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ABSTRACT 
This paper takes an economic approach to derive an evolutionary 
learning model based entirely on the endogenous employment of 
genetic operators in the service of self-interested autonomous 
agents. Reproductive decisions depend on subjective tradeoffs 
between the quality and quantity of offspring, avoiding the 
imposition of an external fitness function as typically used in 
genetic algorithms in favor of evolving, heterogeneous 
preferences over reproductive outcomes, expressed via reaction 
functions. When combined with a density-dependent economic or 
ecological problem, the implicit fitness approach draws a very 
different picture of “fitness” than other evolutionary algorithms. 
An application to learning in a repeated Cournot oligopoly game 
is developed analytically, predictions tested against a 
computational simulation. The result is an evolutionarily stable 
asymmetric equilibrium of much greater average profitability than 
concentrated Cournot-Nash collusion, while supporting a much 
larger population of heterogeneous competitors. Implicit-fitness 
maximizers learn to collude not with their competitors but with 
their immediate ancestors and descendents to overcome short-run 
myopia with precommitments through intergenerational wealth 
transfers. 

Categories and Subject Descriptors 
I.2.8 [Problem Solving, Control Methods, and Search]: 
Heuristic methods; Plan execution, formation, and generation  

General Terms 
Algorithms, Economics, Experimentation, Theory. 

Keywords 
genetic algorithms, implicit fitness, utility, preferences, risk 
aversion, heterogeneity, oligopoly games 

1. INTRODUCTION 
The Genetic Algorithm (GA) has been a popular paradigm for 

evolutionary optimization since its development by Holland [8], 
successfully applied across a wide range of fields. The idea is 
simple—evolve a population of solutions to some problem the 
same way an agriculturalist might improve a strain of corn or 
breeder might refine a line of dogs. The basic mechanics are 
simple as well. The GA usually consists of genetic operators—
mutation to introduce new variation and cross-over to recombine 
existing variation—with selection algorithms that determine how 
this variation is propagated across successive generations. 
Specifically, under selection, the heritability of some variation is 
non-random, such that some variants tend to increase in 
prevalence in the population at the expense of others. This non-
random inheritability of continuously-introduced variation is by 
definition evolution. Over time, the composition of the population 
changes in the direction favored by selection. 

Selection comprises two separate processes. Some members of the 
population are chosen for reproduction (the remainders are thus 
selected out), and these breeders are matched in pairs for sexual 
recombination. The GA is analogous to the artificial selection in 
that the decisions regarding with whom to mate and how many 
offspring to produce are made exogenously to meet external 
criteria. In contrast, evolution via natural selection proceeds from 
endogenous mate choice and breeding decisions made by 
heterogeneous individuals in a population, with reproductive 
behavior itself subject to evolutionary optimization. 

This paper takes a fundamentally economic approach to the 
evolutionary problem. Miller [11] first applied the GA to 
economics, where it has been used in numerous models of 
learning and adaptation. Economics has also provided a platform 
to study the performance of the GA. But economics can also 
provide the framework for a different treatment of selection in a 
new evolutionary learning algorithm based on the interaction of 
subjective beliefs and preferences under density-dependent 
competition. 

The paper proceeds as follows. First, some of the differences that 
arise between endogenous and exogenous approaches to fitness 
and reproduction are outlined, examining some of the problems 
and limitations of selection and learning under the GA. A more 
dynamic, flexible picture of evolutionary optimization is 
suggested. Then, an analytical model is developed from which 
fitness emerges as the implicit result of optimization of individual 
reproductive decisions. An application to density-dependent 
competition in a Cournot oligopoly game is developed 
analytically and implemented in a multi-agent social simulation. 
An asymmetrical profit-earning steady-state equilibrium is derived 

 

 



from density dependence, separate from Cournot-Nash and 
Walrasian outcomes. This and other theoretical predictions are 
compared to the simulation results. Finally, the paper concludes 
with a briefdiscussion of ongoing and future work with this 
promising new approach to evolutionary optimization through 
implicit fitness over economic tradeoffs. 

2. FITNESS AND UTILITY 
2.1 Ex Ante or Ex Post? 
The artificial selection approach taken by the GA requires a 
speculative ranking of all members of the population, such that 
relative representation in the next generation can be parceled out 
proportionally. This exogenously-imposed ranking is determined 
by a so-called “fitness function,” the definition and evaluation of 
which is often problematic. In this context, “fitness” determines 
reproduction and is measured ex ante. 

By contrast, in evolution via natural and sexual selection, 
endogenous mate choice and offspring investment decisions mean 
fitness results from the varying ability of agents to produce or 
capture resources in economic or ecological competition and then 
use these resources to produce competitive offspring in the face of 
tradeoffs. Successful reproduction determines fitness, properly 
measured as the geometric mean growth rate (r ) [16], only 
observable ex post.  

Essentially, utility is the ex ante estimation of the subjective value 
of different outcomes. This is precisely what the GA employs a 
ranking function for, so this will henceforth be referred to as an 
external or exogenous utility function. 

There is no fitness function. The geometric mean growth rate of 
measured in multi-agent simulations can be compared to 
theoretical predictions, but by itself r  is merely a statistic 
collected after the fact. 

2.2 Heterogeneous Preferences 
The GA’s external utility function imposes the same preferences 
upon every individual in the population. Homogeneity is required 
to generate a consistent ordered ranking of all individuals, a 
prerequisite for the application of common selection mechanisms. 
Roulette-wheel selection takes utility cardinally, assigning a 
probability for reproduction proportionally over the relative 
strength of the preference rankings. Tournament selection, on the 
other hand, makes use of an ordinal utility function, sampling 
individuals for pure rank tests under this metric. By exogenously 
specifying a shared utility function of any form, the GA provides a 
shared set of values. Without such conformity, no games of “how 
fitter?” or even “who’s fitter?” can be played. This is the primary 
advantage of the exogenous utility function, but it comes with a 
price. 

Homogeneous utility functions lead to brittle, homomorphic, 
premature convergence to local optima. This is the inevitable 
result of any process of learning by imitation, [17]. What results 
are some of the same issues that plague selective breeders of 
plants and animals. Reduced genetic and phenotypic diversity 
follows naturally from the selection algorithm itself. In some pure 
optimization applications this may not be much of an issue or be 
readily mitigated, but in multi-agent systems where the emergence 
of collective behavior is of interest, diversity is key, particularly in 
complex, open-ended models of social interaction. 

A large number of hacks have been developed over the decades to 
deal with this problem, which reduces replicability of results and 
can make tuning parameters more of an art than a science. For 
example, the deep reliance on stochasticity in the GA’s selection 
algorithm is a tacit admission that the exogenous ranking of 
individuals is often just wrong. Consider time-variant utility, 
where fitness depends on the development of many interacting 
variables through growth, development, and individual learning.  

Freeing the utility function from the role of ranking the population 
allows it to represent individually subjective preferences over 
both economic and reproductive outcomes related through 
tradeoffs. 

2.3 Density Dependence 
The spatial metaphor commonly depicted for the GA is Sewall 
Wright’s “fitness landscape” [21]. Imagine rolling hills over a 
space where distances are measured in some genotypic or 
phenotypic space. Elevations capture cardinal utility preferences, 
in the ex ante sense of external “fitness” functions. Thus imitative 
social learning as a hill-climbing algorithm. For generally fixed 
exogenous utility functions, the landscape is static, affording hill-
climbers permanent vacation at the top of local optima. 

A more dynamic understanding treats fitness as earned 
evolutionary profit. Just as economic profit lures economic 
competition, a positive net evolutionary growth rate ( 0r > ) 
breeds a larger population and stiffens competition for scarce 
resources. Evolutionary equilibrium is defined by a zero-profit 
rule: no net population growth, 0r =  as a long run steady-state 
about which individuals struggle. Spatially, a hill of positive 
fitness represents a growing population. But the hill erodes away 
as competition checks growth rates, and in a population crisis may 
even turn into a sink of net population loss. Evolution never 
stands still so long as competition continues. 

2.4 Population Size 
Because the “system” takes care of reproductive decisions in the 
traditional GA, the population size is generally fixed exogenously 
or allowed to vary predictably with changes in model inputs. In 
many models, results can vary significantly depending on such 
assumptions [1]. The endogenous approach to reproductive 
behavior depends on the size of simulated populations emerging 
through interactions between heterogeneous agents. This has its 
own risks, as the population size may be subject to large swings 
and even endogenous extinction. 

3. A MODEL OF ENDOGENOUS FITNESS 
3.1 Evolutionary Optimization 
The economic approach to evolutionary optimization was 
pioneered by Gary Becker, whose work on modeling the demand 
for children is the basis of the model developed here. Gandolfi et 
al. [7] offer an easy-to-follow review of much of Becker’s work, 
synthesizing an economic vision of evolutionary optimization 
across many different arenas of reproductive and social behavior. 

Optimization is about tradeoffs. While models of the tradeoff 
between the quality and quantity of offspring are nothing new, in 
economics [4] or biology [15], to this author’s knowledge this is 
the first time they’ve served as the foundation for a model of 
evolutionary learning in a social environment. 



This approach is also informed by the application of economics to 
life history theory by Hillard Kaplan, particularly his model of 
parental investment in embodied capital [10]. 

3.2 The Problem 
The subjective evolutionary objective can be defined as follows. 
Instead of being directly concerned with their own wealth or 
health, assume parents maximize some subjective expected utility 
(EU) over different reproductive outcomes: 

 (1)    ( ) ( )( ) ( )( )
,

1

max , ; , ; π
=

Π = ⋅ ⋅∑
n

n q
R

EU n q pmf R n z q R EU q ,  

The choice variables are the quantity n of offspring raised and the 
quality q of each offspring. These are chosen to maximize the 
value of the objective function, which depends on the net 
reproductive rate [ ]1,∈R n —how many of the optimal * 0≥n  

offspring survive to reproduce given the distribution of mortality 
risks. The binomial probability mass function pmf() specifies the 
likelihood of each survivorship outcome R, dependent on the total 
number of offspring and an assumed independent mortality risk 

[0,1]∈z  which may in turn depend on parental investment 

0≥q . The value of each successful reproduction depends on the 
subjective expected (risk-averse) utility of offspring given some 
ecological function that turns parental investment into 
grandchildren, ( ) 0qπ ≥  over its own probability distribution. 

This effectively maximizes the growth rate of the subjective 
valuation of the optimizing agent’s evolutionary lineage, averaged 
over two generations. If the behavior generated by the 
optimization is adaptive, it will tend to correlate with positively 
with geometric mean rate of increase, r—ex post evolutionary 
fitness. 

The expected utility maximization is constrained by the 
reproductive budget Π : 

(2)    ( )Π = + ⋅ +c q n C , 

where Π  comes from monetary or caloric profits from economic 
or ecological activity initially funded by the reproducing agent’s 
own endowment of embodied capital. Some fixed cost of building 
the reproductive system C and marginal cost per offspring c 
determine upon how many risky offspring n the parent can afford. 
Assume semelparous reproduction—one litter of size n and then 
the parent is finished, with every incentive to get the most value 
from its budget before its generation turns over. 

Before attempting to solve the maximization problem, some 
simplifying assumptions will make for analytical tractability, with 
an eye toward a simple computational implementation. First, 
assume subjective certainty about the payoff to parental 

investment, such that ( )( ) ( )( )π π=U q EU q , avoiding the need 

to contend with nonlinearities over additively separable outcomes. 
Next, since all offspring are born and raised together and with no 
means to judge quality before committing to parental investment, 
assume that it’s optimal to invest the same q in each offspring. 
Thus the expected utility of each offspring is equal, allowing us to 
pull this scale factor from the cumulative density function. 
Finally, assume that mortality risks are independent of parental 
investment and across offspring. Tradeoffs between reproduction 
and mortality reduction can be added to the basic model, but for 

now this yields an extremely useful simplification—only the 
expected value of the offspring outcome distribution matters, 
which is well known for the binomial survivorship odds that come 
from n independent trials at probability of success 1− z : 

(3)    ( ) ( )
1

, ;
1=

= ⋅ =
−∑

n

R

n
E n pmf R n z R

z
. 

The vastly simplified maximization problem can be expressed 
with the Lagrangian: 

(4)    ( ) ( )( ) ( )( ), , ; , ,
1

λ π λℑ Π = ⋅ + Π − + ⋅ −
−
n

n q c C U q c q n C
z

. 

Inequality constraints on n and q  can be considered step-by-step 

with the Kuhn-Tucker theorem., but note that the * 0=n  corner 
solution occurs when the parent cannot afford one offspring of 
even minimal 0=q  quality given the fixed and marginal costs of 
reproduction. Otherwise, the budget constraint binds to a single 
offspring at suboptimal quality. 

Taking the first-order necessary conditions with respect to the 
choice variables and shadow price λ : 

(5)    
( )( ) ( )* * *0

1

π
λ∂ℑ = = − + ⋅

∂ −
U q

c q n
n z

, 

(6)    
( )( ) ( )* **

* *0
1

U q qn
n

q z q q

π π
λ

∂ ∂∂ℑ = = ⋅ ⋅ − ⋅
∂ − ∂ ∂

, 

(7)    ( )* *0
λ

∂ℑ = = Π − + ⋅ −
∂

c q n C  

Simultaneously solving equations (5) and (6) allows derivation of 
the optimal parental endowment of capital per offspring: 

(8)    ( )( ) ( )( ) ( )
1

* *

* *
π π

π

−
 ∂ ∂
 = ⋅ ⋅ −
 ∂ ∂
 

U q q
q U q c

q q
. 

Notice that optimal parental investment depends only on the 
subjective return to capital and the marginal cost of each 
offspring. The form of the utility function and expected returns 
function must be known or assumed to analytically solve for the 
optimal quality.  

Critically, since mortality is assumed independent of quality, 
optimal reproductive behavior does not depend directly on the 
rate of surivorship. Random death’s affect on population 
dynamics is instead felt indirectly through economic profit Π  via 
the corresponding reduction in competition. 

Equation (7) can be rearranged to show that the optimal number 
of offspring depends on how many of the optimal quality can be 
afforded within the budget constraint: 

(9)    ( )
*

*

Π −=
+

C
n

c q
. 

Maximizing the sheer number of offspring produced is not an 
optimal strategy. The tradeoff with quality leads to a reduction in 
the number of offspring produced to the extent that parents 



subjectively value the estimated return to offspring capital 
investments. The optimum occurs when equal marginal utility is 
earned from investments in both variables. 

3.3 Heterogeneous Preferences 
Evolutionary models typically assume risk-neutral maximization 
of some measure of net reproductive success. Extensive analytical 
tractability can often be achieved from the use of a linear 
functional form.  And in many cases, the optimal solutions prove 
invariant to positive monotonic transformation, allowing other 
conveniences such as taking logs. By assumption, only averages 
matter. See Charnov [5] for a compact derivation of such a linear 
evolutionary life-history model inspired by the economic 
approach. Linear evolutionary models implicitly assume that 
natural selection will favor expected-value maximizers over risk-
averse utility maximizers who subjectively value additional 
offspring at a diminishing rate. As a result, risk preferences are 
usually ignored by evolutionary models. 

In some problems, including the quality/quantity tradeoff model 
sketched out above, nonlinear risk preferences do change the 
subjectively optimal choice variables. The optimal amount of 
parental investment per offspring in Equation (8) depends almost 
entirely on risk preferences over the distribution of child 
economic outcomes. This will be seen more clearly once a 
specific functional form is assumed. 

A central assumption of Becker’s approach has been that 
preferences are stable and similar across populations [17]. In 
contrast, this model, by letting preferences freely evolve, 
emphasizes the potential for heterogenous outcomes. 

The dependence of the optimal quality and thus number of 
offspring on inherited preferences allows the objective function 
itself to evolve over time. Behavior arises from the interaction of 
personal preferences and private information in pursuit of self-
interested goals. Performance over economic or ecological 
outcomes is ultimately measured in resultant reproductive 
outcomes. These linkages are captured in the evolvable reaction 
functions of Equations (8) and (9). 

4. COURNOT OLIGOPOLY GAME 
4.1 Background 
Consider a simple Cournot competition model, one of the oldest 
and best-studied problems in game theory. Competing firms 
produce a homogeneous good for sale in the face of some 
unknown demand, taking the market price as given. Firms 
compete on the quantity of output produced. Returns to 
production are density dependent, as the price is a decreasing 
function of total production by all firms. A finite population size 
gives the firms market power, the ability to affect the price via 
their own output decisions. Firms must simultaneously decide 
how much to produce, without conspiring with each other. Firms 
can raise the market price by producing less, but those who don’t 
restrict their output earn more profit at the higher price. At the 
same time, producing more than other firms lowers the market 
price, causing negative profits while hurting the over-producer 
most. In both cases, defecting from the Walrasian zero-profit 
equilibrium makes a firm relatively worse off than others. On the 
other hand, there exists a profitable Cournot-Nash equilibrium if 
all firms learn to coordinate in exploitation of their market power, 

colluding to reduce output. The question is, how can firms learn 
to exploit such profits? 

The strategic element of this problem has made it a favorite of 
economists studying competition and learning for well over a 
century. With the modern tools of multi-agent simulation, the 
dynamics of this and other coordination games can be examined 
in new ways. Such results have shown that a major determinant of 
convergence to either equilibrium depends on the type of learning 
algorithm employed. Vriend [20] used the GA in two ways: as it’s 
typically treated as social learning algorithm with each firm as a 
single rule in a population, and second by giving each firm an 
independent population of rules and its own GA to select among 
competing beliefs—a hierarchy devised by John Holland called a 
Classifier System (CS) [9]. The single-rule firms, directly 
competing with each other in both the economic game and GA, 
quickly learn to increase output to the Walrasian zero-profit local 
optimum. In contrast, when the GA operates on rules in the CS, 
the composition of the multi-ruled firms evolves independently of 
other firms under an individual learning algorithm, and collusion 
to the profitable Cournot-Nash equilibrium is achieved. 

In both cases, the GA was functionally identical, using wealth 
earned from playing the oligopoly game as fitness with a fixed 
number of firms. The difference is in how feedback from the 
economic competition interacts with the evolutionary learning 
algorithm. The outcome of the Cournot coordination game 
financially rewards those who defect less from the Walrasian 
outcome, improving their relative fitness ranking, the so-called 
“spite effect” [20]. Untethering the reproduction of competing 
individual rules from economic competition provides a shield 
from social punishment in a ranked fitness system.  

4.2 Investment and Quantity Competition 
Firms in the single-stage Cournot model compete on quantity. The 
embodied capital provided via parental investment comes in the 
form of a capacity constraint on a firm’s output. Thus production 
is free up to this point, paid for by parental investment. The 
ultimate tradeoff is between the quantity of offspring produced 
and the quantity of output each offspring can produce. 

Parental investment is a sunk cost, irrelevant to the production 
decision of each offspring other than providing an upper bound 
for production with no marginal costs of their own. Because 
profits are proportional to individual output, incentives ensure 
production satiates the endowed capacity constraint. These short-
run incentives are what drive competition to the Walrasian zero-
profit outcome.  

Firms can learn to exploit their market power by utilizing their 
investment in offspring capacity constraints to restrict competition 
in the next generation. Equilibrium with a positive price is 
possible because firms can constrain the behavior of future 
generations for their own long-term genetic benefit. 

4.3 Density-Dependent Steady State 
The long-run positive-economic-profit equilibrium in the 
evolutionary game is different from the Cournot-Nash outcome. 
Consider the density-dependent steady state where the total 
revenue from the Cournot game equals the amount of capacity 
supplied onto the market by parents: 

(10)    ( )Q P Q Q= ⋅ . 



This reduces to: 

(11)    ( ) 1P Q = , 

Which is simply the marginal cost of capital sunk by parents to 
claim space for their replacement in the next generation. At the 
density-dependent steady state firms earn one unit of profit for 
each unit invested by their parent into their endowment. In turn, 
the next generation’s positive Cournot profits are invested into the 
production capacity of the next generation, so that net 
evolutionary profits are zero, with no geometrically average 
population growth, i.e. 0r =  on average. 

5. COMPUTATIONAL EXAMPLE 
5.1 Method 
A simple computational implementation of the above economic 
and evolutionary models was developed to test the feasibility and 
stability of the evolutionary steady-state. The operation of the 
simulation is simple. Each generation, each firm produces a 
quantity of output for sell in the competitive Cournot market. 
Production is subject to capacity constraints increased by parental 
investment, with zero marginal cost to the producer as this 
production has already been paid for. The total market supply is 
added up and equated with the static demand schedule. The 
nonnegative price which clears the market is quoted and trades 
take place, any profit parceled out proportionally to the level of 
output of each firm.  

Then, firms take stock of their profits and make reproductive 
decisions using their evolved reaction functions. Essentially, 
reproducing firms endogenously hire genetic operators to create 
offspring to their own quality specifications, investments in 
quality taking the form of precommitments to levels of output in 
the net generation by way of embodied capital reflected in 
capacity constraints. New offspring make their own decisions as 
the cycle is repeated indefinitely. 

The evolution of the system is determined by the actual 
mechanisms for forming beliefs and revealing heritable 
preferences. Details are fleshed out below. 

5.2 Beliefs 
Preferences serve to evaluate private beliefs about the state of the 
world. The structure and complexity of these beliefs plays a 
critical role in the learning method employed. To determine the 
optimal investment in offspring, an agent needs some way to 

evaluate the productivity of such investments, ( )*π q . In the 

Cournot market, with a common market-clearing price P  
dependent on total production Q , firm profits are paid as: 

(12)    ( ) ( )0 0q P Q qπΠ = = ⋅ ,  

where 0q  is the capacity constraint chosen by the active firm’s 

parent. Suppose that firms just take a linear extrapolation from the 
markup they received when producing up to capacity in order to 
estimate the productivity of parental investment across all q , 
naively believing their quality choice is unable to move the 
market price.  

(13)    ( )( )
0

E q q
q

π Π= ⋅ . 

The expected marginal profit of investment in children’s capacity 
constraints is just the average return the firm’s parent received on 
its own investment. This simple model of adaptive expectations 
provides a very myopic short-run subjective view of the Cournot 
market, but it will prove sufficient in the endogenous fitness 
model. All it requires of firms is the ability to remember the size 
of their own capacity constraints relative to their profit earned. 

5.3 Heterogeneous Preferences 
As first proved by von Neumann and Morgenstern [19], a 
nonlinear utility function can be used cardinally or ordinally to 
represent preference rankings given certain assumptions about the 
rationality of decision-making behavior. More complex methods 
of capturing preference relations can reproduce some of the 
regular irrationality revealed by behavioral experiments, for 
example Pin’s [13] application of the GA to evolve rankings over 
simple three-state lotteries in a Machina triangle, but the 
simplicity and analytical possibilities offered by utility functions 
make them an obvious first choice. The contrast with the 
traditional GA is in how the utility functions are used. 

Given generally increasing returns to parental investment in 
evolutionary Cournot competition, preferences must be 
sufficiently risk-averse to generate the subjectively diminishing 
returns to investment required for reproduction to be a expected-
utility-maximizing strategy. Otherwise the demand for additional 
quality will never be sated. 

It will be necessary to assume a general functional form that can 
be implemented in a computational model and used to analytically 
solve the equilibria in question to compare with empirical results. 
Something that simplifies the math and is easily implemented 
would be ideal. Suppose utility over outcomes can be specified by 
a three-parameter power function: 

(14)    
( ) ( )

( ] [ ) ( ]
0

0,1 , 100,100 , 0,1

α

α
= ⋅ + >=

∀ ∈ ∈ − ∈

U x k x b

k b
. 

Note that 1α =  implies a preference for the risk-neutral mean of 

any distribution, while the power ( )0,1α ∈  can result in either 

risk aversion or proclivity depending on the offset parameter b  
and changes in profits, where as b  moves from the positive 
through zero to negative numbers, risk preferences shift from 
decreasing to constant to increasing relative risk aversion.  

A firm’s preferences are represented simply by a set of three real-
valued numbers in [ )0,1  appropriately scaled to the bounds 

reported in Equation (14). These preferences are inherited and 
subjected to a small probability of point mutations during 
reproduction, in which case a new preference parameter is 
randomly generated. This ensures that the entire parameter space 
can be easily explored to avoid restriction to purely local optima. 

The form in Equation (14) is convenient because of the scaling 
behavior of successive derivatives. Plugging in the simple 
adaptive expectations belief formation rule, optimal parental 
investment simplifies to: 



(15)    ( ) 1* 10 1 α
α

−− = − − Π 

bq
q c

k
. 

The optimal amount of investment per offspring depends purely 
on the three preference parameters, the adaptive expectation of 
beliefs, and the marginal cost of offspring production. The 
optimal number of offspring is a slightly messier reaction 
function: 

(16)    
( )

*

110 1 α
α

−−

Π −=
  + − −  Π  

C
n

bq
c c

k
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Note that the reaction function is only defined for 0α ≠ , thus 
risk-neutral preferences are inconsistent with reproductive 
demand. Since value in the model comes from the diversification 
of risk, this is not surprising, but the endogenous fitness approach 
solidly rejects traditional expected-value maximization. 

5.4 Difficulties and Expected Results 
Riechmann’s [14] comparative study of learning methods’ ability 
to learn collusion in a Cournot-Nash equilibrium depended on 
informational requirements, the ability to store memories, and the 
computational and rationality challenges in processing it all. How 
sophisticated must be the decision-making apparatus? With 
implicit fitness via subjective expected utility as a new entrant, 
how should it be expected to perform? Being an individual as 
opposed to social learning model is a good start, and the 
algorithm outlined above does remember its own quantity 
constraint after producing, a memory storage requirement useful 
to learning to exploit positive profits. 

All models that successfully converge on the Cournot-Nash 
equilibrium required computational complexity equivalent to 
maximization. The simple imitative learning of the GA is its 
biggest weakness. In the endogenous fitness approach, given the 
optimization model above, maximization is implicit even when 
only using the derived reaction functions for quality and quantity. 
One place additional complexity is useful is in the handling of 
non-integer optimal offspring sizes. Simple hacks such as 
rounding or truncating decimals applies differential and 
unpredictable harm to firms. A better approach would be to use 
the subjective expected utility function itself in a direct 
comparison of the two nearest integer outcomes. This is the 
method taken in the numerical simulation reported here. 

Riechmann’s results suggest that information on aggregate 
demand is a necessary condition for the Cournot-Nash outcome, 
information that the implicit fitness maximizers lack. As a result, 
the simple model sketched above is ill-equipped to learning its 
effect on demand. The prediction of the endogenous fitness model 
however, is that coordination not with other competitors in the 
current population but with one’s parents and own offspring will 
be key to achieving positive long-run profits market without such 
global knowledge. The computational model will serve to test this 
hypothesis. 

The GA with artificial selection fails on all counts above. How 
does the endogenous fitness model perform? First it must be 
further parameterized. 

5.5 Setting Parameters 
Suppose demand is a power law relationship, with parameters 
chosen such that price is a decreasing function of total market 
quantity Q : 

(17)    ( ) β= + ⋅P Q a m Q  where 
1=

=∑
N

i
i

Q q . 

This facilitates easy calculations of total and marginal revenues. 
On the cost side, zero marginal reproductive costs are problematic 
in the endogenous fitness approach. They restrict preferences to 
increasing relative risk-aversion, 0<b . Also, a rare mutation 
causing extreme risk aversion results in a lineage possessed with 
the desire to diversify itself into a collection of infinitesimal 
pieces as rapidly as possible. A positive marginal cost to offspring 
insures against such extreme reproductive behavior and swings in 
population size. Most importantly, it’s the diversion of output 
capacity and potential profits into reproduction that produces the 
interesting tradeoffs in the model. No cost to reproduction, no 
tradeoff. It’s the real cost of reproduction that allows a firm to 
commit the next generation to a lower level of output and 
potentially lead to positive-profit outcomes. 

This dilemma can be solved with careful thought about the fixed 
cost of building a reproductive system. Consider how integer 
constraints generally prevent agents from fully maximizing their 
quality and quantity decisions. Together with satiation of the 
reproductive budget constraint, this implies that many agents will 
be induced into producing a single lower-than-optimal offspring. 
Due to preferences and beliefs, these agents would prefer not to 
reproduce but to keep all investments in the Cournot market for 
another turn, and then see if their profits afford them an optimal-
quality offspring. Setting the fixed cost equal to the negative of 
the marginal cost affords agents their first reproduction for free. 
This fixed cost does not affect the reaction functions. Thus only 
reproductive decisions that increase the geometric mean growth 
rate r  incur costs.  

Simulation parameters are listed in Table 1. Correcting the 
marginal cost of replacement with a negative fixed cost as 
mentioned is critical to the emergence of cooperative outcomes. 
Demand is a simple fixed power law relationship. The initial 
number of firms with the same capacity constraint is generated, 
each with random preferences. A small exogenous mortality risk 
is induced to jog any long-term coalitions that develop and 
eventually kill any single-firm monopoly to end the simulation,  

Table 1. Simulation Parameters 

Parameter Value Description 

C  -10.0 Fixed cost of reproduction 

c  10.0 Marginal reproduction cost 

a  -1.0 Demand offset 

m  5000.0 Demand scale 

β  -0.99 Demand power 

0N  20 Initial number of firms 

0q  10.0 Initial quantity constraint 



µ  0.01 Mutation rate per pref 

z  0.001 Exogenous mortality risk 

6. DISCUSSION 
6.1 Analytical Predictions 
The density-dependent steady state condition is given by Equation 
(11). Using the demand parameters in Table 1 and the assumed 
functional forms, the predicted total output level is 

2,705.6SSQ ≈ , well below the competitive Walrasian outcome of 

5,449.2PCQ =  The evolutionary model is predicted to capture 
SSQ  in profits from the Cournot market and then spending the 

same on capital investments in production capacity for the next 
generation, such that the net reproductive rate is zero. The number 
of firms at this steady-state equilibrium is indeterminate, and thus 
dependent on the dynamics of competition between heterogeneous 
preferences: 
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As such, there’s no single Cournot-Nash equilibrium to use a 
basis for comparison. But it can be shown that the steady-state 
level of cooperative output is not a Cournot-Nash outcome, which 
are given by: 
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Meanwhile, the density-deendent steady-state outcome is given 
by: 

(20)    
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For Equation (19) to include Equation (20), 0
N

β = , a 

contradiction since 0β < . Interestingly, the number of Cournot-
Nash firms required to produce the steady-state level of output 
can be found by solving the Cournot-Nash equilibrium condition 
for this amount, as it depends only on demand parameters: 

(21)    ( )
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1
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 . 

For the numerical example in question, ( ) 1.98CN SSN Q = . A 

Cournot duopoly would not quite be able to maintain the joint 
profits achieved in the asymmetrical density-dependent steady-
state. Does this mean the evolutionary steady-state only supports a 
low number of firms? The simulation model can help resolve the 
issues. 

6.2 Computational Results 
Computation experiments are in their infancy on this project, but 
initial results can be briefly described. With the above 
parameterization, the model rapidly and invariably converges to 
the density-dependent steady state earning positive economic 
profit as predicted. This is not surprising given the assumptions 
made above, as intergeneration resource transfers must pay for 
themselves in the repeated equilibrium. 

What is intriguing in achieving such a flow of profits is that 
they’re not monopolized by a small number of firms taking 
advantage of increasing returns to scale. Under riskier 
environments, with high exogenous mortality rates, the noise is 
more easily exploited by larger competitors and lock-in occurs, 
but under milder conditions these high-profit steady-states support 
a large number of competitors.  

Even though there’s hardly any mortality risk, a tenth of a percent 
chance per generation, heterogeneous preferences induce firms to 
cooperatively withhold enough production to raise the market 
price significantly above each generation’s own marginal 
production costs, extracting more profits from the Cournot market 
than a cooperating duopoly. 

With asexual reproduction and near 100% heritability this 
effectively creates an overlapping generations model where each 
“generation” could be considered a time-specific manifestation of 
a single agent, preferences fixed but for rare mutations while 
beliefs are updated over multiple periods until accumulating 
enough profits to occasionally diversify through reproduction, 

2≥n . Parental investments in the form of precommitted quantity 
constraints allow these overlapping selves to overcome the time 
inconsistency problems of their myopic short-run expectations, 
restricting output to produce higher per-firm profits than the 
Cournot-Nash equilibrium. Long-run cross-generational 
evolutionary profits still converge to zero with zero net population 
growth. 

The relationship between fixed and marginal costs supports the 
evolution of density-dependent populations in the Cournot 
market. This is because parental investment is constant returns to 
scale in the no-growth case when the effective marginal cost is 
zero. If returns to scale are increasing at the long-run evolutionary 
equilibrium ( 0=r ), the market will be entirely captured by a 
single monopolist. Using the fixed cost to negate the positive 
externality caused by a marginal cost for the first reproduction 
assures that increasing returns only kick in for 2≥n , allowing the 
emergence of economically profitable multi-firm oligopolies at 
the density-dependent steady state. 

7. CONCLUSION 
With endogenous fitness, every agent is effectively equipped with 
its own set of genetic operators at the disposal of its subjective 
reproductive preferences, constrained by the agent’s ability to 
acquire profits from economic or ecological competition. The 
price a firm pays to use these genetic operators is endogenously 
determined by the firm itself, reflecting the subjective value 
reproduction yields from decreased exposure to evolutionary risk. 
Selection is natural in that agents who fail to compete and 
lineages that fail to spread are removed from the population over 
time. But the genes of different agents are not in direct 
competition as in a traditional GA; instead they compete 
indirectly through their effects on behavior. The result is an 
individual evolutionary learning algorithm that stands apart from 
existing methods. 

As this work is in its preliminary stages, much needs to be done to 
analytically and experimentally explore the parameter space and 
flesh out the character of the density-dependent steady state. In 
addition, many obvious extensions suggest themselves. First it’s 
natural to want to explicitly model probabilistic economic 



outcomes to study the link between reproductive and economic 
risk behaviors. A fuller overlapping generations approach would 
allow the incorporation of a larger host of economic and 
biological tradeoffs, including growth versus investments in 
improved survivorship [6]. Sexual reproduction with endogenous 
evolving mate choice algorithms can be derived from the work of 
Becker and others. Discounting by subjective temporal 
preferences as well as relatedness for inclusive fitness is possible. 
The options are endless, but with each extension analytical 
solutions become more difficult. Still, the specification of the 
reaction functions is simpler than developing good explicit utility 
functions for complex tasks. And as derivations become 
intractable the methodology of directly evolving non-parametric 
reaction functions rather than deriving structural forms from 
underlying optimization models may prove fruitful. 

The intersection of economic and evolutionary approaches to 
complex dynamic problems has proven very rich over the last 
several decades, a trend that seems to be growing as multi-agent 
models with learning and complex social dynamics are applied to 
more and more problems. The extension of economic preferences 
to evolutionary outcomes can lead to a large array of implicit 
fitness models evolving in the face of tradeoffs. 
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