Overview

* Some History

* What is NoSQL?

* Why NoSQL?

* RDBMS vs NoSQL
* NoSQL Taxonomy

* Towards NewSQL

NoSQL DBMSes

Some History

» 1970's Relational Databases Invented
» Fixed schema
» Data is normalized
» Expensive storage
» Data abstracted away from apps
» 1980's RDBMS commercialized
» Client/Server model
» SQL becomes a standard
» 1990's Something new
» 3-tier architecture
» Rise of Internet
» 2000's
» Web 2.0
» Rise of social media and E-Commerce
» Huge increase of collected data
» Constant decrease of HW prices

NoSQL DBMSes

Relational databases are designed But it’s cheaper and more effective
to run on a single machine, so to to scale horizontally by buying lots of
scale, you need buy a bigger machines.

machine

* What is NoSQL?

What is NoSQL?

NoSQL definition is evolving over time.

> Initially (2009) intended as Absolutely No-SQL

» Most of the features offered by RDBMSes (global ACID, join,
SQL, ...) considered useless or at least unnecessarily heavy

» Later on becomes not only SQL

» Some RDBMSes features are recognized as useful, or even
necessary, in many real application scenarios

NoSQL DBMSes

* What is NoSQL?

What is NoSQL?

There is no full agreement but nowadays we can summarize
NoSQL definition as follows

» Next generation databases addressing some of the points:
» non relational

schema-free

no Join

distributed

horizontally scalable with easy replication support

eventually consistent (this will be clarified soon)

open source

vV vy vy VY VvYY

NoSQL DBMSes

* Why NoSQL?

Why NoSQL?

NoSQL databases first started out as in-house solutions to real
problems:

» Amazon's Dynamo

» Google's BigTable

» LinkedIn's Voldemort
» Facebook’s Cassandra
> Yahoo!'s PNUTS

NoSQL DBMSes

* Why NoSQL?

Why NoSQL? cont.

The listed companies didn't start off by rejecting relational
technologies. They tried them and found that they didn't meet
their requirements:

» Huge concurrent transactions volume
» Expectations of low-latency access to massive datasets

» Expectations of nearly perfect service availability while
operating in an unreliable environment

NoSQL DBMSes

* Why NoSQL?

Why NoSQL? cont.

They tried the traditional approach
» Adding more HW
» Upgrading to faster HW as available

...and when it didn't work they tried to scale existing relational
solutions:

» Simplifying DB schema

v

De-normalization

v

Introducing numerous query caching layers

v

Separating read-only from write-dedicated replicas
» Data partitioning

NoSQL DBMSes

* Why NoSQL?

CAP Theorem

Formulated in 2000 by Eric Brewer
It is impossible for a distributed computer system to
simultaneously provide all three of the following guarantees:
» Consistency (all nodes always see the same data at the same
time)
» Availability (every request always receives a response about
whether it was successful or failed)

» Partition Tolerance (the system continues to operate despite
arbitrary message loss or failure of part of the system)

NoSQL DBMSes

* Why NoSQL?

CAP Theorem and NoSQL

Most NoSQL database system architectures favour partition
tolerance and availability over strong consistency

Eventual Consistency: inconsistencies between
data held by different nodes are transitory.
Eventually all nodes in the system will receive the
latest consistent updates.

NoSQL DBMSes

RDBMS vs NoSQL

» RDBMSs enforce global ACID properties thus allowing
multiple arbitrary operations in the context of a single
transaction.

» NoSQL databases enforce only local BASE properties

» Basically Available (data is always perceived as available by
the user)

» Soft State (data at some node could change without any
explicit user intervention. This follows from eventual
consistency)

» Eventually Consistent (NoSQL guarantees consistency only at
some undefined future time)

NoSQL DBMSes

* RDBMS vs NoSQL

RDBMS vs NoSQL

Availability

Partition
Tolerance

NoSQL DBMSes

* NoSQL Taxonomy

NoSQL Taxonomy

v

Key/Value Store

» Amazon's Dynamo, LinkedIn's Voldemort, FoundationDB, ...
» Document Store

» MongoDB, CouchDB, ...
Column Store

» Google's Bigtable, Apache’s HBase, Facebook's Cassandra, ...
Graph Store

» Neo4J, InfiniteGraph, ...

v

v

NoSQL DBMSes

* NoSQL Taxonomy

RDBMS Data

Employees

id: integer ’

| id | name | surname | office ||
Tom Smith 41

1
surname: text 2 John Doe 42
3 Ann Smith 41

name: text

=== office: integer

H id ‘ building ‘ tel H
— 41| A4 | 45798
"o __id:integer 42| BT | 12349
building: text

tel: varchar

NoSQL DBMSes

* NoSQL Taxonomy

Key/Value Store

» Global collection of Key/Value pairs. Every item in the
database is stored as an attribute name (key) together with
its associated value

> Every key associated to exactly one value. No duplicates

» The value is simply a binary object. The DB does not
associate any structure to stored values

» Designed to handle massive load of data
> Inspired by Distributed Hash Tables

NoSQL DBMSes

* NoSQL Taxonomy

Key/Value Store

H Key ‘ Value H

employee_1 | name@Tom-surn@Smith-off@41-buil@A4-tel©@45798
employee_ 2 | name@John-surn@Doe-off@42-buil@B7-tel@12349

employee_3 name@Tom-surn@Smith
office_41 buil@A4-tel@45798
office_42 buil@B7-tel@12349

NoSQL DBMSes

* NoSQL Taxonomy

JSON

» Stands for JavaScript Object Notation
» Syntax for storing and exchanging text information

» Uses JavaScript syntax but it is language and platform
independent

» Much like XML but smaller, faster and easier to parse than
XML (and human readable)

» Basic data types(Number, String, Boolean) and supports data
structures as objects and arrays

NoSQL DBMSes

JSON

{
"employees”: [
{ "firstName":" John" , "lastName":" Doe" }
{ "firstName":" Peter” , "lastName":" Jones" }

]
}

The "employees” object is an array of two "employee” records
(objects).

NoSQL DBMSes

* NoSQL Taxonomy

Document Store

» Same as Key/Value Store but pair each key with a arbitrarily
complex data structure known as a document.

» Documents may contain many different key-value pairs or
key-array pairs or even nested documents (like a JSON
object).

» Data in documents can be understood by the DB: querying
data is possible by other means than just a key (selection and
projection over results are possible).

NoSQL DBMSes

* NoSQL Taxonomy

Document Store

id:"1" .
name:”" Tom" .
surname:” Smith"” .

W " office:{
Key:" employee_1 ‘ a1

building:" A4" .
telephone:” 45798"

}

id:"41" .
Key:" office_1" ﬁ building:” A4" .
telephone:” 45798"

}

NoSQL DBMSes

* NoSQL Taxonomy

Column Store

> " A sparse, distributed multi-dimensional sorted map"
» Store rows of data in similar fashion as typical RDBMSs do

» Rows are contained within a Column Families. Column
Families can be considered as tables in RDBMSes

» Unlike table in RDBMSes, a Column Family can have different
columns for each row it contains

» Each row is identified by a key that is unique in the context of
a single Column Family. The same key can be however
re-used within other Column Families, so it is possible to store
unrelated data about the same key in different Column
Families

» Each column is simply a key/value couple

NoSQL DBMSes

* NoSQL Taxonomy

Column Store cont.

» It is also possible to organize data in Super Columns, that is
columns whose values are themselves columns

» Usually data from the same Column Family are stored
contiguously on disk (and consequently on the same node of
the network)

NoSQL DBMSes

* Some Histor * What is NoSQL? * Wh oSQL? vs NoSQ * NoSQL Taxonomy * Towards N

Column Store

ColumnFamily: Employees

[Key [id | name | surname | office |

id | buil. | tel.
41 | A4 | 45798

employee .l | 1 | Tom Smith

[Key [id]| name | surname |

[employee 3| 3 | Anna | Smith |

[Key [id] name [surname [office |
id | buil.
employee 2 | 2 | John Doe 5 BY

NoSQL DBMSes

* NoSQL Taxonomy

Graph Store

» Use graph structures with nodes, edges and properties to store
pieces of data and relations between them

» Every element contains direct pointers to its adjacent
elements. No index

» Computing answers to queries over the DB corresponds to
finding suitable paths on the graph structure

NoSQL DBMSes

* NoSQL Taxonomy

Graph Store

id: emp_1
name: Tom
sur.: Smith

id: edge_1

label: works_for

id: off_41
build: A4
tel.: 45798

Tal Sl id: edge_2
name: Ann
sur.: Smith label: works_for

id: off_42
build: B7
tel.: 12349

id: emp_2
name: John
sur.: Doe

id: edge_3
label: works_for

since: 2011-12-05

NoSQL DBMSes

* NoSQL Taxonomy

Summarizing

v

Key/Value Store

+ Very fast lookups

— Stored data cannot have any schema
» Document-Column Store

+ Tolerant of incomplete data

— Query performance
Graph Store

-+ Exploit well known graph algorithms (shortest path,
connectedness, ...)
— Have to traverse the entire graph to achieve a definitive answer

Any NoSQL Store

— NO JOIN! Pieces of related data have to be stored together
— no standard query language

v

v

NoSQL DBMSes

Start the MongoDB JavaScript shell with:

'mongo' is shell binary. exact location might vary depending on
installation method and platform
$ bin/mongo

By default the shell connects to database "test" on localhost. You then see:

MongoDB shell version: <whatever>
url: test

connecting to: test

type "help" for help

>

"connecting to:" tells you the name of the database the shell is using. To switch databases,
type:

> use mydb
switched to db mydb

Dynamic schema

MongoDB has databases, collections, and
indexes much like a traditional RDBMS.

In some cases (databases and collections) these
objects can be implicitly created, however
once created they exist in a system catalog
(db.systems.collections, db.system.indexes).

Schema free

Collections contain (BSON) documents. Within
these documents are fields.

In MongoDB there is no predefinition of fields
(what would be columns in an RDBMS).

There is no schema for fields within
documents — the fields and their value
datatypes can vary.

Thus there is no notion of an "alter table"
operation which adds a "column".

Schema free

* |n practice, it is highly common for a collection
to have a homogenous structure across
documents; however this is not a
requirement.

* This flexibility means that schema migration
and augmentation are very easy in practice

Inserting Data into A Collection

Let's create a test collection and insert some data into it. We will create two objects, j and t,
and then save them in the collection things.

In the following examples, >' indicates commands typed at the shell prompt.

j = { name : "mongo" };
name" : "mongo"}
t={x:31};

"x" 1 3 }

db.things.save(]j);

db.things.save(t);

db.things.find();

" id" : ObjectId("4c2209£9£3924d31102bd84a"), "name" : "mongo" }
" id" : ObjectId("4c2209fef3924d31102bd84b"), "x" : 3 }

Vs VVVA~A NV~ YV

Let's add some more records to this collection:

>
>
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
h

for (var i = 1; 1 <= 20; i++) db.things.save({x :
db.things.find();

ll_idll
ll—idll
ll—idll
ll_idll
ll—idll
ll—idll
ll—idll
ll—idll
ll_idll
ll—idll
ll_idll
ll—idll
ll_idll
ll—idll
ll—idll
ll_idll
ll—idll
ll_idll
ll—idll
ll—idll

as more

ObjectId("4c2209£9£3924d31102bd84a"),
ObjectId("4c2209fef3924d31102bd84b"),
ObjectId("4c220a42£3924d31102bd856"),
ObjectId("4c220a42£3924d31102bd857"),
ObjectId("4c220a42£3924d31102bd858"),
ObjectId("4c220a42£3924d31102bd859"),
ObjectId("4c220a42£3924d31102bd85a"),
ObjectId("4c220a42£3924d31102bd85b"),
ObjectId("4c220a42£3924d31102bd85¢c"),
ObjectId("4c220a42£3924d31102bd85d"),
ObjectId("4c220a42£3924d31102bd85e"),
ObjectId("4c220a42£3924d31102bd85£"),
ObjectId("4c220a42£3924d31102bd860"),
ObjectId("4c220a42£3924d31102bd861"),
ObjectId("4c220a42£3924d31102bd862"),
ObjectId("4c220a42£3924d31102bd863"),
ObjectId("4c220a42£3924d31102bd864"),
ObjectId("4c220a42£3924d31102bd865"),
ObjectId("4c220a42£3924d31102bd866"),
ObjectId("4c220a42£3924d31102bd867"),

o
o
=
()]

T T T T T T T

D S S S S~ T S~ R R 8

- - - -~ - - - - -~ - -~ - - -~ - -~ - -

-~

e e e e e e e e

e s s s = S

If we want to return the next set of results, there's the it shortcut. Continuing from the code

above:

{ " id" : ObjectId("4c220a42£3924d31102bd866"),
{ " id" : ObjectId("4c220a42£3924d31102bd867"),
has more

> it

{ " id" : ObjectId("4c220a42£3924d31102bd868"),
{ " id" : ObjectId("4c220a42£3924d31102bd869"),

: 4,

ol

ol

: 17 '}
: 18 }

: 19 }
: 20 }

Technically, find() returns a cursor object. But in the cases above, we haven't assigned that
cursor to a variable. So, the shell automatically iterates over the cursor, giving us an initial
result set, and allowing us to continue iterating with the it command.

N e e e e e e e o e e e e e e e e e T UV Y

var cursor =
(cursor.hasNext()) printjson(cursor.next());
"name"”

while
" ig"
"ig"
"ig"
"ig"
|I—idll
"—idll
"_idll
"ig"
"Tig"
"ig"
"ig"
"ig"
|l—idll
|l_idll
"ig"
"ig"
"ig"
"ig"
"ig"
|I—idll
|I—idll
"_idll

db.things.find();

ObjectId("4c2209£9£3924d31102bd84a"),
ObjectId("4c2209fef3924d31102bd84b"),
ObjectId("4c220a42£3924d31102bd856"),
ObjectId("4c220a42£3924d31102bd857"),
ObjectId("4c220a42£3924d31102bd858"),
ObjectId("4c220a42£3924d31102bd859"),
ObjectId("4c220a42£3924d31102bd85a"),
ObjectId("4c220a42£3924d31102bd85b"),
ObjectId("4c220a42£3924d31102bd85¢"),
ObjectId("4c220a42£3924d31102bd85d"),
ObjectId("4c220a42£3924d31102bd85e"),
ObjectId("4c220a42£3924d31102bd85£"),
ObjectId("4c220a42£3924d31102bd860"),
ObjectId("4c220a42£3924d31102bd861"),
ObjectId("4c220a42£3924d31102bd862"),
ObjectId("4c220a42£3924d31102bd863"),
ObjectId("4c220a42£3924d31102bd864"),
ObjectId("4c220a42£3924d31102bd865"),
ObjectId("4c220a42£3924d31102bd866"),
ObjectId("4c220a42£3924d31102bd867"),
ObjectId("4c220a42£3924d31102bd868"),
ObjectId("4c220a42£3924d31102bd869"),

e

T T T T T T T T I -

S S~ S S R R R Y~ R R~ Y S S S S~ A Y)

- - - - - - - - - - - - - - - - - - - -

—

llmongo 1"

e e e e e e e e e e e e e e e e e e e U

oW WK

N RERERRERPRRHERRERBRFRWO
CWVWOJOU D WNKFEO

—~

i e et s s s e e

e s el s s e L R e R

e e e T e T T S O e e N e e e T T YA

db.things.find().forEach(printjson);

ll_idll
ll—idll
ll_idll
|l_idll
ll—idll
l!_idll
|l_idll
ll—idll
ll—idll
|l_idll
ll—idll
ll—idll
ll—idll
ll_idll
ll—idll
ll_idll
ll_idll
ll—idll
ll_idll
|l_idll
ll—idll
l!_idll

ObjectId("4c2209£9£3924d31102bd84a"),
ObjectId("4c2209fef3924d31102bd84b"),
ObjectId("4c220a42£3924d31102bd856"),
ObjectId("4c220a42£3924d31102bd857"),
ObjectId("4c220a42£3924d31102bd858"),
ObjectId("4c220a42£3924d31102bd859"),
ObjectId("4c220a42£3924d31102bd85a"),
ObjectId("4c220a42£3924d31102bd85b"),
ObjectId("4c220a42£3924d31102bd85¢"),
ObjectId("4c220a42£3924d31102bd85d"),
ObjectId("4c220a42£3924d31102bd85e"),
ObjectId("4c220a42£3924d31102bd85£"),
ObjectId("4c220a42£3924d31102bd860"),
ObjectId("4c220a42£3924d31102bd861"),
ObjectId("4c220a42£3924d31102bd862"),
ObjectId("4c220a42£3924d31102bd863"),
ObjectId("4c220a42£3924d31102bd864"),
ObjectId("4c220a42£3924d31102bd865"),
ObjectId("4c220a42£3924d31102bd866"),
ObjectId("4c220a42£3924d31102bd867"),
ObjectId("4c220a42£3924d31102bd868"),
ObjectId("4c220a42£3924d31102bd869"),

;

I I I R R R

[~ S R S S T S~~~ T~ S~ S S 8

- - - - - - - - - - - -~ - - -~ - - - - -

—

|!mongo "

e e e e e e e e e e e e e e e e e e e

OO WK

—~

S e e e e e e e

e M e e e e e e e e

SELECT * FROM things WHERE name="mongo"

> db.things.find({name: "mongo"}).forEach(printjson);
1" name 1"

{

"_id"

ObjectId("4c2209£9£3924d31102bd84a"),

SELECT * FROM things WHERE x=4

ey ey ey ey oy oy ey oy ey, ey \[

db.things.find({x:4}).forEach(printjson);

" ig"
"ig"
"ig"
"Tig"
"Tig"
"Tig"
"ig"
"Tig"
"ig"
"ig"
"ig"

ObjectId("4c220a42£3924d31102bd856"),
ObjectId("4c220a42£3924d31102bd857"),
ObjectId("4c220a42£3924d31102bd858"),
ObjectId("4c220a42£3924d31102bd859"),
ObjectId("4c220a42£3924d31102bd85a"),
ObjectId("4c220a42£3924d31102bd85b"),
ObjectId("4c220a42£3924d31102bd85¢c"),
ObjectId("4c220a42£3924d31102bd854d"),
ObjectId("4c220a42£3924d31102bd85e"),
ObjectId("4c220a42£3924d31102bd85£"),
ObjectId("4c220a42£3924d31102bd860"),

T R R R R

D~ S R S R R R -

- - - - - - - - -~ -~ -~

llmongoll }

e Ue U U Ue U Ue U U U U

R, OO0 WU e WK
s e e s s s e

= O
—

MongoDB also lets you return "partial documents" - documents that have only a subset of the
elements of the document stored in the database. To do this, you add a second argument to
the £ind () query, supplying a document that lists the elements to be returned.

To illustrate, lets repeat the last example £ind({x:4}) with an additional argument that
limits the returned document to just the "j" elements:

SELECT j FROM things WHERE x=4

db.things.find({x:4}, {j:true}).forEach(printjson);
" id" : ObjectId("4c220a42£3924d31102bd856"), "j" :
" id" : ObjectId("4c220a42£3924d31102bd857"), "j" :
" id" : ObjectId("4c220a42£3924d31102bd858"), "j"

" id" : ObjectId("4c220a42£3924d31102bd859"), "
" id" : ObjectId("4c220a42£3924d31102bd85a"), "
" id" : ObjectId("4c220a42£3924d31102bd85b"), "
" id" : ObjectId("4c220a42£3924d31102bd85c"), "
" id" : ObjectId("4c220a42£3924d31102bd85d4"), "

oy oy oy oy oy ey, iy, \[
e e e e U e U

O IO U1 b W N K-

e s o e e e e el

findOne()

* For convenience, the mongo shell (and other
drivers) lets you avoid the programming
overhead of dealing with the cursor, and just lets
you retrieve one document via the findOne()

function.

* findOne() takes all the same parameters of the
find() function, but instead of returning a cursor,
it will return either the first document returned
from the database, or null if no document is
found that matches the specified query.

However, the findone () method is both convenient and efficient:

> printjson(db.things.findOne({name: "mongo"}));
{ " id" : ObjectId("4c2209£9£3924d31102bd84a"), "name" : "mongo" }

This is more efficient because the client requests a single object from the database, so less
work 1s done by the database and the network. This is the equivalent of
find({name:"mongo"}).limit(1).

Another example of finding a single document by _id:
> var doc = db.things.findOne({ id:0ObjectId("4c2209£9£3924d31102bd84a")});

> doc
{ " id" : ObjectId("4c2209£9£3924d31102bd84a"), "name" : "mongo" }

Architecture Replica Sets,
Autosharding

* MongoDB uses replica sets to provide read
scalability, and high availability.

e Autosharding is used to scale writes (and
reads).

* Replica sets and autosharding go hand in hand
if you need mass scale out.

Replica sets

 The major advantages of replica sets are:
—business continuity through high availability,
— data safety through data redundancy,

—read scalability through load sharing
(reads).

* Replica sets use a share nothing architecture.

Replica sets

* Typically you have at least three MongoDB
instances in a replica set on different server
machines.

* You can add more replicas of the primary if
you like for read scalability, but you only need
three for high availability failover.

Replica Sets

Drivers know the primary

If primary down, Drivers
know how to get new

primary

Data is replicated after
writing

Typical to have three in a
replica set

You can do more

Load sharing for reads

Writes only to primary

Replica 1
Slave

Replica 2
Slave

Ks;ync repliczy

Replica O
PRIMARY
Master

Read

Read/Write

[Client Driver

\—/

Replica sets

By default replication is non-blocking/async.

This might be acceptable for some data category
— descriptions in an online store

but not other data
— shopping cart's credit card transaction data
For important data, the client can block until data

is replicated on all servers or written to the
journal.

The client can force the master to sync to slaves
before continuing.

— This sync blocking is slower.

Replica sets

Async/non-blocking is faster and is often described as
eventual consistency. Waiting for a master to sync is a
form of data safety.

Here is a list of some data safety options for MongoDB:

e Wait until write has happened on all replicas

* Wait until write is on two servers (primary and one
other)

e Wait until write has occurred on majority of replicas
e Wait until write operation has been written to journal

Sharding

* Sharding allows MongoDB to scale
horizontally.

e Sharding is also called partitioning.

— You partition each of your servers a portion of the
data to hold or the system does this for you.

* MongoDB can automatically change partitions
for optimal data distribution and load
balancing, and it allows you to elastically add
new nodes

Non-sharded client connection

* Client Driver talks directly S
to mongod process Mongod

v

‘ Client Driver \

Autosharded

Three actors now:
mongod, mongos, and
Client Driver library

Mongod is the process

Mongos is a router, it
routes writes to correct
mongod instance

Shares writing

Client Driver

Autosharding plus Replica Set

Autosharding increases Shard 1 Shard 2 Shard 3
Replica Set Replica Set Replica Set

writes, helps with scale
out

Replica Sets are for high
availability, and read
scaling not write scaling

Each shard/partition has
its own replica set

‘ Client Driver |

Large

deployment

Shard 1
Replica Set

Mongod

mongod

mongod

mongod

Shard Config
Servers
——

Shard 2
Replica Set

3
2
3
Mongod

Shard 3
Replica Set

e
3
>

Shard N
Replica Set N

l—‘bimfgos' uMongos u

I Client Driver I ‘ Client Driver | ‘ |

