
BFS vs. CFS � Scheduler Comparison

Taylor Groves, Je� Knockel, Eric Schulte

11 December 2009

Abstract

In 2007 a dispute erupted on the Linux kernel mailing list. The dispute was between Con
Kolivas, creater of the Staricase Deadline (SD) scheduler and Ingo Molnar, whose newly released
Completely Fair Scheduler (CFS) was to be added to the mainline. CFS employed concepts
previously envisioned by Kolivas and the dispute ended with Kolivas leaving the mainline kernel
development community. Two years later Kolivas released the Brain Fuck Scheduler (BFS) with
a focus on a simplistic design, tailored towards interactive workloads on commodity personal
computers with a reasonable number of cores. We review the mechanisms of the CFS and BFS
schedulers and test both on a variety of single-user hardware over a variety of workloads with a
strong focus on the range of "normal" PC use. Our results indicate that scheduler performance
varies dramatically according to hardware and workload, and as a result we strongly encourage
Linux distributions to take an increased level of responsibility for selecting appropriate default
schedulers that best suit the intended usage of the system.

Introduction

Given the wide range of hardware running the Linux kernel it is di�cult to provide a single CPU
scheduler that performs well in all platforms and use cases. Many metrics of scheduler performance
such as latency and turnaround time can be at odds � improving one metric will often reduce
performance on another. We investigate the performance of two CPU schedulers � the �Completely
Fair Scheduler� (CFS) and the �Brain Fuck Scheduler� (BFS) � available for the modern Linux
kernel. Our tests are primarily aimed at the personal computers environment. We �nd that often
the best scheduler depends on the system and expected use cases and as a result we conclude that
it is appropriate to select a CPU scheduler with these factors in mind.

Background

Scheduler Overview

CPU/IO Burst Cycle

Processes are constantly alternating between CPU burst, doing low level operations like loads,
stores, adds, etc. and I/O burst in which the system is waiting. In general the CPU burst duration
is exponential with a large number of short burst and a increasingly small number of large bursts.
The type of program that is being run can change this curve substantially, so it is important to
tailor the cpu scheduler for the tasks at hand, predicting whether it will be a CPU-bound or I/O
bound program.

1

Filling the IO Gap

When a process makes a request for I/O such as a system call like read(), if the device driver
that handles the request is busy then process is put on a wait queue. The driver is responsible
for generating an interrupt, which wakes up this thread once the request for I/O has been ful�lled.
Once a process has been determined to be idle, its the schedulers job to select a process from the
group of ready processes and allocate the CPU to that process.

After an I/O request has been ful�lled an interrupt is triggered and if the thread can run again, a
need_resched �ag is set for the scheduling data structure. When a process is restarted the dispatcher
handles the context switch change in user mode, and ensures that the program restarts from the
proper location.

Some sort of data structure manages the order that the scheduler pulls a process from memory
for execution. This can be anything from a FIFO queue to a red-black-tree, but all schedulers use
this data structure with some unit of measurement such as CPU burst duration, order of requests,
or priority.

What's important when comparing schedulers

It is important CPU schedulers to maximize

CPU utilization How saturated the CPU is from 0 to 100%.

Throughput The number of processes completed per unit of time.

It is important for CPU schedulers to minimize

Turnaround time The total time taken for a process to complete once started.

Waiting time The total time a process spends in the ready queue.

Scheduler latency The time between a wakeup signal being sent to a thread on the wait queue
and the scheduler executing that thread. Including the dispatch latency � the time taken to
handle a context switch, change in user-mode, and jump to starting location.

• Reducing Scheduler Latency

Running the scheduler more frequently will reduce scheduler latency since a thread will spend
less time waiting in the ready state. However, there is a trade-o� since running the scheduler
more frequently will result in more time spent scheduling and less time actually performing
the task at hand.

Ideally the scheduler will run as soon as possible, after a interrupt has occurred which wakes
up a thread.

Di�erent Strokes for Di�erent Folks

Most of the criteria for determining a good scheduling algorithm depends on the type of work being
done on the machine. In general this work can be classi�ed into three categories: Batch, Interactive,
and Real Time.

2

• Batch: this category is less concerned with timing and latency but rather seeks to maximize
the amount of work accomplished in a given time. Batch workloads are characterized by lack
of user interaction.

• Interactive: being able to service the user quickly is paramount. Schedulers that focus on
interactivity respond to input like key strokes consistently with a low variance and low average
time to wake up a sleeping process.

• Real-Time: Systems focused on real-time processes such as live video encoding with multi-
media playback, or sensor networks and will want to reduce latency and variance and strictly
enforced priorities. The requirements of the scheduler for systems that are focused on real-time
processes are the most stringent of the three categories.

Con Kolivas and LKML

Con Kolivas � the author of the BFS � is an anesthesiologist by trade. A timeline of his involvement
in the Linux kernel development is provided 1. His relationship with the Linux kernel developers
was often times fractious, and there is an extensive online record of their public arguments 1 2.

Scheduler Implementations

Multilevel Feedback Queues And The O(1) Scheduler

Many commodity operating system schedulers use multilevel feedback queues. These include Linux
prior to 2.6.23, as well as Windows NT-based operating systems such as Windows XP, Vista, and
7 3. These schedulers use separate queues to give preference to interactive and I/O bound tasks.
These tasks are prioritized to increase interactivity and I/O utilization.

With multilevel feedback queues, new tasks are initially queued into a middle priority queue.
If a task uses its entire timeslice, then it is moved down to a lower priority queue. If a task
blocks before its time timeslice is up, then it is placed in a higher priority queue. Depending on
the implementation, to reward I/O bound tasks, tasks on higher priority queues can have longer
timeslices and be scheduled before tasks on lower priority queues.

Consider Linux prior to 2.6.23, which uses the O(1) scheduler � so named because selecting
the next task to run takes at most a constant amount of time. The O(1) scheduler implements
a multilevel feedback queue similar to the above. With this scheduler, tasks start with an initial
static priority, or niceness, in the range of [-20,20) where a lower niceness is a higher priority. The
tasks priority is adjusted depending upon its perceived interactivity. Higher priority tasks a given
larger timeslices and preferential scheduling 4.

The O(1) scheduler guarantees constant runtime by maintaining two runqueues per CPU, the
active runqueue and the expired runqueue. These queues are implemented using a FIFO list for
each possible priority. After a task uses its timeslice its priority is potentially modi�ed, and it is
placed on the expired runqueue. After all tasks on the active runqueue have been given time on the
CPU the expired runqueue is swapped with the active runqueue. Since all of these operations are
O(1), the O(1) scheduler is justi�ed in its naming

1http://article.gmane.org/gmane.linux.kernel.ck/7850
2http://marc.info/?l=linux-kernel&m=125229579622556&w=2
3http://www.ibm.com/developerworks/linux/library/l-scheduler/
4http://www.informit.com/articles/printerfriendly.aspx?p=101760&rll=1

3

http://article.gmane.org/gmane.linux.kernel.ck/7850
http://marc.info/?l=linux-kernel&m=125229579622556&w=2
http://www.ibm.com/developerworks/linux/library/l-scheduler/
http://www.informit.com/articles/printerfriendly.aspx?p=101760&rll=1

1999

Kolivas begins follow-
ing Linux Kernel de-
velopment. Soon he
begins managing the
-ck patchset

2002

Kolivas is interviewed
about ConTest a
benchmarking tool
gaining popularity
among kernel devs a

ahttp://kerneltrap.org/node/465
2004

Kolivas releases his
�Staircase scheduler�
a b

ahttp://lwn.net/Articles/87729/
bhttp://lkml.org/lkml/2004/3/24/208

2007

1. Kolivas releases an updated version
named the �Rotating Staircase Deadline
Scheduler� (RSDS) a. Linus seems
amenable to inclusion of RSDS into the
kernel mainline

2. RSDS develops into the �Staircase
Deadline� (SD) scheduler

3. Ingo Molnar releases the �Completely
Fair Scheduler� (CFS) which uses many
of the ideas �rst proven in Kolivas' SD
scheduler b

4. Kolivas leaves Linux kernel development

ahttp://lwn.net/Articles/224865/
bhttp://kerneltrap.org/node/8059

2009

Kolivas is inspired by an xkcd car-
toon to release the �Brain Fuck
Scheduler�.

Figure 1: Timeline

Since the O(1) scheduler maintains a runqueue pair per CPU, separate CPUs rarely try to access
the same runqueue, and tasks tend to stay on the same processor. Because of these properties, the
O(1) scheduler scales well to highly parallel systems; however, the scheduler must occasionally
perform explicit load balancing to ensure tasks are evenly distributed over all CPUs 5.

One problem with schedulers implemented using multilevel feedback queues is di�erentiation
of CPU bound tasks from I/O bound tasks. Consider a scheduler that always rewards a task that
blocks before its timeslice is up. Then a malicious user could write a task that blocks moments before
its time slice has expired in order to be e�ectively CPU bound but still acquire the privileges of an
I/O bound task. To help ameliorate this problem, the O(1) scheduler uses complicated heuristics
to detect when a task is I/O bound. However, in practice, this adds more exploitable corner cases
and the problem quickly devolves to a game of cat and mouse.

4

http://kerneltrap.org/node/465
http://lwn.net/Articles/87729/
http://lkml.org/lkml/2004/3/24/208
http://lwn.net/Articles/224865/
http://kerneltrap.org/node/8059

Priority

-2

-1

0

2

task 124

task 108

task 100

task 98

task 72 task 104 task 204

task 80 task 88

Figure 2: O(1) Scheduler data structure

task 123
vr = 801

task 194
vr = 504

task 111
vr = 907

task 102
vr = 482

task 204
vr = 794

task 105
vr = 810

task 388
vr = 944

Figure 3: CFS scheduler data structure

Fair Scheduling And The Completely Fair Scheduler

The Completely Fair Scheduler (CFS) was written by Ingo Molnar. It was o�cially included in
Linux 2.6.23, and it seeks to address a number of problems with schedulers, including issues of
fairness and malicious users.

CFS is an implementation of fair-share scheduling policy. A fair-share scheduling policy divides
the CPU time among entities, such as users, groups, or tasks themselves. Although CFS supports
fair-share scheduling on the user and group levels, its name originally refers to fair-share scheduling
on the task level.

Ingo Molnar explains this by using the thought experiment of an ideal, multi-tasking CPU 6.
This CPU runs each task in parallel at an equal fraction of the CPU's speed. For instance, if four
tasks are running on it, then each task runs at 25% speed. On this hypothetical CPU, there is no
state in which one task has gotten more of the CPU than another, since all tasks are running on it
at once, so all tasks have a fair share of the CPU.

CFS models this hypothetical processor by keeping track of how unfairly each task has been

5http://www.ibm.com/developerworks/linux/library/l-scheduler/
6http://lwn.net/Articles/357451/

5

http://www.ibm.com/developerworks/linux/library/l-scheduler/
http://lwn.net/Articles/357451/

treated relative to the others. On the hypothetical ideal CPU, unfairness would always be zero but
since a real CPU can only schedule a �nite number of tasks at a time, unfairness will inevitably be
nonzero when there are more tasks than CPUs. When one task is running on a CPU, this increases
the amount of CPU time that the CPU owes to all other task. CFS schedules the task with the
largest unfairness onto the CPU �rst.

CFS manages tasks using a red-black tree. Inside of the tree, tasks are in descending order by
their total unfairness, i.e., by the time of their future execution � since the task presently being
treated the most unfairly will be scheduled next. The scheduler selects the next task by following
left nodes to choose the leftmost node in the red-black tree. Because it uses a red-black tree CFS,
requires O(logn) time to schedule a task where n is the number of tasks.

When a task has �nished running on the CPU, all of the other tasks in the tree need to have
their unfairness increase. To prevent having to update all of the tasks in the tree the scheduler
maintains a per-task vruntime statistic. This is the amount of total nanoseconds that the task has
spent running on a CPU weighted by its niceness. Thus, instead of updating all other tasks to be
more unfair when a task has �nished running on the CPU, we update the leaving task to be more
fair than others by increasing its virtual runtime. The scheduler always selects the most unfairly
treated task by selecting the task with the lowest vruntime.

When a new task is created, it is assigned the minimum current vruntime. To facilitate this, the
minimum vruntime statistic must also be maintained. This minimum vruntime value is also used
to handle over�ow of the vruntime value so that vruntime - min_vruntime can be reliably used to
sort the red-black tree.

With CFS, tasks have no concept of timeslice but rather run until they are no longer the most
unfairly treated task. To reduce context switching overhead. CFS divides time into a minimum
granularity. The granularity value can be used to control the tradeo� between overhead due to
context switching and latency 7.

When a task is awakened from blocking, its new vruntime is the larger of its old vruntime
and min_vruntime - sched_latancy, where sched_latency is a time constant. Thus, if a task has
been blocking long enough, then its vruntime will be sched_latency smaller than the currently
scheduled task, assuring that the currently running task will be preempted and the awakened task
will be scheduled. Using min_vruntime - sched_latency as a lower bound on an awakening task's
vruntime prevents a task that blocked for a long time from monopolizing the CPU 7.

CFS also supports fair-share scheduling on the user and group levels, but these are not enabled
by default. When enabled, this prevents a user or group from unfairly monopolizing the processor
by greedily creating more threads.

Like the O(1) scheduler, CFS maintains separate data structures for each CPU. This reduces
lock contention but requires explicit load balancing to evenly spread tasks across processors.

A modular scheduler framework was introduced into the kernel along with CFS. A new scheduler
can be implemented in the Linux kernel by the following procedure:

• Create your own sched_foo.c �le in kernel/ and implement sched_class with functions for
the kernel's scheduler to call.

• Associate your scheduler with a `#de�ne SCHED_FOO N' constant in include/linux/sched.h.

To pair your scheduler with a running task, you may then call the sched_setscheduler()

system call with the process id and your scheduler's constant.

7http://lkml.org/lkml/2008/7/10/70

6

http://lkml.org/lkml/2008/7/10/70

Brain Fuck Scheduler � An Alternative

task 108

vdeadline = 140
last CPU = 0

task 72
vdeadline = 100

last CPU = 1

task 104
vdeadline = 102

last CPU = 0

task 204
vdeadline = 108

last CPU = 1

Figure 4: BFS data structure

The Brain Fuck Scheduler (BFS) was written by Con Kolivas as an alternative to the CFS
scheduler. Although it is not in the mainline Linux kernel, Kolivas maintains BFS patches against
the latest version of the kernel. BFS does not use and removes the modular scheduler framework
introduced by the CFS patches.

BFS takes a di�erent approach than both the O(1) scheduler and CFS. BFS uses runqueues like
O(1); however, unlike O(1), which has both an active and an expired runqueue per CPU, BFS has
only one system-wide runqueue containing all non-running tasks.

Schedulers with multilevel feedback queues generally have to use complex heuristics for deter-
mining whether a task is I/O bound. Moreover, schedulers that maintain di�erent data structures
per CPU have to use complex algorithms for load balancing across CPU's. BFS removes the need
for these complicated heuristics and algorithms by using a single system-wide queue to determine
the next scheduled task

BFS implements an earliest e�ective virtual deadline �rst policy and keeps track of the virtual
deadline of each task. A virtual deadline is the longest time that any two tasks with the same
niceness will have to wait before running on the CPU. When a task requests CPU time it is given a
timeslice length and a virtual deadline. The deadline is virtual because there is no actual guarantee
that a task will be scheduled by that time. However, tasks with earlier virtual deadlines will always
be scheduled before tasks with later virtual deadlines. Tasks with higher priority are given earlier
virtual deadlines

When a task runs out of its timeslice, it is rescheduled according to the algorithm above; however,
when a task blocks, it keeps the remainder of its timeslice and its virtual deadline. This grants the
task higher priority when the task is rescheduled, increasing the interactivity of the system 8.

To help improve cache performance, BFS weights the virtual deadline of a task as seen by a
CPU if that CPU does not share a cache with the CPU on which the task was previously running.
This creates an incentive for a task to stay with its cache 8.

Task lookup requires an O(n) scan over the entire queue. Since BFS maintains only a single
queue for all processors and since virtual deadline is CPU-relative, there is no absolute ordering of
tasks by their virtual deadline. Thus, tasks cannot be placed in a tree. As a result, BFS scales
poorly with large amounts of tasks. Moreover, a shared data structure among all CPU's increases
lock contention. However, as a bene�t to sharing a data structure among CPU's and because of a
lack of any load balancing algorithms, tasks can be quickly scheduled on a di�erent CPU that has
become idle, often providing lower latency.

8.

7

Experiment

Methodology

Kernel Patching

We installed two kernels: one for testing CFS and one for testing BFS. To install the kernels, we
downloaded the 2.6.31.6 source code from http://www.kernel.org and made two copies. For one, we
left the source code unmodi�ed, and for the other we patched it with version 311 of Kolivas's BFS
patch. For con�guration of both kernels we used Ubuntu 9.04's con�guration �le /boot/con�g-
2.6.28-16-generic and then used the default values for the new con�guration options instroduced
since Ubuntu 9.04's version. For compilation and installation of the kernels we used the debian
tool make-kpkg. The make-kpkg tool compiles the kernel source and outputs debian packages. We
installed these debian packages and thus were able to choose from either our CFS kernel or our BFS
kernel from the grub boot menu when the machine starts up.

Test Execution

• latt.c

Latt is a tool for benchmarking schedulers. It was written by kernel hacker Jens Axboe with
input from Ingo Molnar and Con Kolivas. It benchmarks latency and turnaround time under
various workloads. We used the version from the latest commit on 2009-09-10 from the tool's
git repository.

Latt benchmarks latency and turnaround time by gzipping random data in n background
processes. Each background process begins by blocking on a read() from a pipe created by
latt. To measure latency, latt writes to each background process through the pipe the time
at which the write() took place. Each background process then records the time that their
read from the pipe unblocks. Latency then is the time read() unblocked minus the time latt
wrote to it. To measure turnaround time, each background process then gzips a large array of
random data. Turnaround time then is the time the gzipping �nished minus the time at which
latt originally called write() on the pipe. The background process then writes its statistics
back to latt through the pipe and returns to blocking on trying to read() from the pipe. Latt
will allow the process to sleep for a short, random amount of time, and then it will restart the
test by writing to the pipe again.

Latt also requires that a shell command be speci�ed for latt to run in addition to running the
n background processes. To have latt just test its n background processes for 20 seconds, one
can pass it `sleep 20s' to have the shell command be a trivial process that sleeps for 20 seconds.
Otherwise, other commands can be run simultaneously with latt's background processes to
test their performance under heavy load.

• Make - Turnaround time focused tests

Our tests compiling VLC from source is designed to test the turnaround time of a scheduler.
The VLC source is composed of 691 �les of C source code, containing more than 416 thousand

8

http://www.kernel.org

lines of code. This test of make is aimed at systems which require minimal interactivity with
a high volume of work. For our tests we use the command:

make −j<number_of_jobs>

The -j option launches the speci�ed number of processes, for independent rules in the make
�le, so that the compiling can occur in parallel. For our tests we used a j ranging from one to
four.

• Video - Latency focused tests

In order to test some of the requirements of real-time systems, one series of our tests looks
at dropped frames during multimedia playback with increasing client workloads. A single
video was chosen at two scales for the tests: 853X480 and 1280X720. The video was the Big
Buck Bunny trailer 9, which attempts playback at 25 frames per second and 48KHz audio,
compressed with H.264/MPEG-4 AAC. The clips' duration is 32 seconds.

To select a video application to use for this test's playback, we examined two players initially:
Videolan's VLC and Mplayer. We chose to use Mplayer for our �nal benchmarks. As we
examined VLC, it was discovered that the player lacked some of the features we desired, such as
command-line output of lost frame and audio bu�er statistics. This was remedied by patching
vlc, so that it printed out these statistics as they were output to the GUI. Unfortunately
this was not frequent enough for our demands. Further investigations looked at printing out
lost frames as they came in late in the decoding process, but this had the e�ect of causing
additional frame loss. Fortunately, Mplayer has a built-in benchmarking mode, which when
set, outputs dropped frame and audio bu�er statistics among other things. This was coupled
with a �ag, -hardframedrop, so that the player would not stall playback and bu�er late frames.
Looking at a comparison between the two players, neither seemed to show a particular bias
towards a scheduler that was not re�ected by the other. The only notable di�erence was
that VLC appeared to have a slightly lower frame loss when running on either BFS and CFS
scheduler. In the test cases used for benchmarking, we used the following command with 1 to
15 clients adding additional workload to the cpu; see the section on latt for more details:

l a t t −c<number_of_clients> \
"mplayer −benchmark −hardframedrop <video_to_playback>"

In the case of the desktop, ��re�, 25 clients were required to see a signi�cant amount of dropped
frames and contention for time on the CPU.

Data Analysis

Script based test execution resulted in the generation of uniform results across all experimentation
platforms. As such it was possible to computationally collect and collate the experimental results.
The following snippet of Ruby code 5 was used to collect all of our experimental results into a single
spreadsheet environment amenable to visualization and analysis.

Spreadsheet tools were used to search for meaningful trends in the experimental results and
gnuplot was used for visualization.

9http://kerneltrap.org/node/465

9

http://kerneltrap.org/node/465

["netbook" , " laptop " , " desktop "] . each do | machine |
[" 2 . 6 . 3 1 . 6 " , " 2 .6 .31 .6− bfs311 "] . each do | s chedu l e r |

[" c l i e n t s " , "make" , "mplayer" , "mplayer_sched"] . each do | t e s t |
base = F i l e . expand_path (F i l e . j o i n (machine , schedu ler , t e s t))
pr in t r e s u l t s in tabu la r format
puts " | #{base } | "
r e s u l t s_ f o r (base) . each{ | l | puts " | "+l . j o i n (" | ")+" | " }

end
end

end

Figure 5: data collection in Ruby

Results

Latency

Across all three testing platforms and under all load conditions the BFS scheduler demonstrated
lower latency. This is not surprising given that the BFS scheduler targets a smother experience
for graphical applications which require low latency. The following graph shows the latency in
nanoseconds as reported by the latt.c test script running on a netbook. These results are indicative
of the results across all three machines.

Turnaround Time

The CFS scheduler had better performance in terms of turnaround time on all three machines and
under all load conditions. The di�erence in performance was more dramatic on more powerful
machines like the multi-core desktop for which results are shown.

10

To further demonstrate the superiority of CFS on batch processes we compared make results
run on a desktop using various numbers of jobs. These results contradict the claims of Con Kolvias,
the creator of BFS. Kolivas claims that the BFS scheduler performs best when the -j level of make
is equal to the number of CPUs. His claim goes against common wisdom � that make best utilizes
CPU when -j is greater than the number of CPUs available � in e�ect that it is worthwhile to
oversubscribe the number of CPUs. Our results reinforce the common wisdom and show that BFS
does run faster when oversubscribed, albeit to a lesser degree than CFS.

Interactivity

To test the relative interactive performance of BFS and CFS, we ran mplayer over each scheduler
under increasing amounts of background load. The following graphs shows the number of dropped

11

frames as reported by mplayer. As this graph demonstrates, the BFS scheduler drops signi�cantly
less frames under large amounts of load.

Conclusion

The results indicate that CFS outperformed BFS with minimizing turnaround time but that BFS
outperformed CFS for minimizing latency. This indicates that BFS is better for interactive tasks
that block on I/O or user input and that CFS is better for batch processing that is CPU bound.

Many distros like Ubuntu already have separate kernel packages for desktops and servers opti-
mized for those common use cases. To improve the average desktop experience, distros could patch
their kernel to use the BFS scheduler. If desktop users do perform a lot of batch processing, distros
could provide two di�erent kernel packages alternatives.

12

