
Problem Solving with Constraints and ProgrammingGert SmolkaDFKI and Universit�at des SaarlandesPostfach 15 11 50, Geb. 45D-66041 Saarbr�ucken, Germanysmolka@ps.uni-sb.dehttp://ps-www.dfki.uni-sb.de/�smolka/I sketch a general model of constraint-based problem solving that is not committed to a particularprogramming paradigm, show that Prolog in particular and logic programming in general donot provide a satisfactory framework for constraint programming, and outline how constraintprogramming is realized in Oz, a general-purpose language for symbolic processing.Since 1990, I have led a group at DFKI that is designing, implementing and apply-ing the concurrent constraint programming language Oz. Oz is a general-purposelanguage for symbolic processing. It is distinguished from other languages by pro-viding both for concurrent programming and constrained-based problem solving.An Oz program can create any number of concurrent agents, each equipped withits own inference engine for constraint-based reasoning.An e�cient public domain implementation of Oz has been released by DFKI inJanuary 1995, and the language is now in world-wide use for research and edu-cational purposes. The constraint facilities of Oz 1 are experimental. This haschanged in Oz 2, which provides fully developed constraint facilities for solvingcombinatorial problems over integers (i.e, scheduling). We expect the beta releaseof the DFKI Oz 2 system for early 1997.Since 1995, SICS has joined DFKI in developing and promoting Oz. We havestarted an ambitious joint project to design and implement a distributed version ofOz. Other projects at DFKI and SICS explore the use of Oz for scheduling, naturallanguage processing, constrained-based planning, con�guration, and multi-agentsystems.In the following, I sketch a general model of constraint-based problem solvingthat is not committed to a particular programming paradigm. I will then arguewhy programming is needed and consider which features a programming languageimplementing the model should o�er. From that it will become clear that Prolog inPermission to make digital or hard copies of part or all of this work for personal or classroomuse isgrantedwithout fee provided that copies are not made or distributed for pro�t or direct commercialadvantage and that copies show this notice on the �rst page or initial screen of a display alongwith the full citation. Copyrights for components of this work owned by others than ACM mustbe honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post onservers, to redistribute to lists, or to use any component of this work in other works, requires priorspeci�c permission and/or a fee. Permissions may be requested from Publications Dept, ACMInc., 1515 Broadway, New York, NY 10036 USA, fax +1 (212) 869-0481, or permissions@acm.org.c
ACM, 1996. ACM Computing Surveys Volume 28, Number 4es,http://www.acm.org/pubs/citations/journals/surveys/1996-28-4es/a75-smolka/.



2 � Gert Smolkaparticular and logic programming in general do not provide a satisfactory frameworkfor constraint programming (although they have been good starting points for thedevelopment of constraint programming). The discussion will outline the mainideas of the way constraint programming is realized in Oz.1. WHAT IS CONSTRAINT PROGRAMMING?Constraint programming stands for a wide spectrum of software technology thatis characterized by embedding computation with constraints into a programminglanguage. One area where the constraint programming approach has been partic-ularly successful is solving combinatorial problems over integers (e.g., scheduling).Another successful area is natural-language processing (where constraint program-ming in fact originated). Here the constrained variables range over feature treesrather than integers. A third and rather di�erent area related to constraint pro-gramming is the design of high-level concurrent programming languages, which takethe notion of logic variable and constraint store as a simple and powerful means toprovide for communication and synchronization of concurrent computation.Historically, constraint programming grew out of the idea of combining logicprogramming as realized in Prolog with constraint-based problem-solving methodsoriginating in arti�cial intelligence, operations research, and computational logic.Three languages pioneering this combination in the 1980s were CHIP (constraintsover integers and rationals), Prolog III (constraints over rationals and in�nite trees)and LOGIN (constraints over feature trees). Taking Prolog as the programminglanguage was a natural choice since it provides three essentials of constraint pro-gramming: search, logic variables, and a well-de�ned relationship between compu-tation and predicate logic. No other programming model provided these crucialfeatures.However, it has become clear that Prolog is neither the only possible nor a fullysatisfactory platform for constraint programming. Ilog's Solver is a commerciallysuccessful C++ library providing constraint programming over integers. Oz isa concurrent constraint language that integrates constraint computation into aframework much richer than logic programming.2. PROBLEM SOLVING WITH CONSTRAINTSI now sketch what I think is the basic method underlying constraint-based problemsolving. At this level of abstraction there is no immediate need for programmingand hence no commitment to a particular programming model. Why programmingis needed is discussed in the next section.To start with, we assume a �xed �rst-order structure and call the formulas overits signature constraints. For di�erent applications we may have di�erent structureswith di�erent constraints.A problem must be represented as a set of constraints such that the solutions ofthe constraints in the structure are the solutions of the problem. To solve the prob-lem, we need a method that computes the solutions of the given set of constraints.For reasons of computational feasibility, we are not interested in a fully automaticmethod. Rather, we direct the inference engine implementing the method with ad-ditional operational information speci�ed together with the constraints representingthe problem.



Problem Solving with Constraints and Programming � 3For computational reasons, we distinguish for each constraint structure betweenbasic constraints and nonbasic constraints. For basic constraints we require theexistence of e�cient and incremental methods for checking satis�ability and en-tailment. We also require that basic constraints be closed under conjunction andexistential quanti�cation.A set of constraints is solved by a process that transfers information from non-basic constraints to basic constraints. To �nd one solution, the process will exhibitone satis�able basic constraint that entails the initial constraint set. To �nd allsolutions, the process will exhibit �nitely many satis�able basic constraints whosedisjunction is equivalent to the initial constraint set. Obviously, the process trans-forms implicit information stated by nonbasic constraints into explicit informationstated by basic constraints.Nonbasic constraints are implemented as propagators. A propagator implementsa function that maps basic constraints to one of four possible answers: succeeded,failed, no propagation possible, and advance to a basic constraintD. More precisely,the answer a propagator for a nonbasic constraint C yields for a satis�able basicconstraint B must satisfy the following conditions:(1) If the answer is \succeeded", then B must entail C.(2) If the answer is \failed", then B ^C must be unsatis�able.(3) If the answer is \advance to D", then D must be a basic constraint that isentailed by B ^C, that entails B, and that is not entailed by B.(4) If B determines unique values for all free variables of C, then the answer mustbe either \succeeded" or \failed".The basic computational setup employed by the method for constraint-basedproblem solving is a space consisting of a number of propagators connected to aconstraint store: Propagator . . . Propagator\ /Constraint StoreThe constraint store is a satis�able basic constraint. Computation advances byapplying propagators to the constraint store that do not yield the answer \nopropagation possible". If the answer of a propagator is(1) \succeeded", the propagator is deleted.(2) \failed", then computation stops since the set of constraints corresponding tothe space is unsatis�able.(3) \advance to D", the constraint store is updated to D.Certain assumptions on the propagators ensure that the constraint propagationprocess terminates with a constraint store that is unique up to logic equivalence.In practice, application of a propagator typically has polynomial-time complexity.If the constraint-propagation process terminates with a failed propagator or withno propagator left, the solution method has done its job. Otherwise, a distributionstep is necessary. A distribution step corresponds to an exhaustive case analysis.For a distribution step, we choose a constraint C and proceed from the unsolvedspace to two new spaces, the �rst obtained by adding a propagator for C and



4 � Gert Smolkathe second obtained by adding a propagator for :C. If the constraint C is wellchosen, the two new spaces can proceed by constraint propagation. By iteratingconstraint propagation with constraint distribution, we obtain a search tree. If weare searching for just one solution and a solution in fact exists, there is no need toexplore the full search tree. Rather, we are interested in heuristics telling us whichalternative to explore next.The art of constraint programming consists in using the method in a way thatleads to small search trees or explores only few nodes of the search tree in case onlyone solution is needed. There are three basic techniques for avoiding combinatorialexplosion:(1) Have as much constraint propagation as possible. This means choosing the rightconstraint representation of the problem, choosing the right propagators for thenonbasic constraints, and �nding redundant constraints for which additionalpropagators will increase propagation.(2) Find a smart distribution strategy for choosing the constraints needed for dis-tribution steps. The size of search trees depends very much on the distributionstrategy employed. A smart distribution strategy will carefully analyze theconstraint store and cook up a constraint expressing a decision as strong aspossible.(3) If only one solution is needed, �nd good heuristics to decide which open nodeof the search tree should be explored next.3. WHY PROGRAMMING IS NEEDEDWe now discuss the most important reasons why the solution method outlined aboveshould be embedded into a programming language. For each reason we mentionthe particular features the programming language should have.3.1 CompilersGiven the data specifying an instance of a problem, one needs a compiler that gen-erates the initial propagators and constraint store representing the given instance ofthe problem. Obtaining the initial constraint representation from the data is oftena complex process that requires nontrivial symbolic programming. The compiler infact implements a model for the problem to be solved. Ideally, one would like towrite the compiler in a higher-order language with rich abstraction facilities. Forthis a language like Scheme is better suited than Prolog.3.2 DistributorsOne needs a program called distributor to implement the distribution strategy. Thedistributor is invoked when a distribution step is necessary. It analyzes the currentconstraint store and then generates the constraint to distribute with. For someproblem (e.g., scheduling), nontrivial distributors are required. The fact that dis-tributors need �rst-class access to the current state of the constraint store con
ictswith the philosophy of logic programming.



Problem Solving with Constraints and Programming � 53.3 PropagatorsNew applications sometimes require new propagators implementing certain con-straints with nontrivial algorithms. Sometimes these algorithms come from oper-ations research. For e�ciency, one would like to implement these algorithms in ahardware-oriented language such as C. A high-level constraint programming systemshould provide a simple interface that makes it possible to import new propagators.3.4 Inference EnginesDi�erent applications require di�erent inference engines. One needs inference en-gines that search for one, for all, or for a best solution. It may be necessary tostart with one solution and obtain further solutions when needed. It may also benecessary to cancel a search process if it does not deliver in time. Moreover, it maybe desirable to explore di�erent subtrees of the search tree in parallel, for instance,by delegating their exploration to di�erent computers on a local area network. Forsome applications (e.g., constraint-based chart parsing or type inference), special-ized inference engines rather di�erent from the ones outlined here are needed. Thismeans that a constraint programming language should not come with a few built-ininference engines but rather should provide the right primitives to program infer-ence engines at a high level. This is again in con
ict with the philosophy of logicprogramming, since primitives for programming inference engines are inherentlyoperational.3.5 Need for ExperimentationDeveloping constraint-based problem solvers requires a lot of experimentation. Forthis reason one would like to have a high-level and interactive programming systemproviding for rapid prototyping. To understand a problem and a solver, tools arerequired that visualize the search tree and provide information about the constraintpropagation obtained.4. A FEW WORDS ABOUT OZOz was designed to meet the requirements mentioned above. It combines logicvariables and constraints with �rst-class procedures and rich possibilities for con-structing programming abstractions. Rather than providing some built-in inferenceengines, it comes with a few primitives (e.g., �rst-class spaces) from which a richclass of inference engines can be constructed. Standard inference engines are ofcourse prede�ned. The DFKI Oz System provides a C++ interface through whichnew propagators can be imported. All prede�ned propagators are provided throughthis interface. Oz makes it straightforward to organize a program into concurrentagents, some of them performing constraint-based reasoning using encapsulated in-ference engines. See http://ps-www.dfki.uni-sb.de/oz/ for more informationabout Oz.


