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ABSTRACT

This paper takes an economic approach to derivevalutionary
learning model based entirely on the endogenoudogmgent of
genetic operators in the service of self-interesaetionomous
agents. Reproductive decisions depend on subjettageoffs
between the quality and quantity of offspring, awog the
imposition of an external fitness function as tghiig used in
genetic algorithms in favor of evolving, heterogeme
preferences over reproductive outcomes, expresiedeaction
functions. When combined with a density-dependenhemic or
ecological problem, the implicit fitness approadtavds a very
different picture of “fithess” than other evolutamy algorithms.
An application to learning in a repeated Courndgapoly game
is developed analytically, predictions tested asfaina
computational simulation. The result is an evoluidly stable
asymmetric equilibrium of much greater averageitability than
concentrated Cournot-Nash collusion, while suppgrta much
larger population of heterogeneous competitors.libiitness
maximizers learn to collude not with their compett but with
their immediate ancestors and descendents to awersbort-run
myopia with precommitments through intergeneratiomaalth
transfers.

Categories and Subject Descriptors
1.2.8 [Problem Solving, Control Methods, and Search]:
Heuristic methods; Plan execution, formation, and generation

General Terms
Algorithms, Economics, Experimentation, Theory.

Keywords
genetic algorithms, implicit fitness, utility, pegences, risk
aversion, heterogeneity, oligopoly games

1. INTRODUCTION
The Genetic Algorithm (GA) has been a popular pigradfor

evolutionary optimization since its development Hyglland [8],

successfully applied across a wide range of fielde idea is
simple—evolve a population of solutions to somebfgm the
same way an agriculturalist might improve a strafncorn or
breeder might refine a line of dogs. The basic raps are
simple as well. The GA usually consists of geneifperators—
mutation to introduce new variation and cross-deerecombine
existing variation—with selection algorithms thattekmine how
this variation is propagated across successive rgeoes.

Specifically, under selection, the heritability sfme variation is
non-random, such that some variants tend to inerems
prevalence in the population at the expense ofretthis non-
random inheritability of continuously-introducedriaion is by
definition evolution. Over time, the compositiontb& population
changes in the direction favored by selection.

Selection comprises two separate processes. Someare of the
population are chosen for reproduction (the remeindre thus
selected out), and these breeders are matchedrinfpasexual
recombination. The GA is analogous to the artifisilection in
that the decisions regarding with whom to mate had many
offspring to produce are made exogenously to meétrmal
criteria. In contrast, evolution via natural sel@stproceeds from
endogenous mate choice and breeding decisions nhgde
heterogeneous individuals in a population, with roepctive
behavior itself subject to evolutionary optimizatio

This paper takes a fundamentally economic apprdactihe

evolutionary problem. Miller [11] first applied th&A to

economics, where it has been used in numerous sioafel
learning and adaptation. Economics has also prdvédplatform
to study the performance of the GA. But economiaa also
provide the framework for a different treatmentsefection in a
new evolutionary learning algorithm based on therarction of
subjective beliefs and preferences under densipemudent
competition.

The paper proceeds as follows. First, some of iffierences that
arise between endogenous and exogenous approactiésess
and reproduction are outlined, examining some ef ghoblems
and limitations of selection and learning under @&. A more
dynamic, flexible picture of evolutionary optimikat is
suggested. Then, an analytical model is developeah fwhich
fithess emerges as the implicit result of optimaabof individual
reproductive decisions. An application to densigpendent
competition in a Cournot oligopoly game is develbpe
analytically and implemented in a multi-agent sbeianulation.
An asymmetrical profit-earning steady-state eqriiliim is derived



from density dependence, separate from Cournot-Nast
Walrasian outcomes. This and other theoretical iptieds are
compared to the simulation results. Finally, thegraconcludes
with a briefdiscussion of ongoing and future workthwthis
promising new approach to evolutionary optimizatidmough
implicit fitness over economic tradeoffs.

2. FITNESSAND UTILITY
2.1 Ex Anteor Ex Post?

The artificial selection approach taken by the Gjuires a
speculative ranking of all members of the poputatisuch that
relative representation in the next generation lmamarceled out
proportionally. This exogenously-imposed rankingdetermined
by a so-called “fitness function,” the definitiondaevaluation of
which is often problematic. In this context, “figs determines
reproduction and is measured ex ante.

By contrast, in evolution via natural and sexualecton,

endogenous mate choice and offspring investmensidas mean
fitness results from the varying ability of agemds produce or
capture resources in economic or ecological cortipetand then
use these resources to produce competitive offgmithe face of

tradeoffs. Successful reproduction determines fithess, properly

measured as the geometric mean growth ratg [(L6], only
observable ex post.

Essentially, utility is the ex ante estimation lod tsubjective value
of different outcomes. This is precisely what th& @mploys a
ranking function for, so this will henceforth befereed to as an
external or exogenous utility function.

There is no fitness function. The geometric meawygr rate of
measured in multi-agent simulations can be compared
theoretical predictions, but by itself is merely a statistic
collected after the fact.

2.2 Heterogeneous Preferences

The GA'’s external utility function imposes the sapreferences
upon every individual in the population. Homogenést required
to generate a consistent ordered ranking of alividdals, a
prerequisite for the application of common selectioechanisms.
Roulette-wheel selection takes utility cardinallgssigning a
probability for reproduction proportionally over ethrelative
strength of the preference rankings. Tournamemicteh, on the
other hand, makes use of an ordinal utility funttisampling
individuals for pure rank tests under this metBg. exogenously
specifying a shared utility function of any forrhetGA provides a
shared set of values. Without such conformity, ames of “how
fitter?” or even “who’s fitter?” can be played. $hs the primary
advantage of the exogenous utility function, butdtes with a
price.

Homogeneous utility functions lead to brittle, harmarphic,
premature convergence to local optima. This is itrevitable
result of any process of learning by imitation, J[1What results
are some of the same issues that plague selecatesddrs of
plants and animals. Reduced genetic and phenotjipirsity
follows naturally from the selection algorithm ifsén some pure
optimization applications this may not be much wfissue or be
readily mitigated, but in multi-agent systems whitwe emergence
of collective behavior is of interest, diversitykisy, particularly in
complex, open-ended models of social interaction.

A large number of hacks have been developed oeedeélcades to
deal with this problem, which reduces replicabiliyresults and
can make tuning parameters more of an art thariemce For
example, the deep reliance on stochasticity inGiAés selection
algorithm is a tacit admission that the exogenoaisking of
individuals is often just wrong. Consider time-wani utility,
where fitness depends on the development of mateyaicting
variables through growth, development, and indigldearning.

Freeing the utility function from the role of rankithe population
allows it to represent individually subjective pefnces over
both economic and reproductive outcomes relatedbutiir
tradeoffs.

2.3 Density Dependence

The spatial metaphor commonly depicted for the GASewall

Wright's “fitness landscape” [21]. Imagine rollingills over a

space where distances are measured in some genotypi
phenotypic space. Elevations capture cardinaltytireferences,
in the ex ante sense of external “fitness” funatiofhus imitative
social learning as a hill-climbing algorithm. Foergerally fixed

exogenous utility functions, the landscape is statifording hill-

climbers permanent vacation at the top of locainogt

A more dynamic understanding treats fitness as eearn
evolutionary profit. Just as economic profit luresonomic
competition, a positive net evolutionary growtheratr >0)
breeds a larger population and stiffens competifion scarce
resources. Evolutionary equilibrium is defined byero-profit
rule: no net population growttr, =0 as a long run steady-state
about which individuals struggle. Spatially, a hdf positive
fithess represents a growing population. But tHeehodes away
as competition checks growth rates, and in a pdipal@risis may
even turn into a sink of net population loss. Etiolu never
stands still so long as competition continues.

2.4 Population Size

Because the “system” takes care of reproductivésibess in the
traditional GA, the population size is generallyefi exogenously
or allowed to vary predictably with changes in modguts. In

many models, results can vary significantly depegddn such
assumptions [1]. The endogenous approach to reptivdu
behavior depends on the size of simulated populateamerging
through interactions between heterogeneous agéhis.has its
own risks, as the population size may be subjetarge swings
and even endogenous extinction.

3. AMODEL OF ENDOGENOUSFITNESS

3.1 Evolutionary Optimization

The economic approach to evolutionary optimizatioras
pioneered by Gary Becker, whose work on modelirgdbmand
for children is the basis of the model developed:h&andolfi et
al. [7] offer an easy-to-follow review of much ok8ker’s work,
synthesizing an economic vision of evolutionary imation
across many different arenas of reproductive asthsbehavior.

Optimization is about tradeoffs. While models oe tlradeoff
between the quality and quantity of offspring asghing new, in
economics [4] or biology [15], to this author’'s kmledge this is
the first time they've served as the foundation &omodel of
evolutionary learning in a social environment.



This approach is also informed by the applicatibrapnomics to
life history theory by Hillard Kaplan, particularlgis model of
parental investment in embodied capital [10].

3.2 TheProblem

The subjective evolutionary objective can be defias follows.
Instead of being directly concerned with their owealth or
health, assume parents maximize some subjectivecteg utility
(EU) over differenteproductive outcomes:

(1) maxeu (ngi)= Rzn; pmf (R nz(q)) (RCEU (77(q))

The choice variables are the quantitgf offspring raised and the
quality g of each offspring. These are chosen to maximize th
value of the objective function, which depends dwe tet

reproductive rateRD[l,n] —how many of the optimain’ =0

offspring survive to reproduce given the distribatiof mortality
risks. The binomial probability mass functipmf() specifies the
likelihood of each survivorship outcorie dependent on the total
number of offspring and an assumed independentatitgrtisk
z(d[0,1] which may in turn depend on parental investment

g=0. The value of each successful reproduction dependse

subjective expected (risk-averse) utility of ofisigr given some
ecological function that turns parental investmeirito

grandchildren, 77(q) =0 over its own probability distribution.

This effectively maximizes the growth rate of thebjective
valuation of the optimizing agent’s evolutionanydage, averaged
over two generations. If the behavior generated thg
optimization is adaptive, it will tend to correlatéth positively
with geometric mean rate of increage;-ex post evolutionary
fitness.

The expected utility maximization
reproductive budgen :

@

where M comes from monetary or caloric profits from ecofmm
or ecological activity initially funded by the reytucing agent’'s
own endowment of embodied capital. Some fixed obsuilding
the reproductive systen® and marginal cost per offspring
determine upon how many risky offspringhe parent can afford.
Assume semelparous reproduction—one litter of sizand then
the parent is finished, with every incentive to tet most value
from its budget before its generation turns over.

is constrained ke

MN=(c+q)dm+C,

Before attempting to solve the maximization problesome
simplifying assumptions will make for analyticahttability, with
an eye toward a simple computational implementatibinst,
assume subjective certainty about the payoff toemat

investment, such thalt) (77(q)) = EU (72(q)) , avoiding the need

to contend with nonlinearities over additively sejide outcomes.
Next, since all offspring are born and raised tbgetand with no
means to judge quality before committing to pareimeestment,
assume that it's optimal to invest the sampé each offspring.
Thus the expected utility of each offspring is dgallowing us to
pull this scale factor from the cumulative densftynction.

Finally, assume that mortality risks are independ#nparental
investment and across offspring. Tradeoffs betwepnoduction
and mortality reduction can be added to the basideh but for

now this yields an extremely useful simplificatioosly the
expected value of the offspring outcome distributimatters,
which is well known for the binomial survivorshiplds that come
from n independent trials at probability of succdssz :

() E(n)zipmf (Rn;z)[R=

R=1

1-z

The vastly simplified maximization problem can bepressed
with the Lagrangian:

- "o
1-z

4 O(ng4;N,cC)

(7(a))+A(N-(c+aq)m-C).

Inequality constraints om and g can be considered step-by-step

with the Kuhn-Tucker theorem., but note that the=0 corner
solution occurs when the parent cannot afford offgpong of
even minimalg=0 quality given the fixed and marginal costs of
reproduction. Otherwise, the budget constraint dital a single
offspring at suboptimal quality.

Taking the first-order necessary conditions witlspext to the
choice variables and shadow prige

oo_ - _U(m(@) .o

(5) %—O—T_A (C+q )m s

(©) on_y_ o du(ma)) onfd) . o
dq 1-z 0q oq

@) Z—E=O:ﬂ—(c+q’)nﬁ—c

Simultaneously solving equations (5) and (6) allaesivation of
the optimal parental endowment of capital per offap

o q*zu(”(q*)){au (m(e) Dan(q*)}‘l_c_

oq aq

Notice that optimal parental investment dependsy am the
subjective return to capital and the marginal co$t each
offspring. The form of the utility function and esgted returns
function must be known or assumed to analyticabllyes for the
optimal quality.

Critically, since mortality is assumed independeit quality,
optimal reproductive behavior does not depend tliremn the
rate of surivorship. Random death’'s affect on papoh
dynamics is instead felt indirectly through economiofit M via
the corresponding reduction in competition.

Equation (7) can be rearranged to show that thenapnumber
of offspring depends on how many of the optimalligga&an be
afforded within the budget constraint:

._N-C
n=————.
(c+q)
Maximizing the sheer number of offspring producednbt an

optimal strategy. The tradeoff with quality leadsat reduction in
the number of offspring produced to the extent tpatents

9)



subjectively value the estimated return to offspricapital
investments. The optimum occurs when equal margitiliy is
earned from investments in both variables.

3.3 Heterogeneous Preferences

Evolutionary models typically assume risk-neutraximization
of some measure of net reproductive success. Exéeasalytical
tractability can often be achieved from the use aoflinear
functional form. And in many cases, the optimdlgons prove
invariant to positive monotonic transformation,oaling other
conveniences such as taking logs. By assumptioly, anerages
matter. See Charnov [5] for a compact derivatioswth a linear
evolutionary life-history model inspired by the aomic
approach. Linear evolutionary models implicitly @s® that
natural selection will favor expected-value maxieng over risk-
averse utility maximizers who subjectively value diidnal
offspring at a diminishing rate. As a result, rigieferences are
usually ignored by evolutionary models.

In some problems, including the quality/quantitgdeoff model
sketched out above, nonlinear risk preferences ltange the
subjectively optimal choice variables. The optinsahount of
parental investment per offspring in Equation (8pends almost
entirely on risk preferences over the distributiof child

economic outcomes. This will be seen more cleamygeoa
specific functional form is assumed.

A central assumption of Becker's approach has bteat
preferences are stable and similar across popntatj@7]. In
contrast, this model, by letting preferences freayolve,
emphasizes the potential for heterogenous outcomes.

The dependence of the optimal quality and thus rumnddf
offspring on inherited preferences allows the ofbjecfunction
itself to evolve over time. Behavior arises frone ihteraction of
personal preferences and private information inspitirof self-
interested goals. Performance over economic or ogixl
outcomes is ultimately measured in resultant repctde
outcomes. These linkages are captured in the dvelvaaction
functions of Equations (8) and (9).

4. COURNOT OLIGOPOLY GAME
4.1 Background

Consider a simple Cournot competition model, onéhefoldest
and best-studied problems in game theory. Competimys

produce a homogeneous good for sale in the faceoaofe
unknown demand, taking the market price as giveinmd~
compete on the quantity of output produced. Retutas
production are density dependent, as the price de@easing
function of total production by all firms. A finitpopulation size
gives the firms market power, the ability to affélee price via
their own output decisions. Firms must simultangowecide
how much to produce, without conspiring with eatheo. Firms
can raise the market price by producing less, iboge¢ who don’t
restrict their output earn more profit at the higipeice. At the
same time, producing more than other firms lowéses market
price, causing negative profits while hurting theeleproducer
most. In both cases, defecting from the Walrasiaro-profit

equilibrium makes a firm relatively worse off thathers. On the
other hand, there exists a profitable Cournot-Neghilibrium if

all firms learn to coordinate in exploitation oethmarket power,

colluding to reduce output. The question is, how fiems learn
to exploit such profits?

The strategic element of this problem has madefévarite of

economists studying competition and learning fodl vewer a

century. With the modern tools of multi-agent siatidn, the

dynamics of this and other coordination games aamxamined
in new ways. Such results have shown that a ma&rchinant of
convergence to either equilibrium depends on the tf learning
algorithm employed. Vriend [20] used the GA in tways: as it's
typically treated asocial learning algorithm with each firm as a
single rule in a population, and second by givimghefirm an

independent population of rules and its own GAdlec among
competing beliefs—a hierarchy devised by John Hdllaalled a
Classifier System (CS) [9]. The single-rule firmdjrectly

competing with each other in both the economic game GA,

quickly learn to increase output to the Walrasiarozprofit local

optimum. In contrast, when the GA operates on rirethe CS,

the composition of the multi-ruled firms evolvesi@pendently of
other firms under amdividual learning algorithm, and collusion
to the profitable Cournot-Nash equilibrium is acteie.

In both cases, the GA was functionally identicaing wealth
earned from playing the oligopoly game as fithesth & fixed
number of firms. The difference is in how feedbdokm the
economic competition interacts with the evolutigndearning
algorithm. The outcome of the Cournot coordinatigame
financially rewards those who defect less from thalrasian
outcome, improving their relative fitness rankirtbe so-called
“spite effect” [20]. Untethering the reproductiori competing
individual rules from economic competition providasshield
from social punishment in a ranked fithess system.

4.2 Investment and Quantity Competition

Firms in the single-stage Cournot model competguantity. The
embodied capital provided via parental investmenhes in the
form of a capacity constraint on a firm’'s outpuhu® production
is free up to this point, paid for by parental istreent. The
ultimate tradeoff is between the quantity of offegr produced
and the quantity of output each offspring can poedu

Parental investment is a sunk cost, irrelevanth® groduction
decision of each offspring other than providingupper bound
for production with no marginal costs of their owRBecause
profits are proportional to individual output, imteves ensure
production satiates the endowed capacity constralse short-
run incentives are what drive competition to thelrd&an zero-
profit outcome.

Firms can learn to exploit their market power bifizihg their
investment in offspring capacity constraints tadniescompetition
in the next generation. Equilibrium with a positiygice is
possible because firms can constrain the behaviofutre
generations for their own long-term genetic benefit

4.3 Density-Dependent Steady State

The long-run positive-economic-profit equilibriumn i the
evolutionary game is different from the Cournot-Nasitcome.
Consider the density-dependent steady state wheee tdtal
revenue from the Cournot game equals the amourapécity
supplied onto the market by parents:

(10) Q=P(Q)m.



This reduces to:
(11) P(Q)=1,

Which is simply the marginal cost of capital sunk garents to
claim space for their replacement in the next gatien. At the
density-dependent steady state firms earn one afnirofit for

each unit invested by their parent into their endghent. In turn,
the next generation’s positive Cournot profits iarested into the
production capacity of the next generation, so thut

evolutionary profits are zero, with no geometrigaliverage
population growth, i.er =0 on average.

5. COMPUTATIONAL EXAMPLE
5.1 Method

A simple computational implementation of the ab@gs®mnomic
and evolutionary models was developed to testehsilbility and
stability of the evolutionary steady-state. The ragien of the
simulation is simple. Each generation, each firnodpices a
quantity of output for sell in the competitive Coat market.
Production is subject to capacity constraints iaseel by parental
investment, with zero marginal cost to the produeser this
production has already been paid for. The totalketasupply is
added up and equated with the static demand sahedhle
nonnegative price which clears the market is quated trades
take place, any profit parceled out proportionadythe level of
output of each firm.

Then, firms take stock of their profits and make@reoguctive
decisions using their evolved reaction functionssdntially,
reproducing firms endogenously hire genetic opesato create
offspring to their own quality specifications, irstments in
quality taking the form of precommitments to levefsoutput in
the net generation by way of embodied capital c&fié in
capacity constraints. New offspring make their cdatisions as
the cycle is repeated indefinitely.

The evolution of the system is determined by thduac
mechanisms for forming beliefs and revealing hbtia
preferences. Details are fleshed out below.

5.2 Beliefs

Preferences serve to evaluate private beliefs abheustate of the
world. The structure and complexity of these bsliglays a
critical role in the learning method employed. Tetetmine the
optimal investment in offspring, an agent needs esomay to

evaluate the productivity of such investments(q’). In the

Cournot market, with a common market-clearing priée
dependent on total productiad®, firm profits are paid as:

(12) N=7n(g)=P(Q)m,,

where q, is the capacity constraint chosen by the actiu®'$

parent. Suppose that firms just take a linear petedion from the
markup they received when producing up to capanitgrder to
estimate the productivity of parental investmentoas all q,

naively believing their quality choice is unable taove the
market price.

13) E(n(a)) _n .

4o

The expected marginal profit of investment in clelids capacity
constraints is just the average return the firnaeept received on
its own investment. This simple model of adaptixpeztations
provides a very myopic short-run subjective viewttod Cournot
market, but it will prove sufficient in the endogers fithess
model. All it requires of firms is the ability temember the size
of their own capacity constraints relative to thmiofit earned.

5.3 Heterogeneous Preferences

As first proved by von Neumann and Morgenstern [18]
nonlinear utility function can be used cardinally ardinally to
represent preference rankings given certain assonspabout the
rationality of decision-making behavior. More complmethods
of capturing preference relations can reproduce esah the
regular irrationality revealed by behavioral expents, for
example Pin’s [13] application of the GA to evohamkings over
simple three-state lotteries in a Machina trianglayt the
simplicity and analytical possibilities offered Iowility functions
make them an obvious first choice. The contrasth wite
traditional GA is in how the utility functions aused.

Given generally increasing returns to parental stwent in

evolutionary Cournot competition, preferences mube

sufficiently risk-averse to generate the subjetyivdiminishing

returns to investment required for reproductiorbéoa expected-
utility-maximizing strategy. Otherwise the demarmd &dditional

quality will never be sated.

It will be necessary to assume a general functiforah that can
be implemented in a computational model and useahadytically
solve the equilibria in question to compare withpamal results.
Something that simplifies the math and is easilplemented
would be ideal. Suppose utility over outcomes caspecified by
a three-parameter power function:

U(x)=(kk+b)">=0

(14) .
Ok0(0,1 bO[-100,109 g O( 0]

Note thata =1 implies a preference for the risk-neutral mean of
any distribution, while the poweaD(O,l) can result in either

risk aversion or proclivity depending on the offgetrameterb
and changes in profits, where ds moves from the positive
through zero to negative numbers, risk preferersteft from
decreasing to constant to increasing relativeaisision.

A firm’'s preferences are represented simply bytao&éhree real-
valued numbers in[O,l) appropriately scaled to the bounds

reported in Equation (14). These preferences dnerited and
subjected to a small probability of point mutatiodsiring
reproduction, in which case a new preference pa&amis
randomly generated. This ensures that the entir@npeter space
can be easily explored to avoid restriction to pul@cal optima.

The form in Equation (14) is convenient becausehef scaling
behavior of successive derivatives. Plugging in thenple
adaptive expectations belief formation rule, optinmarental
investment simplifies to:



(15) :[:sl'il —cj(l—a'l)_l.

The optimal amount of investment per offspring defsepurely
on the three preference parameters, the adaptipectation of
beliefs, and the marginal cost of offspring produtt The
optimal number of offspring is a slightly messiegaction
function:

n-cC
[c+[7bq° —cj(l—a'l)_l}
akll
Note that the reaction function is only defined far£ 0, thus
risk-neutral preferences are inconsistent with adpctive
demand. Since value in the model comes from thersiification

of risk, this is not surprising, but the endogenfiutress approach
solidly rejects traditional expected-value maxirtiza.

5.4 Difficultiesand Expected Results
Riechmann’s [14] comparative study of learning roe#i ability
to learn collusion in a Cournot-Nash equilibriumpdeded on
informational requirements, the ability to storemaeies, and the
computational and rationality challenges in proiresg all. How
sophisticated must be the decision-making appa®atisth
implicit fithess via subjective expected utility asnew entrant,
how should it be expected to perform? Being anviddal as
opposed to social learning model is a good stamg the
algorithm outlined above does remember its own tjiyan
constraint after producing, a memory storage requént useful
to learning to exploit positive profits.

(16) n' =

All models that successfully converge on the Cotiash
equilibrium required computational complexity eclant to
maximization. The simple imitative learning of ti@A is its
biggest weakness. In the endogenous fitness agprgaen the
optimization model above, maximization is impligiven when
only using the derived reaction functions for giyadéind quantity.
One place additional complexity is useful is in tm@ndling of
non-integer optimal offspring sizes. Simple hackschs as
rounding or truncating decimals applies differentiand
unpredictable harm to firms. A better approach wooé to use
the subjective expected utility function itself ia direct
comparison of the two nearest integer outcomess Thithe
method taken in the numerical simulation reportecth

Riechmann’s results suggest that information on regme
demand is a necessary condition for the Cournot:Nagcome,
information that the implicit fitness maximizer<hka As a result,
the simple model sketched above is ill-equippedetoning its
effect on demand. The prediction of the endogeffitnesss model
however, is that coordination not with other conitpes in the
current population but with one’s parents and owfapoing will
be key to achieving positive long-run profits markéthout such
global knowledge. The computational model will et test this
hypothesis.

The GA with artificial selection fails on all comtibove. How
does the endogenous fitness model perform? Firshuist be
further parameterized.

5.5 Setting Parameters
Suppose demand is a power law relationship, witfarpaters
chosen such that price is a decreasing functiototaf market

quantity Q:
(17) P(Q)=a+mm” whereQ:iq .

This facilitates easy calculations of total and giaal revenues.
On the cost side, zero marginal reproductive cargtgproblematic
in the endogenous fitness approach. They restrafeences to
increasing relative risk-aversiorh<0. Also, a rare mutation
causing extreme risk aversion results in a lingaassessed with
the desire to diversify itself into a collection effinitesimal

pieces as rapidly as possible. A positive margioat to offspring
insures against such extreme reproductive behavidrswings in
population size. Most importantly, it's the divensi of output

capacity and potential profits into reproductioattproduces the
interesting tradeoffs in the model. No cost to ogjction, no
tradeoff. It's the real cost of reproduction thdbwas a firm to

commit the next generation to a lower level of emt@nd

potentially lead to positive-profit outcomes.

This dilemma can be solved with careful thoughtwitibe fixed
cost of building a reproductive system. Considew hateger
constraints generally prevent agents from fully imézing their
quality and quantity decisions. Together with gaiia of the
reproductive budget constraint, this implies thangnagents will
be induced into producing a single lower-than-optiwffspring.
Due to preferences and beliefs, these agents wanelgér not to
reproduce but to keep all investments in the Caumarket for
another turn, and then see if their profits affdivdm an optimal-
quality offspring. Setting the fixed cost equalth® negative of
the marginal cost affords agents their first repiaiobn for free.
This fixed cost does not affect the reaction fustsi Thus only
reproductive decisions that increase the geometgan growth
rate r incur costs.

Simulation parameters are listed in Table 1. Cdimgcthe

marginal cost of replacement with a negative fixeast as
mentioned is critical to the emergence of coopesatiutcomes.
Demand is a simple fixed power law relationship.eTinitial

number of firms with the same capacity constraingénerated,
each with random preferences. A small exogenougatitgrrisk

is induced to jog any long-term coalitions that elep and
eventually kill any single-firm monopoly to end thienulation,

Table 1. Simulation Parameters

Par ameter Value Description
C -10.0 Fixed cost of reproduction
c 10.0 Marginal reproduction cos
a 1.0 Demand offset
m 5000.0 Demand scale
B -0.99 Demand power
N, 20 Initial number of firms
oA 10.0 Initial quantity constraint




U 0.01 Mutation rate per pref

z 0.001

Exogenous mortality risk

6. DISCUSSION

6.1 Analytical Predictions

The density-dependent steady state condition isngly Equation
(11). Using the demand parameters in Table 1 aada#sumed
functional forms, the predicted total output levdk

Q% =2,705.6, well below the competitive Walrasian outcome of
Q" =5,449.2 The evolutionary model is predicted to capture

Q% in profits from the Cournot market and then spegdihe

same on capital investments in production capdoitythe next

generation, such that the net reproductive razeris. The number
of firms at this steady-state equilibrium is indetmate, and thus
dependent on the dynamics of competition betweégrbgeneous
preferences:

1-a

$_

-1
1} Where1 a =1.
mQ

(18) N¥ =/3{ s
As such, there’s no single Cournot-Nash equilibritonuse a
basis for comparison. But it can be shown that steady-state
level of cooperative output is not a Cournot-Nastcome, which
are given by:

1175
(19) Q™ :l:l_a(ﬁﬂ) :l ﬂ.
m N

Meanwhile, the density-deendent steady-state owgctmmgiven
by:

20) Q= =[1'a}%.
m

For Equation (19) to include Equation (20)5:0, a

contradiction sincef <0. Interestingly, the number of Cournot-
Nash firms required to produce the steady-statel lef output
can be found by solving the Cournot-Nash equiliricondition
for this amount, as it depends only on demand petenst

1) NCN(Q$)=;3(1—1)_ .

a-1
For the numerical example in questiot" (Q$)=1.98. A

Cournot duopoly would not quite be able to mainttie joint

profits achieved in the asymmetrical density-depetdsteady-
state. Does this mean the evolutionary steady-stdjesupports a
low number of firms? The simulation model can hedpolve the
issues.

6.2 Computational Results

Computation experiments are in their infancy ors fhrioject, but
initial results can be briefly described. With thabove
parameterization, the model rapidly and invariatdynverges to
the density-dependent steady state earning posét@omic
profit as predicted. This is not surprising givére tassumptions
made above, as intergeneration resource transfast pay for
themselves in the repeated equilibrium.

What is intriguing in achieving such a flow of pitefis that

they're not monopolized by a small number of firtaking

advantage of increasing returns to scale. Undekieris
environments, with high exogenous mortality rath& noise is
more easily exploited by larger competitors andkimc occurs,

but under milder conditions these high-profit sieathtes support
a large number of competitors.

Even though there’s hardly any mortality risk, atkeof a percent
chance per generation, heterogeneous preferendeseirirms to
cooperatively withhold enough production to raise tmarket
price significantly above each generation’'s own gal
production costs, extracting more profits from @murnot market
than a cooperating duopoly.

With asexual reproduction and near 100% heritabilitys
effectively creates an overlapping generations medere each
“generation” could be considered a time-specifimifestation of
a single agent, preferences fixed but for rare tiarta while
beliefs are updated over multiple periods until uexalating
enough profits to occasionally diversify througtpnaduction,
n=2. Parental investments in the form of precommitiaentity
constraints allow these overlapping selves to awee the time
inconsistency problems of their myopic short-rurpestations,
restricting output to produce higher per-firm ptefthan the
Cournot-Nash  equilibrium.  Long-run  cross-generalon
evolutionary profits still converge to zero withraenet population
growth.

The relationship between fixed and marginal cosisperts the
evolution of density-dependent populations in theuot
market. This is because parental investment istaohseturns to
scale in the no-growth case when the effective matgost is
zero. If returns to scale are increasing at thgdam evolutionary
equilibrium (r =0), the market will be entirely captured by a
single monopolist. Using the fixed cost to negdie positive
externality caused by a marginal cost for the fiegiroduction
assures that increasing returns only kick intiar 2, allowing the
emergence of economically profitable multi-firm gapolies at
the density-dependent steady state.

7. CONCLUSION

With endogenous fitness, every agent is effectieglyipped with

its own set of genetic operators at the disposdtsofubjective

reproductive preferences, constrained by the ageability to

acquire profits from economic or ecological comipeti. The

price a firm pays to use these genetic operatoenigenously
determined by the firm itself, reflecting the sudijee value

reproduction yields from decreased exposure toutiaslary risk.

Selection is natural in that agents who fail to pete and

lineages that fail to spread are removed from thgufation over

time. But the genes of different agents are not dinect

competition as in a traditional GA; instead theympete

indirectly through their effects on behavior. Thesult is an

individual evolutionary learning algorithm that stands apart from
existing methods.

As this work is in its preliminary stages, much aeé& be done to
analytically and experimentally explore the parameipace and
flesh out the character of the density-dependezddst state. In
addition, many obvious extensions suggest themsekiest it's
natural to want to explicitty model probabilisticcanomic



outcomes to study the link between reproductive acehomic
risk behaviors. A fuller overlapping generationpmach would
allow the incorporation of a larger host of economand
biological tradeoffs, including growth versus intresnts in
improved survivorship [6]. Sexual reproduction wighdogenous
evolving mate choice algorithms can be derived ftbmmwork of
Becker and others. Discounting by subjective
preferences as well as relatedness for inclusineds is possible.
The options are endless, but with each extensioalytcel
solutions become more difficult. Still, the specdfiion of the
reaction functions is simpler than developing geaglicit utility
functions for complex tasks. And as derivations doee
intractable the methodology of directly evolvingnaparametric
reaction functions rather than deriving structufatms from
underlying optimization models may prove fruitful.

The intersection of economic and evolutionary apphes to
complex dynamic problems has proven very rich oer last
several decades, a trend that seems to be growinguli-agent
models with learning and complex social dynamiesapplied to
more and more problems. The extension of econongfepences
to evolutionary outcomes can lead to a large aohymplicit
fithess models evolving in the face of tradeoffs.
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