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One may wonder, [...] how complex organisms evolve atall. They seem to have so many genes, so many multipleor pleiotropic e�ects of any one gene, so many possibil-ities for lethal mutations in early development, and allsorts of problems due to their long development. J. T.Bonner, 1988, p173.Abstract: The problem of complex adaptations is studied in two largely discon-nected research traditions: evolutionary biology and evolutionary computer science.This paper summarizes the results from both areas and compares their implica-tions. In evolutionary computer science it was found that the Darwinian processof mutation, recombination and selection is not universally e�ective in improvingcomplex systems like computer programs or chip designs. For adaptation to occur,these systems must possess "evolvability", i.e. the ability of random variations tosometimes produce improvement. It was found that evolvability critically dependson the way genetic variation maps onto phenotypic variation, an issue known as therepresentation problem. The genotype-phenotype map determines the variability ofcharacters, which is the propensity to vary. Variability needs to be distinguishedfrom variation, which are the actually realized di�erences between individuals. Thegenotype-phenotype map is the common theme underlying such varied biologicalphenomena as genetic canalization, developmental constraints, biological versatil-ity, developmental dissociability, morphological integration, and many more. Forevolutionary biology the representation problem has important implications: howis it that extant species acquired a genotype-phenotype map which allows improve-ment by mutation and selection? Is the genotype-phenotype map able to change inevolution? What are the selective forces, if any, that shape the genotype-phenotypemap? We propose that the genotype-phenotype map can evolve by two main routes:epistatic mutations, or the creation of new genes. A common result for organismicdesign is modularity. By modularity we mean a genotype-phenotype map in whichthere are few pleiotropic e�ects among characters serving di�erent functions, withpleiotropic e�ects falling mainly among characters that are part of a single func-tional complex. Such a design is expected to improve evolvability by limiting theinterference between the adaptation of di�erent functions. Several population ge-netic models are reviewed that are intended to explain the evolutionary origin of amodular design. While our current knowledge is insu�cient to assess the plausibil-ity of these models, they form the beginning of a framework for understanding theevolution of the genotype-phenotype map.
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1 IntroductionIn a remarkable and widely reported study, Halder et al. (1995) succeeded in gettingextra eyes to sprout on the wings, legs, and antennae of Drosophila by targeted mis-expression of Drosophila "eyeless" gene cDNA. The out-of-place eyes contain theentire eye structures, including cornea, bristles, pigment and photoreceptors, andare electrically responsive to light, prompting Halder et al. to suggest that eyelessis a "master control" for the complex formation of the insect eye.Why is eyeless so remarkable? Because it is a single signal that induces thewhole complex process of eye construction, and because this process is carried outalmost 
awlessly despite it occurring in the wrong tissues of the 
y's body. All ofthe functionally relevant structures stay together in their novel locations. The eye,which is a module of organismal function, is found also to have a modular geneticrepresentation. By "modular representation" we mean that changing the expressionof "eyeless" preserves all the relationships between the functionally interdependentparts of the eye, while changing only the eye's relationship to the rest of the 
y'sbody.What does evolutionary theory have to say about the existence of genes suchas eyeless? Eyeless brings us to a level of phenomenon that is distinct from adap-tation itself. It concerns the variational properties of the genome | the nature ofphenotypic variation produced by genetic variation. Modularity is one example of avariational property.The variational properties of the phenotype are fundamental to its evolutionby natural selection. Adaptation requires that genetic change be able to produceadaptive phenotypic changes. Whether or not adaptive changes can be produceddepends critically on the genotype-phenotype map. This is the underlying phe-nomenon being studied under many di�erent guises in evolutionary biology, includ-ing such areas as dissociability in development, morphological integration, develop-mental constraints, biological versatility, 
uctuating asymmetry, the Baldwin e�ect,epistasis, canalization, heterochrony, genetic variance/covariance matrices, identi�-cation of quantitative trait loci, and the adaptive landscape. These studies haveconcerned themselves with either de�ning or characterizing variational properties ofthe phenotype, considering their e�ects on evolution, or considering the evolution ofthe properties themselves. Yet despite its ubiquity in evolutionary phenomena, thegenotype-phenotype map has not been seen as a unifying conceptual framework forthese studies.Levinton (1988) provides a possible reason for this state of the �eld when hewrites, Evolutionary biologists have been mainly concerned with the fateof variability in populations, not the generation of variability. ...Whatever the reason, the time has come to reemphasize the studyof the origin of variation.We agree with Levinton (and Fontana and Buss, 1994) that, despite its inherentdi�culties, the study of the origin of variation is fundamental and should be pursued.3



In this essay, we will argue that: 1) Variational properties of the phenotype are alevel of phenomenon distinct from phenotypic adaptation; 2) they are subject todistinct evolutionary dynamics; 3) they have been the subject of a wide variety ofstudies in evolutionary biology, and now, evolutionary computer science; 4) thesedisparate studies can become seen as parts of a common research project, once aconceptual framework is developed that more clearly shows the relationship betweenthem.2 Evolutionary ComputationThe study of the genotype-phenotype map has recently been spurred by a newdevelopment: the advent of evolutionary computation. Evolutionary computationis a recently burgeoning �eld in which the principles of selective breeding are appliedto optimization and engineering problems. It includes genetic algorithms (Holland,1992), evolutionary strategies (Rechenberg, 1973, 1994), evolutionary programming(Fogel, Owens, and Walsh, 1966), and genetic programming (Koza, 1992).In an evolutionary algorithm, for a particular problem (such as producing aneural network that recognizes a face) the space of possible solutions is represented asa data structure upon which certain "genetic" operations can act (such as mutationor recombination of the data), to produce variant "o�spring". The o�spring are thenselected according to how well they carry out the desired behavior as parents forsubsequent "breeding". An algorithm iterates this procedure, and the population ofcandidate solutions evolves.In many problems, evolutionary algorithms have been found to produce solu-tions better than any that have been produced by rational design, or better thanother search and optimization algorithms. In other cases, however, evolutionaryalgorithms fail miserably. The engineer is faced with the practical problem of un-derstanding why. In so doing, researchers are gaining experience in a new domainof evolutionary phenomena. Their experience parallels in many ways the experienceof animal and plant breeders, with one great exception: the programmer controlsthe genetic system.What turns out to be crucial to the success of the evolutionary algorithm is howthe candidate solutions are represented as data structures. This is known as therepresentation problem, and its appearance in evolutionary computation parallelsits appearance in other areas of arti�cial intelligence (e.g. Lehmann, 1988; Rich andKnight, 1991; Winston, 1992; Jones, 1995). The process of adaptation can proceedonly to the extent that favorable mutations occur, and this depends on how geneticvariation maps onto phenotypic variation.Biologists are not confronted by this problem because they study the end-productsof evolution, which are prima facie evidence that the favorable mutations have oc-curred at a su�cient rate. Furthermore, a biologist wanting to study this questionfaces great methodological hurdles; comparative and experimental approaches to theproblem are blocked because one cannot simply pick alternate genetic systems that4



produce the same phenotype and compare their capabilities to produce adaptivevariation. In evolutionary computation, however, this is possible.Among the earliest experiments in evolutionary computation, Friedberg (1959)attempted to evolve functioning computer programs by mutating and selecting thecode, but found that mutations e�ectively randomized the behavior of the programs,and adaptive evolution was impossible; there is no way to improve the performanceof a conventional computer program by randomly altering letters in the source code.It became understood that the mutation/selection process is not universally e�ec-tive in producing adaptation if favorable mutations cannot be produced (see forinstance Bossert (1967), Bremermann et al. (1966), Eden (1967), or Simon (1965)).In contrast to Friedberg's results, Koza (1992) succeeded in evolving computer pro-grams that perform well on complex tasks (such as prediction of protein structureor random number generation) by recombining branches of parse trees for the pro-grams. Thomas Ray (1992) succeeded in designing computer programs that exhibitevolution as an emergent property by careful design of the data structures. Thedi�erence between Friedberg and Koza's systems was in the representation of thecomputer programs and the way genetic operators act on them.Hence, the Darwinian solution of optimization problems is possible if and only ifthe problem is "coded" in a way that makes the mutation-recombination-selectionprocedure an e�ective one. The "representation problem" is how to code a problemsuch that random variation and selection can lead to a solution. The representationproblem underlies the issue of whether selection, mutation, and/or recombinationcan produce adaptation.For biology the "representation problem" has some unsettling implications. If, asevolutionary biology asserts, all adaptations are the result of mutation and selection,organisms have to be evolvable. But once one calls into question the inevitabilityof organisms being evolvable, one can ask, how and why did an evolvable genomeoriginate in the �rst place? Is it a fortuitous consequence of physics, or of biochem-istry, or a "frozen accident" from life's origin? Are the genetic representations of thephenotype a product of evolution? What, if any, are the evolutionary forces thatshape the genotype-phenotype map?The thesis of this essay is that the genotype-phenotype map is under genetic con-trol and therefore evolvable. Further we suggest that its evolution explains seeminglyunrelated problems of evolutionary biology: the role of epistasis in adaptation, ge-netic canalization, developmental constraints, developmental and morphological in-tegration, biological versatility, the evolution of complex adaptations, the biologicalbasis of homology and perhaps the origin of body plans. Evolutionary computationmay provide a fertile new source of experience from which these di�erent problemsin evolutionary biology can be integrated.
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3 Variation and VariabilityTo accommodate a discussion of genetic representations and variational propertiesof the phenotype in the language of evolutionary biology, it is essential to clearlydistinguish between "variation" and "variability", even though these words are of-ten used synonymously in the literature. The term variation refers to the actuallypresent di�erences among the individuals in a population or a sample, or betweenthe species in a clade. Variation can be directly observed as a property of a col-lection of items. In contrast, variability is a term that describes the potential orthe propensity to vary. Variability thus belongs to the group of "dispositional"concepts, like solubility (Goodman, 1955). Solubility does not describe an actualstate of a substance, say sodium chloride, but its expected behavior if brought intocontact with a su�cient amount of solvent, for instance water. Similarly, variabilityof a phenotypic trait describes the way it changes in response to environmental andgenetic in
uences. In the �eld of evolutionary computation it became clear thatthe way mutation and/or recombination changes the behavior of a model is deter-mined by the way the model is coded or represented in the program. The geneticrepresentation of a character thus determines the variability of the phenotype andnot directly the genetic variation within populations. In this context the concept ofdevelopmental constraints (sensu Maynard-Smith et al. 1985; Schwenk, 1995) canbe understood as the limits of variability of traits caused by their representation orcoding in the genome.As a directly observable property, variation is comparatively easy to measure.Genetic variation in a population is measured by the heterozygosity or the degree ofpolymorphism. Quantitative phenotypic variation is measured by the phenotypic,genetic and environmental variance or any other statistical measure of dispersion(Falconer, 1981; Barton and Turelli, 1989). In contrast, variability is much harderto measure. Genetic variability at the molecular level is measured as mutation rate.Genetic variability of quantitative phenotypic traits is measured by the mutationalvariance Vm, the average additive genetic variance produced per generation bymutations, (Clayton and Robertson, 1955; MacKay et al., 1992), or in the case ofmore than one trait, by the mutational covariance matrix, M (Lande, 1975). Eachof these quantities requires elaborate experimental designs to be estimated. Anindirect method to assess the variability inherent is a body design is to determinethe number and range of independently varying morphogenetic parameters, alsocalled biological versatility (Vermeij, 1971).The relationship between variation and variability is conditional. Clearly, ifthere is variation in a character it has to be variable, but the reverse is not true.Therefore the study of natural variation can give hints on the pattern of variability asfor instance the study of osteological variation suggests the existence of constraints(Alberch, 1983; Rienesl andWagner, 1992), but it is at best a surrogate of variability.The genetic variance of a trait, i.e. the raw material of evolution, is a fairlyephemeral property. It depends on the complement of genes currently segregatingin the population, the e�ect of the alleles present and their frequencies. Whenever6



an allele changes its frequency or gets �xed the genetic variance of the charactermay change (B�urger and Lande, 1994; B�urger, Wagner, Stettinger, 1989; Turelli,1988). The same is true for genetic correlations, which not only depend on thealleles segregating but also on the linkage dis-equilibrium among them (Bulmer,1980; Turelli, 1988). On the other hand the genetic variability of a character is aproperty of the genome. It remains the same as long as the complement of lociand the mutation rate is the same and as long as no epistatic mutations have beensubstituted (see below). However, variability is under genetic control and may thusevolve.4 Genetic Control of VariabilitySchmalhausen and Waddington were perhaps the �rst to clearly see that epistaticinteractions between genes can produce genetic control over genetic variability, andto apprehend the theoretical implications of this (Schmalhausen, 1949; Waddington,1942). Per de�nition, epistasis is the in
uence of the gene at one locus on the ef-fects of alleles at other loci (for a way to measure epistatic e�ects see Cheverud andRoutman, 1995). It thus re
ects the fact that the expression of genetic variationis under the in
uence of other genes. Evidence that variability of phenotypic traitsis under genetic control comes from research on the phenomenon of "canalization."The term was �rst introduced by Waddington (1942) to describe the tendency ofdevelopment to produce clearly distinguished tissue and organ types. However, theconcept had only limited impact on developmental biology, but became importantin quantitative genetics. It describes the fact that mutant phenotypes often showmuch more variation than the wild type phenotype. Some of this variation is geneticvariation which was "suppressed" in the wild type genetic background (for a recentreview, see Scharloo, 1991). Selection experiments suggested that the sensitivity of atrait to genetic variation can be decreased by arti�cial stabilizing selection (Rendel,1967; Scharloo, 1988) or increased by arti�cial directional selection (Lazebnyi et al.,1991). Recently it has been shown that the average e�ect of P-element induced mu-tations on life history traits in Drosophila is negatively correlated with the in
uenceon �tness of the trait. The stronger the impact on �tness the smaller the averagee�ect of a new mutation (Stearns and Kawecki, 1994).Evidence for genetic control over phenotypic variability is of capital interestto evolutionary theory (Scharloo, 1991). This literature shows that evolution notonly produces the �xation of spontaneously generated variation, but it can canalso change the "rules" under which heritable phenotypic variation is produced,i.e. the variability of the traits itself can evolve. The genome has control over the"allocation" of genetic variance to phenotypic characters. Some characters that werevariable can become �xed (Riedl, 1975, Stebbins, 1974), while others may becomeintegrated into a tightly coupled complex of characters (Stearns, 1993) or othersmay gain variability after a developmental constraint was broken (Vermeij, 1970,1973, 1974). 7



Population genetics has been developed to understand the dynamics of geneticvariation. However, the issue here is the evolution of the variability of characters.So the question is how to describe the variability of a trait and its evolution inpopulation genetic terms in order to link the theory of evolvability to the existingapparatus of evolutionary theory. Genetic variability of a character is determinedby two factors: the rate of mutation of genes in
uencing the character and the ef-fect of the mutations on the state of the character. Mutation rate is a standardparameter in population genetic model and there is also theory on the selectionforces acting on mutation rate (Eshel, 1973; Altenberg and Feldman, 1987). Thee�ects of mutations can either be arbitrarily assigned to individual alleles, or de-scribed as the distribution of mutational e�ects (Kimura, 1965). Mathematically,the relationship between the genotype and the phenotype is a function f, whichassigns to each genotype G the average phenotype P (averaged over so-called 'en-vironmental' variation) G f�! P (or if there is genotype-environment interactionG�E f�! P ). The idea of a genotype-phenotype mapping function has been usedin quantitative genetics, for instance in the study of genetic canalization (Rendel,1967, Scharloo, 1987), multivariate mutation selection balance (Wagner, 1989a), theevolution of pleiotropy (Altenberg, 1995a), the study of epistatic e�ects (Gimelfarb,1989, Wagner et al., 1994), and in evolutionary algorithms (for instance: Altenberg,1994; Banzha�, 1994; Schwefel, 1981). The genotype-phenotype mapping functiondescribes how genetic variation is translated into phenotypic variation and is thus away of describing how the phenotype is represented in the genotype. The evolutionof genetic representations can thus be modeled as the in
uence of selection on thegenotype-phenotype mapping function.5 Complex Adaptations: When Are They Possi-ble?The digression on variability and its genetic control sets the stage to consider theissue of evolvability in a biological context. If the expression of genetic variationis itself under genetic control, is it conceivable that species evolve "strategies" ofhow to structure the phenotypic e�ects of mutations? Or, to be more precise, is itpossible that evolvability is systematically produced by the evolutionary dynamicsof genetic variation for variability? And does evolution produce trends in the varia-tional properties of the genotype-phenotype map? What exactly is evolvability andwhat in
uences its degree?Evolvability is the genome's ability to produce adaptive variants when acted uponby the genetic system. This is not to say that the variants need to be "directed"(a la Foster and Cairns, 1992) for there to be evolvability, but rather, that theycannot be entirely "misdirected", that there must be some small chance of a variantbeing adaptive. The situation is analogous to obtaining a verse of Shakespeare frommonkeys banging away on typewriters. Typewriters make this far more likely than8



if the monkeys had pencil and paper. The typewriters at least constrain them toproduce strings of letters. Similarly, the genotype-phenotype map constrains thedirections of phenotypic change resulting from genetic variation.Evolvability has its counterparts in various �elds of computer science such asheuristic search, genetic algorithms, and genetic programming. In each of these�elds the same problem occurs: one is searching a large set of objects (such asgenotypes, programs, or combinations of parameters) for the objects that best ful�llsome measure of quality (such as �tness, performance, e�ciency, etc.), and onewishes to use the samples taken so far as a guide to what samples to take next, so thatone is not merely doing random or exhaustive search. Usually the set of possibilitiesis too large to be searched exhaustively. As a consequence success depends on somekind of heuristic hint, an Ariadne thread, which guides the researcher, the algorithm,or the population through the maze of possibilities.The Darwinian heuristic is to choose sample points by perturbing the more �tones among those sampled thus far. Implicit in the Darwinian heuristic is the notionof perturbation, and the assumption that the �tness function is not completelyrandomized by a perturbation (thus the genome is not a "House of Cards" (Kingman1978) in which any genetic alteration brings it tumbling down).The paradigmatic image for successful Darwinian search is Wright's image of thepopulation walking up the side of a "�tness peak" (Wright, 1964). If one wants to�nd the highest point in a landscape and one can not see far into the distance, thebest guess is to walk uphill. This will lead to at least one of the high points in thelandscape, but of course not necessarily to the highest point. A population is slowlyaccumulating better and better mutations in a stepwise fashion. However, whetherthis approach is successful depends on whether the shape of the �tness function withrespect to the genetic perturbations actually provides the information necessary to�nd the best genotype or the best solution to a technical problem.Within computer science a growing body of theory has been developed whichtries to pin down exactly why certain search problems are di�cult and others areeasy for the Darwinian heuristic. The concepts include the ideas of deceptiveness(Goldberg, 1987) and ruggedness (Kaufmann, 1989) of �tness landscapes, epistasisvariance (Davidor, 1991), and the idea of strong causality (Rechenberg, 1994) toname a few. Here we want to mention but three of these concepts which all pointto the same direction.The idea of strong causality comes from physics but is used extensively in evo-lutionary strategy (ES) research to explain ES performance (Rechenberg, 1994)."Strong causality" simply means that small changes in the system parameters shall,on the average, correspond to small changes in system performance (�tness). If thisis the case it is easy to �nd a path towards the best or at least a good solution of aproblem.Similar ideas have been developed in genetic algorithms theory. The classical ideaof heritability appears in correlation statistics used to characterize the ruggednessof adaptive landscapes and how far adaptation may proceed before it gets caughtin a local peak (Weinberg, 1991; Stadler, 1992; Mhlenbein and Schlierkamp-Voosen,9



1995). Another approach (Jones and Forrest, 1995) measures the correlation be-tween �tness or performance and the distance from the optimum in the search spaceas a predictor of how well adaptation proceeds. Evolvability is dealt with directlyby generalizing Price's (1970) covariance theorem of natural selection to predict therate at which new, �tter adaptations will be produced (Altenberg, 1995a). This ratedepends on the rate of production of genetic variation by what ever means, and thecorrelation between the �tness of genotypes and their likelihood of producing still�tter o�spring.All these approaches are di�erent formal ways of capturing the same intuitivenotion of a (statistically) "smooth" �tness landscape: it is easy to evolve by naturalselection if better genotypes are found in the mutational "neighborhood" of the goodgenotypes. Another way of expressing this result is that adaptations are possible ifimprovement can be achieved in a cumulative or stepwise fashion.But what are the structural features that make stepwise improvement possible?The key feature is that, on average, further improvements in one part of the sys-tem must not compromise past achievements. This is the essence of the so-called"building block hypothesis" to explain the performance of genetic algorithms (Hol-land, 1992; Forrest and Mitchell, 1993). Independent functions shall be coded inde-pendently so that the improvement of each function can be realized with minimalinterference with other already optimized functions. Pleiotropy cannot be wholly"universal" (Wright, 1968), but must be limited for many mutations. A primaryproblem for complex adaptation is how to avoid unbounded pleiotropy in the faceof the combinatorial explosion in the number of possible interactions between parts.This is accomplished by modularity, which underlies many of the explanations ofcomplex adaptations o�ered by biologists.6 Modularity of DevelopmentIndependent genetic representation of functionally distinct character complexes canbe described as modularity of the genotype-phenotype mapping functions. A modu-lar representation of two character complexes C1 and C2 is given if pleiotropic e�ectsof the genes fall mainly among members of the same character complex, and are lessfrequent between members of di�erent complexes (see Fig. 1). This depiction shouldbe understood as mainly illustrative, because a full and quantitative characteriza-tion of modularity would have to allow for hierarchies, gradations, and overlappingof modules. The development of a quantitative characterization of modularity is apart of the research program advocated here.Some adaptations may intrinsically have a modular genetic representation be-cause they are simple, and involve direct gene action. Examples include immunoglob-ulin antigen binding, hair color, enzyme activity, etc.. These are functions with lowpolygeny and low pleiotropy. Morphogenesis presents the greatest challenge in pro-ducing a modular representation because it is a dynamical system emerging fromthe complex interactions of many genes and structures. Modularity in morphogene-10



sis is facilitated by at least one intrinsic property, the branching structure of clonallineages and spatial proximity initially shared by a clone of di�erentiating cells. Butthe ontogeny of many functional complexes involves interactions between distantlydiverged clones, and again modularity becomes a property to be explained ratherthan a given. The challenge that morphogensis presents in achieving a modulargenotype-phenotype map perhaps explains why most of the study of the genotype-phenotype map has been undertaken by evolutionary morphologists.The concept of modularity was clearly expressed by John Bonner in his conceptof gene nets (Bonner, 1988):"I will call [...] a 'gene net' [...] a grouping of a network of geneactions and their products into discrete units during the course ofdevelopment." (p. 174) "This general principle of the grouping ofgene products and their subsequent reactions into gene nets be-comes increasingly prevalent as organisms become more complex.This not only was helpful and probably necessary for the success ofthe process of development, but it also means that genetic changecan occur in one of these gene nets without in
uencing the others,thereby much increasing its chance of being viable. The groupingleads to a limiting of pleiotropy and provides a way in which complexdeveloping organisms can change in evolution." (p. 175, emphasisby GPW&LA)The idea that development is organized into semi-autonomous processes is ac-tually much older, dating back to the beginnings of developmental biology and wassummarized under the term "dissociability" by Needham (1933). Needham pointedout that even if development is a perfectly integrated process its component partscan be disentangled experimentally: growth can occur without di�erentiation andnuclear division without cell division and so on. The evolutionary importance of thisfact was emphasized by Gould (1977, p 234) who suggested that dissociability is thedevelopmental prerequisite for heterochronic change (see also Ra� and Kaufman,1983, p 150, Ra�, in press).Evolution of complex adaptations requires a match between the functional rela-tionships of the phenotypic characters and their genetic representation. This wasclearly expressed by Rupert Riedl (1975) in his thesis of the "imitatory epigenotype."If the epigenetic regulation of gene expression "imitates" the functional organizationof the traits then the improvement by mutation and selection is facilitated. Riedlpredicts that selection tends to favor those genotype-phenotype maps which imitatethe functional organization of the characters. Imitation means that complexes offunctionally related characters shall be "coded" as developmentally integrated char-acters but coded independently of functionally distinct character complexes (see alsoFrazzetta, 1975).The existence of semi-autonomous units of the phenotype might be particularlyimportant in connection with sexual reproduction (Stearns, 1993). Sexual reproduc-tion rearranges genetic variation in every generation which creates the problem ofmaintaining functional phenotypic units intact. Stabilizing the development of func-11



tionally related character complexes allows the recombination of integrated traitsrather than true "random" variation.The fact that the morphological phenotype can to a great extend be decomposedinto basic organizational units, the homologues of comparative anatomy, has alsobeen explained in terms of modularity. It has been suggested that properly iden-ti�ed homologues are developmentally and genetically individualized parts of theorganisms (Wagner, 1989b,c). The biological signi�cance of these semi-autonomousunits is their possible role as "building blocks" of phenotypic adaptation (Wagner,1995a).7 The Evolution of ModularityEven if the fact and importance of modularity has long been recognized, there islittle understanding of how modularity has originated. We have suggested that,although modularity may sometimes be intrinsic to the mechanism of an organis-mal function, in many cases, especially development, modularity appears to be anevolved property. Is modularity the result of integrating disconnected parts or, onthe contrary, the result of parcellation of primarily integrated parts? Parcellation,a process which produces modularity from an integrated whole, consists in the dif-ferential suppression of pleiotropic e�ects among characters belonging to di�erentfunctional complexes (Fig 2).The �rst possibility, that modularity is a primitive property of all living beings,is unlikely. As much as the evolution of higher organisms consists in the acquisitionof modular parts, like specialized organs the origin of modularity is most likely theresult of evolutionary modi�cation.As to the 'direction' of evolution, integration or parcellation of modules (Fig. 2),the most prevalent direction seems to be parcellation, at least among metazoan ani-mals. The origin of metazoans is the integration of conspeci�c unicellular individualsinto a higher level unit (see Buss, 1987). Each of these units consists of cells whichhave the same genotype and only secondarily organize in specialized cell populationsand anatomically separated organs. A very frequent mode of morphological inno-vation is the di�erentiation of repeated elements (Mller and Wagner, 1991; Weiss,1990), for instance the di�erentiation of metameric segments at the origin of in-sects (see for instance Akam, 1989). The specialized organs acquire developmentalautonomy in the course of phylogeny (Bonner, 1988). Vermeij has found a generaltrend towards higher biological versatility (Vermeij, 1973, 1974). Taxa with a highernumber and range of independently varying morphogentic parameters are found atsuccessively younger stages in the fossil record. Hence, the origin of di�erentiated,complex animals appears to be dominated by the process of parcellation rather thansecondary integration, even if integration certainly occurs, for instance in symbioticintegration of cells of di�erent origin (mitochondria and plastids for instance).Provided that modularity is most likely the derived state in the phylogeny of an-imals and is perhaps the result of parcellation rather than integration, the question12



Figure 1: Example of a modular representation of the charactercomplexes C1=fA, B, C, Dg and C2=fE, F, Gg which serve tofunctions F1 and F2. Each character complex has a primary func-tion, F1 for C1 and F2 for C2. Only weak in
uences exist of C1 onF2 and vice versa. The genetic representation is modular becausethe pleiotropic e�ects of the genes M1=fG1, G2, G3g have primar-ily pleiotropic e�ects on the characters in C1 and M2=fG4, G5,G6g on the characters in complex C2. There are more pleiotropice�ects on the characters within each complex than between them.
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Figure 2: Two ways of obtaining modularity. Parcellation consistsof a di�erential suppression of pleiotropic e�ects between groups ofcharacters. Modularity through integration consists in the selectiveacquisition of pleiotropy among characters from the same group.
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arises of how parcellation has been caused by natural selection. The mechanisms bywhich modularity can evolve are distinct from organismal adaptation itself, becausemodularity is a variational property, not the property of any given individual. Mod-ularity can evolve only through systematic association with features directly underselection.Perhaps the most common and long lasting form of selection experienced by anyspecies is stabilizing selection (Endler, 1986). However, stabilizing selection aloneis the least likely candidate for causing parcellation. Stabilizing selection on allcharacters simultaneously favors suppression of all mutational e�ects (Wagner, inpreparation). It is thus unlikely to lead to modularity.One possibility of su�cient generality is that the combination of directional andstabilizing selection leads to the di�erential suppression of pleiotropic e�ects (Wag-ner, 1995b). This proposal assumes that adaptation to environmental perturbationsincludes directional selection on one or a few functions or character complexes (mo-saic evolution). It implies that directional selection on adaptively challenged char-acter complexes occurs simultaneously with stabilizing selection on all the othercharacters. This combination of selection forces creates strong selection for sup-pressing exactly those pleiotropic e�ects which connect the characters under di�er-ent selection regimes (directional and stabilizing). However, the process of selectingepistatic e�ects to modifying the genetic representation of quantitative charactersis slow (Fig. 3). The reason mainly is that this process required the interactionof pairs of loci, one providing the direct e�ect to be modi�ed and the other theepistatic e�ect. It is not yet clear what the necessary conditions are under whichthis process is a likely explanation of modularity, and whether these conditions arerealized in nature.Another general condition which may give rise to selection on the genotype-phenotype map is when the genetic representation "frustrates" the action of selectionin some way, preventing the maximal adaptation from being achieved. This is thecommon feature in several processes by which modularity has been proposed toevolve | canalization, the breaking of developmental constraints, and morphologicalintegration.For instance developmental constraints frustrate selection by restricting the phe-notypic variation selection has to act upon. Adaptations would be able to evolveonly to optima within the constrained space of variability. At such constrained op-tima, stabilizing selection would appear to act, but there would remain a "latent"directional selection that would be manifest once the constraints were broken andnew �tter phenotypes introduced (Altenberg, 1995b). A mutation that helped breakthese constraints could thus gain a �tness advantage. This suggests that there shouldbe a trend toward breaking developmental constraints and increasing the degrees offreedom of the phenotype. Such a trend has in fact been documented in variouscases (Vermeij, 1971, 1973, 1974).Another way the genotype-phenotype map can frustrate selection is by makingthe generation of adaptive variants exceedingly rare. This occurs, for example,when multiple mutations are needed to improve a function. Selection for adaptation15



Figure 3: Evolution of the genetic variability of a quantitative char-acter under directional selection. The second character is alwaysunder stabilizing selection. Genetic variability of the �rst charac-ter is measured by the mutational variance Vm(z1). Note that themutational variance is increasing of the character under directionalselection, z1. Selection on the epistatic e�ects leads to a modi�ca-tion of the genetic variability of the characters, in this case morevariability of the �rst character, which is under directional selectionand less for the second character which is under stabilizing selection(not shown). The gradual increase in the mutational variance goeson for about 4000 generations. Under these conditions the modi�-cation of the genetic variability is much slower than the evolutionof the characters, which evolved about 14 environmental standarddeviations in the same time. The model has 100 genes, which haveboth direct additive e�ects on the characters as well as mutuallyepistatic e�ects with a per locus mutation rates of 10�3. Recombi-nation is free. The population size is 200. The �tness function forthe two characters is w (z1; z2) = expnsz1 � z222!2o.
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rate has been proposed as response to this frustration (Rechenberg, 1973; Riedl,1975). Selection for adaptation rate assumes that modular or otherwise favorablerepresentations of the phenotype will get selected because they enable the genometo respond more quickly to directional selection.This is indeed the case and can happen without group selection (Wagner, 1981).In this case, alleles that change the genotype-phenotype map and increase the fre-quency of adaptive mutations at other loci can hitchhike along with those mutations.However, the problem is that selection for adaptation rate requires high degrees oflinkage disequilibrium (Wagner and B�urger, 1985) and is only e�ective in the absenceof recombination. The reason is that recombination during sexual reproduction leadsto a mixing of genotypes and thereby eradicates the adaptive advantages achievedby genotypes with a better genetic representation (Wagner, unpublished).Riedl (1975) proposes another mechanism for selection of adaptation rates, namely,the evolution of new genes. A model of how gene duplication in general a�ects theevolution of the genotype-phenotype map has been proposed (called "constructionalselection", Altenberg, 1985, 1994, 1995b). The genes functioning in the genomecan be seen as a highly selected group. Many new genes are randomly generatedby the genome, and they exhibit a diversity of e�ects on the phenotype. But onlya subset of these genes are stably incorporated in the genome. The genes mostlikely to be eventually preserved by selection as functioning genes are those whichleast perturb functions under stabilizing selection, while supplying variation underdirectional selection. The trend among the genes that the genome keeps is thustowards a modular genetic representation of the phenotype. Simulations of selectivegenome growth have shown that such a process would lead to modular organizations(Altenberg, 1995b).More research into the population genetic theory of genotype-phenotype map-ping functions is necessary to assess the plausibility of these and the other scenariosto explain the evolution of modularity. More knowledge of the developmental andevolutionary processes underlying the origin of modular parts of organisms is re-quired to understand the signi�cance and extent of modularity.8 ConclusionsTo understand the conditions under which mutation, recombination and selectioncan lead to complex adaptations is of importance for evolutionary biology as wellas its applications in computer science (evolutionary algorithms). The central ideauniting these two �elds is the insight that the genotype-phenotype map determinesthe evolvability of the phenotype (the so-called representation problem). A re-current theme in the biological literature is the concept of modularity, the fact thathigher organisms are composed of semi-autonomous units (gene nets, Bonner (1988);dissociability, Needham (1933) and Gould (1977); independent morphogenetic pa-rameters, Vermeij (1973, 1974); individuality, Wagner (1989b,c); self-maintainingorganizations, Fontana and Buss (1994); developmental modules, Ra� (in press)).17
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