = βF ′(k∗)

which uniquely determines k∗. Furthermore k∗ = F (k∗)− C(k∗) determines C(k∗).

This is a good example since it will allow us to focus on the critical issues. In

particular, it nicely illustrates the method. There are different ways to express an

approximation to C (k). Some will just compute an approximation of C which is

linear in k but others argue that it is better to express lnC as a linear function of

ln k. In fact, there is no general correct choice. If u is quadratic and F is linear

then the true solution for C (k) is linear in k, but if F is Cobb-Douglas and u is the

log function then the true solution for C expresses lnC as a linear function of ln k.

These examples are well-known and appear to argue for one of these two choices.

However, if u has nearly infinite curvature, then the solution for C (k) is nearly equal

to F (k) − k, which is net output, and will then take on whatever functional form

F (k)−k has. These examples illustrate the various functional forms the solution may

take. However, in general, the true solution does not fall into any of these categories.

Therefore, we should examine several alternative COVs before settling on a solution.

We will examine the case where

u (c) = ln c

β = .95

F (k) = k +
4

19
k1/4

which implies a steady state capital stock of k∗ = 1.
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2.1. Ordinary Perturbation. We first describe the method by which we com-

pute the ordinary Taylor series approximation. Taking the derivative of (2) with

respect to k implies

u′′ (C) C ′ = βu′′ (C (F − C)) C ′ (F − C) [F ′
− C ′]F ′(F − C)

+β u′ (C (F (k − C))) F ′′ (F − C) [F ′
− C ′].

(3)

At k = k∗, (3) reduces to (we will now drop all arguments)

u′′C ′ = u′′C ′ [F ′
− C ′] + βu′ F ′′ [F ′

− C ′] . (4)

In (4) we know the value of all the terms at k = k∗ except C ′(k∗). Equation (4) is a

quadratic equation in C ′(k∗) with the solution

C ′ =
1

2


1− F ′ + β

u′

u′′
F ′′ +

√(
−1 + F ′ − β

u′

u′′
F ′′

)2

+ 4
u′

u′′
F ′′


 . (5)

We next compute higher-order terms of the Taylor expansion of C(k) at k = k∗.

If we take another derivative of (3) and set k = k∗, we find that C ′′(k∗) must satisfy

u′′C ′′ +u′′′C ′C ′

= βu′′′ (C ′F ′(1− C ′))2 F ′ + βu′′C ′′ (F ′(1− C ′))2 F ′

+2βu′′C ′F ′(1− C ′)2 F ′′ + βu′F ′′′(1− C ′)2 + βu′F ′′(−C ′′).

(6)

The key fact is that (6) is is a linear equation in the unknown C ′′(k∗). This analysis

can continue to compute higher-order terms; see Judd and Guu(1993) for Mathemat-

ica programs to solve this problem. We continue this up to order 12 in our example.

2.2. Error Evaluation. We will use a stringent error criterion to judge the ap-

proximations arising from various COVs. We first define the normalized Euler equa-

tion error function. Suppose that Ĉ (k) is our approximation; we then define

E(k) =

∣∣∣∣∣∣1− β
u′
(
Ĉ
(
F (k)− Ĉ(k)

))
F ′

(
F (k)− Ĉ(k)

)
u′
(
Ĉ(k)

)
∣∣∣∣∣∣ . (7)

which is the Euler equation error at k relative to current marginal utility u′
(
Ĉ(k)

)
.

This expression is unit-free and is therefore an appropriate index of accuracy. More
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specifically, if E (k) < ε for all k then Ĉ(k) is an ε-equilibrium in the sense that the

equilibrium conditions are satisfied up to an error less than ε.

We will use E (k) in two ways. First, we display graphs of E (k) to see how the

apparent accuracy of Ĉ(k) changes as we change k. Second, we will compute scalar

indices of error

E∞(a, b) = max
k∈[a,b]

log10 E (k)

which is the maximum error over the interval [a, b] expressed in terms of its base 10

logarithm. If E∞(a, b) is less that -5, for example, then that means that the Euler

equations are at most 10−5 for k ∈ [a, b].

2.3. Error Evaluation of the Ordinary Perturbation Methods. Figure 1

displays the Euler equation errors at various capital stocks k and for various orders

of approximation using the standard Taylor series. We see that the approximations

decay as k moves away from the steady state k = 1, but that at each k the approxi-

mation is uniformly better as we increase the order of the approximation.

Figure 1: Errors with ordinary polynomial Taylor series
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2.4. Errors Using the Log-Log Change of Variables. Figure 2 displays the

Euler equation errors at various capital stocks k and for various orders of the log-log

approximation. We again see that the approximations decay as k moves away from

the steady state k = 1, but that at each k the approximation is uniformly better as

we increase the order of the approximation.

We can also compare the log-log approximations with the ordinary polynomial

approximations. For this problem, the log-log approximations do better than the

ordinary Taylor series. The difference in their first-order expansions is slight, but the

difference is substantial at order 4. Also, it is clear from Figures 1 and 2 that the

order 12 log-log approximation is excellent, implying that the Euler equation error is

indistinguishable from machine zero for k ∈ [0.6, 1.5].

Figure 2: Errors with log-log Taylor series
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Table 2: Ordinary versus log-log expansions

E∞(.5, 1.5)

Order Ordinary polynomial log-log

1 -1.25 -1.50

2 -1.50 -3.29

3 -1.72 -3.92

4 -1.92 -4.50

2.5. Errors Using Power-Power Changes of Variables. Wewill now examine

Taylor series using the power functions. We first look at the case where α = γ; we

call these α − α approximations. This implies that the consumption function is

approximated by

C (k)
.
= C (k∗)

(
1− η

1

(
1−

(
k

k∗

)α))1/α

where the elasticity of consumption at the steady state is

η
1
=

k∗C ′ (k∗)

C (k∗)

Figure 3 displays the errors from first-order α− α expansions.

Table 3 compares four different approximations. We first note that the ordinary

polynomial and log-log approximations are just special cases of the power function

approximations. Table 3 repeats the errors from Tables 1 and 2. We also display the

first-order approximation in those cases. We then found the best α−α approximation

by finding the minimum of the function in Figure 3. That happens at α = .306. Table

3 reports that the error is reduced to -4.03, as displayed in Figure 3, at α = .306.

Table 3 also displays the first-order approximation in that case.

The next to last row in Table 3 reports the best α− γ approximation; it reduces

the error by another third of an order of magnitude. However, it is unclear if it is

worth the effort to find this solution since the Euler equation error is not a smooth

function of (α, γ). Extensive search was necessary to find the global solution (if indeed

we did find it). For this problem, it would be less costly to increase the order of the

approximation to get that extra accuracy.
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Figure 3: Maximum error with α− α Taylor series

The other remarkable comparison is how well the power function COVs do relative

to ordinary methods. The last row of Table 3 repeats the results for the fourth-

order log-log expansion. Note that the first-order expansion with the best α − γ is

practically as good as the conventional fourth-order log-log expansion, and that the

best α − α COV is also nearly as good. The improvement is not just due to adding

an extra degree of freedom, but comes from a flexible ability to add the right kind of

nonlinearity to the problem.

Table 3: First-order approximations

(α, γ) E∞(.5, 1.5) Approximation

Ordinary polynomial (1, 1) -1.25 4/19 + 0.116(x− 1)

log-log (0, 0) -1.50 4x0.552/19

best α− α (0.306, 0.306) -4.03 (0.62 + .343 (x0.306 − 1))
3.268

best α− γ (0.277, 0.250) -4.40 (.677 + .338 (x0.277 − 1))
4

fourth-order log-log (0, 0) -4.50
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We next consider second-order expansions. We first examine the simple α − α

expansions. Figure 4 displays the graph of the Euler equation error over α between

-1 and 1. The results here are also striking. First, the log-log approximation is much

better than ordinary quadratic expansion. However, there are now two local minima

between the log and ordinary cases. Furthermore, both of these minima are about

two-orders of magnitude better than log-log second-order expansion.

Figure 4: Second-order α− α approximations

Table 4 reports the major results for second-order approximations. Again we see

that the optimal α − γ approximation is only slightly better than the best α − α

approximation.
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Table 4: Second-order approximations

(α, γ) E∞(.5, 1.5)

Ordinary polynomial (1, 1) -1.50

log-log (0, 0) -3.29

best α− α (0.0228, 0.0228) -5.21

best α− γ (0.01059, 0.00004) -5.33

In both cases we find that a simple one-dimensional search over various α − α

COVs produced substantially better approximations than either the regular or log-

log Taylor series. We also found that the global optimum in (α, γ) space added little

accuracy but added much to the computational cost of the algorithm. Therefore, it

appears that the best approach is to try some simple searches near the ordinary and

log-log cases and quit when the returns to further search appear to be diminishing.

Remember: the goal is to spend little effort to find something better than the common

expansions, not to expend much effort to find the absolute best COV.

Figures 5 and 6 display the graphs for α−α COVs used in third- and fourth-order

approximations.

Figure 5: Third-order α− α expansions
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Figure 6: Fourth-order α− α expansions

3. M���������
����� C�����
 �
 V�	�����


These ideas can be directly extended to the case of multivariate functions. Suppose

that x, y ∈ Rn. Then a multivariate change of variables is

y = Y (x)

x = X (y)

where Y is invertible over the range of x under consideration. A function f (x) can

be expressed in the forms

f (x) = g (Y (x))

g (y) = f (X (y))
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Suppose we want to approximate f in a neighborhood of x = a. Let b = Y (a). Then,

using tensor notation, the derivatives of g are

gα = fiX
i
α

gαβ = fijX
i
αX

j
β + fiX

i
αβ

gαβγ = fijkX
i
αX

j
βX

k
γ + fijX

i
αγX

j
β + fijX

i
αX

j
βγ

+fikX
k
γX

i
αβ + fiX

i
αβγ

= fijkX
i
αX

j
βX

k
γ + fij

(
X i

αγX
j
β +X i

αβX
j
γ +X i

βγX
j
α

)
+ fiX

i
αβγ

The Taylor series of g near y = b is

g (y)
.
= g (b) + gα (y

α
− bα)

+
1

2
gαβ (y

α
− bα)

(
yβ − bβ

)
+
1

6
gαβγ (y

α
− bα)

(
yβ − bβ

)
(yγ − bγ)

and the approximation for f near x = a is

f (x) = g (Y (x))
.
= g (b) + gα (b) (Y

α (x)− bα)

+
1

2
gαβ (b) (Y

α (x)− bα)
(
Y β (x)− bβ

)
+
1

6
gαβγ (b) (Y

α (x)− bα)
(
Y β (x)− bβ

)
(Y γ (x)− bγ)

More generally, we transform both the range and domain of f . That is, we find

h : R → R and Y : R → R such that

h (f (x)) = g (Y (x))

g (y) = h (f (X (y)))

The derivatives of g are

gα = hAf
A
i X

i
α

gαβ = hABf
B
j X

j
βf

A
ijX

i
α + hAf

A
ijX

j
βX

i
α + hAf

A
i X

i
αβ
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the Taylor series of g is the multivariate polynomial

gTay (b)
.
= g (b) + gα (y

α
− bα)

+
1

2
gαβ (y

α
− bα)

(
yβ − bβ

)
and the approximation of f is

f (x)
.
= h−1

(
gTay (Y (x))

)
Again,we see that the coefficients of the expansion of f in terms of the new variables

y are easily computed once we know the ordinary Taylor series for f .

Normally one would consider simple COVs where a variable yi depends on only

one component of x. In that case, the formulas above involve only a small amount of

computation, particularly for the first- and second-order expansions.

4. C�����
���

Perturbation methods are becoming increasingly useful in economic analysis. How-

ever, the marginal cost of computing higher-order terms can be rather high. This

paper shows how to better use the information produced by perturbation methods.

The key idea is to consider a variety of expansions which are all locally equivalent

but may differ globally, and then pick the one which does best in terms of minimizing

overall error. We have shown that this can increase accuracy by two orders of mag-

nitude in a simple problem. This shows that one can, at little computational cost,

use the information from perturbation methods to substantially improve the quality

of the final approximation.
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