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ABSTRACT 
Mobile agents have been proposed as a novel and useful 
paradigm for designing distributed applications. Mobile 
agent based distributed applications are specially suited 
for mobile computing environments involving different 
types of devices because of better bandwidth 
conservation, support for disconnected operations, easier 
device/user-specific customization etc. As a mobile agent 
migrates from machine to machine in a heterogeneous 
network, the environment in which it operates changes 
and it may encounter unexpected events like faults etc. 
The ability to adapt to dynamic environment and 
unexpected events is a key issue for mobile agents.  In 
this paper, we first present a model of adaptive mobile 
agents. We then discuss the implementation of a task 
execution system based on adaptive mobile agents and 
present results to show that adaptation can be very useful 
for mobile agent based distributed applications. 
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1   INTRODUCTION 
 
Mobile agents have been proposed as a novel and useful 
paradigm for designing distributed applications. A 
mobile agent is a program that autonomously migrates 
from machine to machine in a heterogeneous network, 
interacting with services at each machine to perform 
some desired task on behalf of a user. An agent can, 
under its own control, suspend its execution, migrate to a 
new machine, and continue execution at the new machine 
from the point it left off. A distributed application can be 
viewed as a collection of mobile agents that 
independently move around in a network and 
communicate with each other to achieve some predefined 
goals. 
 
Implementing distributed applications using mobile 
agents can have several advantages [3]:  
• Bandwidth conservation: In scenarios where a 

client is connected by a low bandwidth link to one or 

more servers from which it needs to download and 
then process a large amount of data, it is 
advantageous to send the processing code in a 
mobile agent to the servers rather than download the 
large volume of data over a low bandwidth link. The 
processing code can operate on the data at the 
servers and then just send the final results back to 
the client.  

• Support for disconnected operations: 
Conventional distributed systems communicating 
with RPC like mechanisms require a connection to 
be maintained during a client server interaction. 
However, in mobile computing applications, a 
mobile client may not have a continuous connection 
because of noisy links or power conservation 
reasons. In such scenarios, mobile agents can be 
launched from the client to perform the desired 
services and the user can disconnect while the 
services are being performed. The results can be sent 
back to the user when reconnection occurs. 

• Better customization: A server may want to 
provide customized services to a client based on the 
capabilities of the client (for ex., different device 
types) or user profiles. An agent with the 
customization code can be supplied by the client 
itself which can move to the server to customize the 
service for the client.  The server just needs to 
provide an interface to the services. 

• Dynamic deployments: Software services can be 
easily deployed by administrators dynamically by 
launching mobile code from a central system that 
migrate and reside at different servers, rather than 
installing copies of the software at all servers 
individually. 

• Load balancing: Mobile agent based systems 
provide a mechanism for load balancing.  Agents can 
clone themselves to share the load and can migrate 
from an overloaded machine to an underloaded 
machine autonomously.  
 

The number of  different types of devices that are 
connecting to the web  is growing rapidly and it is 
expected that this number will grow even more in future 



with a myriad of household and handheld devices coming 
into the market. These devices are expected to have low 
computing and storage capabilities, and will connect to a 
host of services through low bandwidth wireless links. 
Given the heterogeneous devices and their capabilities, 
mobile agents will be a strong contender as a general 
framework for designing distributed applications because 
of the above advantages.  Mobile agents have already 
been used to build many distributed applications by 
various research groups, including information retrieval, 
collaborative work [9], resource allocation [8], network 
routing [6], brokerage applications, auction sites etc. 
 
Since a mobile agent roams from machine to machine in 
order to achieve its objectives, the environment in which 
it has to execute may change considerably. Examples of 
such changing environment parameters can be change in 
CPU load, available network bandwidth, fault conditions, 
availability of other required resources etc. The 
environment is also dynamic and changes with time. For 
example, the CPU load of a machine can change while an 
agent is executing there because of arrival of other jobs 
from outside. Or the agent may move to a part of the 
network with low network bandwidth. In addition to 
changing environments, a mobile agent may also have to 
react effectively to unexpected events. For example, 
consider an application in which users launch mobile 
agents from handheld devices to search for items meeting 
certain criteria in different auction sites. The agents 
inform the user if any such item is found. The user then 
bids for the item of his choice. A mobile agent, while 
visiting the auction sites, may find an item that is highly 
suited to the user’s needs and is being bid aggressively 
by agents of other users. The link back to the user may be 
temporarily down and trying to inform the user may take 
a long time, by which time the item may be gone.  
 
In order to work in changing environments and react to 
unexpected events, a mobile agent may need to adapt to 
the current environment  in order to achieve its goals 
correctly and/or efficiently. As an example, consider a 
mobile agent launched  to search and retrieve images 
matching a particular criteria from image databases on 
the web. Under normal circumstances, the agent will 
download the images found to the user. However, if the 
agent determines that the network path back to the client 
is noisy and poor at this point of time, it may decide to 
send only a low resolution image (if available) to the user 
now, leaving the full retrieval for later. As another 
example of adaptation, in the auction-bidding example 
above, the agent may autonomously decide (based on 
various possible factors including degree of autonomy 
granted by user, bidding history and financial status of 
the user etc.) to bid for the item anyway on behalf of the 
user without informing the user first. The ability to adapt 
to changing environments and unexpected events  will be 
a key factor in the design of mobile agent based systems. 
  
In this paper, we first present a model of an adaptive 
mobile agent. The model specifies the components of an 
adaptive mobile agent and their behaviors with respect to 
the current environment. The model is based on earlier 

work by Goodwin [2] on modeling robotic agents and on 
work by Luck et. al. [5] on modeling autonomy of an 
agent, and our work borrows some concepts and 
terminology from them. We then describe the design of 
an adaptive mobile agent based task scheduling system 
that we are currently implementing.  The task scheduling 
system shows the feasibility and advantages of 
integrating adaptation into mobile agents. The 
organization of the rest of this paper is as follows. 
Section 2 introduces the model of an adaptive mobile 
agent. Section 3 describes the details of the task 
scheduling system. Section 4 discusses related works, 
Finally, section 5 contains some concluding remarks and 
scope for future work. 
 
2   MODELING AN ADAPTIVE MOBILE AGENT 

 
An agent can be viewed as satisfying an ordered set of 
goals to achieve some overall objective. The agent takes 
a sequence of actions in order to satis fy the next goal in 
the set. Adaptation can be viewed as changing the goal 
set. The effect of the change can be a new set of actions 
to achieve the same overall objective as before, or it may 
even result in a new overall objective if the original 
objective cannot be achieved anymore in the current 
environment.  
 
In our model, a mobile agent consists of two 
components, a Mechanism  and an Adapter. The 
Mechanism is the interface of the mobile agent to the 
environment. The Mechanism contains sensors that 
periodically sense the environment parameters and report 
their findings to the Mechanism. It also contains effectors 
that can take actions to change the environment the agent 
is in. The Adapter is the component that decides whether 
adaptation is necessary and if yes, how best to adapt to 
the current environment. The Mechanism senses the 
environment through the sensors, analyses them, and 
creates a view of the environment called a percept. The 
percept is passed on to the Adapter, which uses it to 
decide whether adaptation is necessary or not. If 
adaptation is needed, a new set of goals is passed on to 
the mechanism, which then transforms the set of goals 
into a set of actions to be carried out, and then carries out 
the actions. The effectors are used to make any 
environment change specified in an action. Figure 1 
shows the basic structure of an adaptive mobile agent and 
their interactions. We next discuss each component in 
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Figure 1. Components of a mobile agent  



 

more details.  
 
2.1   THE MECHANISM 
 
The state of the Mechanism can be specified by a 3-tuple 
<S, L, T>.  S is the behavioral state of the Mechanism 
which identifies what the Mechanism is doing currently, 
L is the current location of the agent, and T is the 
duration the Mechanism has spent in its current  state.  
The state variable S can take one of three possible values: 
extractGoal, executeCommand, and eval.  In the 
extractGoal behavioral state,  the Mechanism picks up 
the current goal to be executed, and generates the set of 
commands for it. In the executeCommand behavioral 
state, the generated commands are carried out. In the eval 
behavioral state, the Mechanism senses the environment 
and  forms a current view of the environment to be 
passed on to the Adapter. 
 
Figure 2 (shown at the end of the paper) shows the 
different states the Mechanism can be in and the possible 
state transitions. The Mechanism normally rotates 
between the Normal_1=<extractGoal, L, T> and 
Normal_2=<executeCommand, L, T>  states, where L 
contains the current location of the agent, and T is reset 
to 0 every time a state transition occurs. The state 
Normal_1 is entered initially on receiving an ordered set 
of goals from the adapter. The commands for the next 
goal in the ordered list is  generated, and a transition to 
state Normal_2 occurs. In state Normal_2, the commands 
are executed, and transition occurs back to state 
Normal_1 in order to generate the commands for the next 
goal in the list of goals. The process continues until all 
the goals in the list are executed. However, the 
Mechanism may go to the Eval_Env =<eval, L, T> state 
from any of the Normal_1 or Normal_2 states if any of 
the following happens: a timeout, a fault, or an explicit 
command in the application code itself. We will refer to 
the third cause as Coded Adaptation, since the 
application code asks for the environment to be sensed 
explicitly possibly for adaptation reasons. A timeout can 
happen if an action is not carried out within a specified 
time in the Normal_2 state, which can be detected by the 
T component of the Mechanism state. This may indicate 
changed environment and may force the agent to sense 
the environment and reevaluate if adaptation is 
necessary.  In the Eval_Env state, the environment is 
sensed and a percept is sent to the Adapter to see if any 
adaptation is necessary. Note that the environment can 
also be sensed in the Normal_1 and Normal_2 states if 
necessary, but in those states, the values sensed are used 
internally and no interaction with the Adapter occurs. 
 
2.2   THE ADAPTER 
 
 The Adapter state consists of a tuple <S, T>, where S is 
the behavioral state which can only take the value adapt, 
and T is the time spent in the adapt state. Thus the state 
diagram of the Adapter is very simple and is shown in 
Figure 2.  
 

In order to describe how the adaptation process works, 
we first need a few definitions. An attribute is a 
perceivable feature of the environment. A percept is a set 
of attributes. Thus, a percept is nothing but a view of the 
environment.  An adaptation method is a single mapping 
from a percept to a set of goals. An adaptation policy is a 
set of adaptation methods. Thus, the adaptation policy 
specifies the possible ways in which the mobile agent 
adapts to different environments.  
 
Given an environment, there may be different ways an 
agent can adapt. Thus some type of ranking of the 
adaptation methods in the adaptation policy is necessary. 
This is achieved by a motivation degree function.  
Motivation was defined by Kunda [4] as “any desire or 
preference that that can lead to the generation and 
adoption of goals and which affects the outcome of the 
reasoning or behavioral task intended to satisfy the goal”.  
We associate with each adaptation method a motivation 
degree, which is the probability of success in achieving 
the final goal if the set of goals corresponding to the 
adaptation method is selected as the current set of goals. 
The Adapter then selects the adaptation method with the 
highest motivation degree corresponding to the current 
environment. Note that the set of adaptation methods (the 
adaptation policy) and the motivation degree funcion can 
be hardcoded by the user or can be learnt dynamically 
from history. Usually it will be a combination of both 
where the user specifies an adaptation policy and a 
motivation degree function, which then can be modified 
dynamically as well. 
 
Thus, on receiving a percept from the Mechanism, the 
Adapter goes through the set of adaptation methods, 
looking for the ones that match the percept. The one with 
the highest motivation degree is then chosen, and the 
current set of goals is modified to be the one 
corresponding to that adaptation method. The new goal 
set is passed to the Mechanism, which then generates and 
executes commands for the set of goals. If no adaptation 
method matches the current environment, adaptation is 
deemed unnecessary and no change to the goal set 
occurs. Thus, no adaptation can also be viewed as a 
special adaptation method. 
 
2.3   THE AGENT STATE 
 
The state of the mobile agent is the 3-tuple <M, A, App>, 
where M is the Mechanism state, A is the Adaptor state, 
and App is the Application-specific state for the mobile 
agent. Thus, an adaptive mobile agent can be completely 
described at any point of time by its state, the adaptation 
policy, and the motivation degree function. 
 

3   CASE STUDY: A TASK SCHEDULING 
SYSTEM 

 
We implemented a  simple task execution system based 
on adaptive mobile agents. The input to the system is a 
task graph for a job consisting of multiple tasks. Each 
individual task has some resource requirements, all of 
which have to be satisfied before the task can be started. 



A task also has a given duration for which the task runs. 
The task graph is to be executed on a heterogeneous 
network of servers, each of which has a (possibly 
different) set of resources. The set of servers and the 
resources they have are static, and this information is 
available at all servers. However, the load conditions at 
the servers can vary with time. The aim of the system is 
to complete all the tasks on the network as fast as 
possible subject to dependency and resource constraints. 
 
The basic execution process proceeds as follows. A task 
is executed by a mobile agent. A single mobile agent 
may execute multiple tasks or may clone itself to handoff 
some tasks to the cloned agents to be done in parallel. A 
mobile agent executing a task migrates to a server that 
has the resources that are required by the task, and tries 
to acquire all the necessary resources.  If the resources 
are acquired immediately, the task is executed. 
Otherwise, the lo ad condition of the server is sensed to 
get an idea about the time the task may have to wait to 
acquire all resources. The agent relies on history to make 
this adaptation decision. The agent looks at the average 
waiting time of tasks with similar resource requirement 
in the recent past. If the migration time to a remote server 
(with the required resources), plus the expected waiting 
time at that server is less than the average waiting time at 
the current server, the agent decides to migrate to the 
remote server. If the average waiting time is less, the 
agent decides to wait and retry to acquire the resources at 
the current server itself for a duration equal to the 
expected waiting time. If the resources are still not 
acquired at the end of this duration, a timeout occurs, 
forcing the agent to sense the current environment (the 
expected waiting time) again and make an adaptation 
decision whether to migrate or not. The process is 
repeated till all the tasks are completed. The expected 
waiting time at the current server and at the remote server 
is provided by an underlying environment sensing 
system. In our implementation, we have implemented a 
simulator that simulates this environment sensing system. 
The migration time between servers is static and fixed a-
priori in the current implementation.  The details of the 
implementation are omitted here due to space constraints. 
 
3.2   EXPERIMENTAL RESULTS  
 
We implemented the task execution system following the 
model we proposed. The agent framework for creation, 
migration, and cloning of mobile agents is also 
implemented by us. There are 3 servers, N1, N2, and N3 
in our setup, with zero or more copies of three resources 
r1, r2, and r3. The load conditions of the servers are 
varied  in the simulator. Each server can be underloaded, 
normally -loaded, or overloaded. For a fixed resource 
structure and load conditions of the servers, we executed 
a number of task graphs in the system, varying the 
migration time between servers for each task graph. We 
measured the number of migrat ions and the completion 
time of the task graph in each case. The tables below 
show some of the results.  The task graphs, along with 
the resource requirement of each task, are generated 
randomly. 

Table 1 shows the behavior of the system when all 
required resources for any task in the task graphs are 
available at all the servers, all three servers are 
overloaded, and the migration time between servers is 
very high. As expected, the number of migrations is 0 
(since the migration time is very high), all tasks finish at 
the same server (the server at which the job is launched), 
and the completion time is high since the server is 
overloaded. The time is indicative of the cost of 
executing the job at a single overloaded server.  
 

Task 
Graph 

No. of 
Tasks 

No. of 
Migrations 

Completion 
Time (sec.) 

T1 35 0 232 
T2 39 0 430 
T3 40 0 281 

Table 1. All servers overloaded with same resources 
and  high migration time 

 
Table 2 shows the case when everything is same as in the 
case in Table 1, except that  all the servers are 
underloaded.  The high migration time again prevents 
any migration to remote server and all tasks are executed 
at the same server. The time is much lower because the 
server is underloaded. This time is indicative of the cost 
of executing the job at a single underloaded server. 
 

Task 
Graph 

No. of 
Tasks 

No. of 
Migrations 

Completion 
Time (sec.) 

T1 35 0 90 
T2 39 0 151 
T3 40 0 93 

Table 2. All servers underloaded with same resources 
and high migration time 

 
Table 3 (shown at the end of the paper) shows the case 
when all resources are again available at all the servers. 
However, now servers N1 and N2 are overloaded, while 
server N3 is underloaded. The job is launched at server 
N1.  The migration time between servers is varied from 
100ms to 300,000ms. As is expected, we see that for low 
migration times, most of the tasks migrate to the 
underloaded server N3 due to adaptation. The number of 
such migrations due to adaptations decreases as the 
migration time increases, as the higher cost of moving 
the task to a remote server makes it less advantageous to 
migrate. The completion times of the task graphs are in 
between those in Table 1 and 2.  
 
Table 4 (shown at the end of the paper) shows results for 
a different scenario.  The servers N1, N2, and N3 now 
have different resources. N1 has 3 copies of r1, 3 copies 
of r2, and 3 copies of r3; N2 has 1 copy of r1, 2 copies of 
r2, and 3 copies of r3; and N3 has 2 copies of r1, 2 copies 
of r2, and 3 copies of r3. Servers N1 and N2 are 
overloaded and  server N3 is underloaded. The job is 
initially launched at N1. The migration time is again 
varied from 100ms to 300,000 ms. Now a task may 
migrate because the current server does not have all the 
resources that it needs, or it may migrate due to 
adaptation. The first type of migration is unavoidable, 
even with very high migration time. As expected, the 



number of migrations due to adaptation decreases as the 
migration time increases. The completion time of the 
tasks compare favorably with those in Table 2. 
 
An analysis of the system logs shows some interesting 
points. First, for low migration times, it is often found 
that an agent at the beginning migrates from a server X to 
another server Y and back. This is a useless migration. 
This happens because initially the agent has no 
knowledge of the average waiting time at the remote 
server Y, and optimistically assumes it to be 0. However, 
on arrival at Y, if Y is overloaded, it may find that the 
expected waiting time at Y is much larger, and it was 
better to move back to X. This extra migrations for a 
number of tasks add an unnecessary component to the 
completion time of the job. We are planning to 
implement a system wide dynamic resource monitoring 
system that can provide up-to-date information about the 
load condition of the remote servers. This is expected to 
significantly improve the performance. 
 
The second point we noted from our analysis is that in 
most cases, when the simulator reported an expected 
waiting time of  w to an agent, the agent did acquire the 
required resources within that time. However, there are 
quite  a few cases where the agent waited much less or 
much more to acquire the resources. This is because of 
the simple scheduling policy we used for the resources. 
An agent requiring a set of resources simply tries to 
acquire all the resources within a lock; if it acquires all 
the resources, it goes ahead and executes the task, else it 
just retries (if it decides not to migrate). Thus, there is no 
fair scheduling policy for allocation of the resources. An 
agent may get the resource within a very small number of 
tries even at an overloaded server, or it may have to wait 
for a long (longer than the expected waiting time) time 
even at an underloaded server. Implementing a fair, 
bounded -wait scheduling policy can circumvent this 
problem. 
 

4   RELATED WORKS 
 
Although adaptation has been studied in the context of 
intelligent agents in AI [10], there has been little work in 
modeling adaptive mobile agents. Goodwin [2] presents a 
model of a robotic agent and the environment in which it 
operates. The concept of a Mechanism to interact with 
the environment is proposed by them. Our model 
borrows some concepts and terminology from them. 
However, their model does not consider adaptation.  
Luck and d’Inverno [5] first uses the idea of motivation 
as defined by Kunda [4] to define autonomy of an agent. 
Their work is also restricted to specification of static 
agents and does not model adaptation explicitly. Decker 
et. al. [1] describe a financial portfolio management 
system based on adaptive agents that use cloning for 
query load distribution as the principal form of 
adaptation.  Though their work does not explicitly use 
mobile agents, they mention how mobile agent 

frameworks can be used to send cloned agents to another 
processor.  

5   CONCLUSION 
 
In this paper, we have  presented a  model of an adaptive 
mobile agent. We have also presented preliminary results 
for a task scheduling system using adaptive mobile 
agents to show that integrating adaptation into mobile 
agents can be beneficial in distributed applications. The 
current implemention is simple, and can be improved in 
many ways. This includes dynamic resource discovery 
and monitoring which will allow for better adaptation to 
improve performance, better resource scheduling policies 
for guaranteeing bounded wait time of tasks, and better 
adaptation policies. The issue of bounded wait time is 
particularly important if the system is to be applied to 
real time tasks with deadlines. We are also looking at 
ways to model the learning of new adaptation methods 
and dynamically changing the motivation degree function 
based on system history.  
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Task Graph No. of 
Tasks 

Migration 
Time (ms) 

No. of 
Migrations 

Tasks completed 
at N3 

Completion 
Time (sec.) 

100 36 23 110 
500 22 31 80 

1000 15 26 82 
2500 5 33 99 

 
 

T1 

 
 

35 
 

300,000 0 0 326 
100 35 33 83 
500 34 33 101 

1000 20 31 102 
2500 13 35 143 

 
 

T2 

 
 

39 

300,000 0 0 477 
100 22 30 79 
500 27 29 99 

1000 19 35 116 
2500 13 30 130 

 
 

T3 

 
 

40 

300,000 0 0 356 
 

Table 3. N1,N2 overloaded, N3 underloaded. All servers have same resources 
 
 

Task Graph No. of 
Tasks 

Migration 
Time (ms) 

No. of 
Migrations 

Migrations due 
to Adaptation 

Completion 
Time (ms) 

100 44 41 77 
500 38 35 90 

1000 39 36 107 
2500 11 7 104 

 
 

T1 

 
 

35 

300,000 9 0 866 
100 26 13 145 
500 33 21 183 

1000 31 18 231 
2500 23 12 204 

 
 

T2 

 
 

39 

300,000 8 0 742 
100 44 42 89 
500 38 37 93 

1000 37 35 99 
2500 16 14 140 

 
 

T3 

 
 

40 

300,000 5 0 746 
 

Table 4. N1,N2 overloaded, N3 underloaded. Servers have different resources 

Normal_1 Normal_2 

Eval_Env 

Adapt 

Command 

Return 

Timeout 
Timeout 

Fault Fault 

   Coded 
Adaptation 

Send percepts to Adapter 

Send modified goals    
     to Mechanism 

Adapter Mechanism 

Figure 2: State diagram of an adaptive agent 


