
* Some History * What is NoSQL? * Why NoSQL? * RDBMS vs NoSQL * NoSQL Taxonomy * Towards NewSQL

Overview

* Some History

* What is NoSQL?

* Why NoSQL?

* RDBMS vs NoSQL

* NoSQL Taxonomy

* Towards NewSQL

NoSQL DBMSes



* Some History * What is NoSQL? * Why NoSQL? * RDBMS vs NoSQL * NoSQL Taxonomy * Towards NewSQL

Some History

I 1970’s Relational Databases Invented
I Fixed schema
I Data is normalized
I Expensive storage
I Data abstracted away from apps

I 1980’s RDBMS commercialized
I Client/Server model
I SQL becomes a standard

I 1990’s Something new
I 3-tier architecture
I Rise of Internet

I 2000’s
I Web 2.0
I Rise of social media and E-Commerce
I Huge increase of collected data
I Constant decrease of HW prices

NoSQL DBMSes





* Some History * What is NoSQL? * Why NoSQL? * RDBMS vs NoSQL * NoSQL Taxonomy * Towards NewSQL

What is NoSQL?

NoSQL definition is evolving over time.

I Initially (2009) intended as Absolutely No-SQL

I Most of the features o↵ered by RDBMSes (global ACID, join,
SQL, . . . ) considered useless or at least unnecessarily heavy

I Later on becomes not only SQL

I Some RDBMSes features are recognized as useful, or even
necessary, in many real application scenarios

NoSQL DBMSes



* Some History * What is NoSQL? * Why NoSQL? * RDBMS vs NoSQL * NoSQL Taxonomy * Towards NewSQL

What is NoSQL?

There is no full agreement but nowadays we can summarize
NoSQL definition as follows

I Next generation databases addressing some of the points:
I non relational
I schema-free
I no Join
I distributed
I horizontally scalable with easy replication support
I eventually consistent (this will be clarified soon)
I open source

NoSQL DBMSes



* Some History * What is NoSQL? * Why NoSQL? * RDBMS vs NoSQL * NoSQL Taxonomy * Towards NewSQL

Why NoSQL?

NoSQL databases first started out as in-house solutions to real
problems:

I Amazon’s Dynamo

I Google’s BigTable

I LinkedIn’s Voldemort

I Facebook’s Cassandra

I Yahoo!’s PNUTS

NoSQL DBMSes



* Some History * What is NoSQL? * Why NoSQL? * RDBMS vs NoSQL * NoSQL Taxonomy * Towards NewSQL

Why NoSQL? cont.

The listed companies didn’t start o↵ by rejecting relational
technologies. They tried them and found that they didn’t meet
their requirements:

I Huge concurrent transactions volume

I Expectations of low-latency access to massive datasets

I Expectations of nearly perfect service availability while
operating in an unreliable environment

NoSQL DBMSes



* Some History * What is NoSQL? * Why NoSQL? * RDBMS vs NoSQL * NoSQL Taxonomy * Towards NewSQL

Why NoSQL? cont.

They tried the traditional approach

I Adding more HW

I Upgrading to faster HW as available

...and when it didn’t work they tried to scale existing relational
solutions:

I Simplifying DB schema

I De-normalization

I Introducing numerous query caching layers

I Separating read-only from write-dedicated replicas

I Data partitioning

NoSQL DBMSes



* Some History * What is NoSQL? * Why NoSQL? * RDBMS vs NoSQL * NoSQL Taxonomy * Towards NewSQL

CAP Theorem

Formulated in 2000 by Eric Brewer

It is impossible for a distributed computer system to

simultaneously provide all three of the following guarantees:

I Consistency (all nodes always see the same data at the same
time)

I Availability (every request always receives a response about
whether it was successful or failed)

I Partition Tolerance (the system continues to operate despite
arbitrary message loss or failure of part of the system)

NoSQL DBMSes



* Some History * What is NoSQL? * Why NoSQL? * RDBMS vs NoSQL * NoSQL Taxonomy * Towards NewSQL

CAP Theorem and NoSQL

Most NoSQL database system architectures favour partition
tolerance and availability over strong consistency

Eventual Consistency: inconsistencies between
data held by di↵erent nodes are transitory.
Eventually all nodes in the system will receive the
latest consistent updates.

NoSQL DBMSes



* Some History * What is NoSQL? * Why NoSQL? * RDBMS vs NoSQL * NoSQL Taxonomy * Towards NewSQL

RDBMS vs NoSQL

I RDBMSs enforce global ACID properties thus allowing
multiple arbitrary operations in the context of a single
transaction.

I NoSQL databases enforce only local BASE properties
I Basically Available (data is always perceived as available by

the user)
I Soft State (data at some node could change without any

explicit user intervention. This follows from eventual
consistency)

I Eventually Consistent (NoSQL guarantees consistency only at
some undefined future time)

NoSQL DBMSes



* Some History * What is NoSQL? * Why NoSQL? * RDBMS vs NoSQL * NoSQL Taxonomy * Towards NewSQL

RDBMS vs NoSQL

NoSQL DBMSes



* Some History * What is NoSQL? * Why NoSQL? * RDBMS vs NoSQL * NoSQL Taxonomy * Towards NewSQL

NoSQL Taxonomy

I Key/Value Store
I Amazon’s Dynamo, LinkedIn’s Voldemort, FoundationDB, . . .

I Document Store
I MongoDB, CouchDB, . . .

I Column Store
I Google’s Bigtable, Apache’s HBase, Facebook’s Cassandra, . . .

I Graph Store
I Neo4J, InfiniteGraph, . . .

NoSQL DBMSes



* Some History * What is NoSQL? * Why NoSQL? * RDBMS vs NoSQL * NoSQL Taxonomy * Towards NewSQL

RDBMS Data

id name surname o�ce

1 Tom Smith 41
2 John Doe 42
3 Ann Smith 41

id building tel

41 A4 45798
42 B7 12349

NoSQL DBMSes



* Some History * What is NoSQL? * Why NoSQL? * RDBMS vs NoSQL * NoSQL Taxonomy * Towards NewSQL

Key/Value Store

I Global collection of Key/Value pairs. Every item in the
database is stored as an attribute name (key) together with
its associated value

I Every key associated to exactly one value. No duplicates

I The value is simply a binary object. The DB does not
associate any structure to stored values

I Designed to handle massive load of data

I Inspired by Distributed Hash Tables

NoSQL DBMSes



* Some History * What is NoSQL? * Why NoSQL? * RDBMS vs NoSQL * NoSQL Taxonomy * Towards NewSQL

Key/Value Store

Key Value

employee 1 name@Tom-surn@Smith-o↵@41-buil@A4-tel@45798
employee 2 name@John-surn@Doe-o↵@42-buil@B7-tel@12349
employee 3 name@Tom-surn@Smith
o�ce 41 buil@A4-tel@45798
o�ce 42 buil@B7-tel@12349

NoSQL DBMSes



* Some History * What is NoSQL? * Why NoSQL? * RDBMS vs NoSQL * NoSQL Taxonomy * Towards NewSQL

JSON

I Stands for JavaScript Object Notation

I Syntax for storing and exchanging text information

I Uses JavaScript syntax but it is language and platform
independent

I Much like XML but smaller, faster and easier to parse than
XML (and human readable)

I Basic data types(Number, String, Boolean) and supports data
structures as objects and arrays

NoSQL DBMSes



* Some History * What is NoSQL? * Why NoSQL? * RDBMS vs NoSQL * NoSQL Taxonomy * Towards NewSQL

JSON

{
”employees”: [
{ ”firstName”:”John” , ”lastName”:”Doe”}
{ ”firstName”:”Peter” , ”lastName”:”Jones”}

]
}

The ”employees” object is an array of two ”employee” records
(objects).

NoSQL DBMSes



* Some History * What is NoSQL? * Why NoSQL? * RDBMS vs NoSQL * NoSQL Taxonomy * Towards NewSQL

Document Store

I Same as Key/Value Store but pair each key with a arbitrarily
complex data structure known as a document.

I Documents may contain many di↵erent key-value pairs or
key-array pairs or even nested documents (like a JSON
object).

I Data in documents can be understood by the DB: querying
data is possible by other means than just a key (selection and
projection over results are possible).

NoSQL DBMSes



* Some History * What is NoSQL? * Why NoSQL? * RDBMS vs NoSQL * NoSQL Taxonomy * Towards NewSQL

Document Store

Key:”employee 1”

{
id:”1” .
name:”Tom” .
surname:”Smith” .
o�ce:{

id:”41” .
building:”A4” .
telephone:”45798”
}

}

Key:”o�ce 1”

{
id:”41” .
building:”A4” .
telephone:”45798”

}

NoSQL DBMSes



* Some History * What is NoSQL? * Why NoSQL? * RDBMS vs NoSQL * NoSQL Taxonomy * Towards NewSQL

Column Store

I ”A sparse, distributed multi-dimensional sorted map”

I Store rows of data in similar fashion as typical RDBMSs do

I Rows are contained within a Column Families. Column
Families can be considered as tables in RDBMSes

I Unlike table in RDBMSes, a Column Family can have di↵erent
columns for each row it contains

I Each row is identified by a key that is unique in the context of
a single Column Family. The same key can be however
re-used within other Column Families, so it is possible to store
unrelated data about the same key in di↵erent Column
Families

I Each column is simply a key/value couple

NoSQL DBMSes



* Some History * What is NoSQL? * Why NoSQL? * RDBMS vs NoSQL * NoSQL Taxonomy * Towards NewSQL

Column Store cont.

I It is also possible to organize data in Super Columns, that is
columns whose values are themselves columns

I Usually data from the same Column Family are stored
contiguously on disk (and consequently on the same node of
the network)

NoSQL DBMSes



* Some History * What is NoSQL? * Why NoSQL? * RDBMS vs NoSQL * NoSQL Taxonomy * Towards NewSQL

Column Store

ColumnFamily: Employees

Key id name surname o�ce

employee 1 1 Tom Smith
id buil. tel.
41 A4 45798

Key id name surname

employee 3 3 Anna Smith

Key id name surname o�ce

employee 2 2 John Doe
id buil.
42 B7

NoSQL DBMSes



* Some History * What is NoSQL? * Why NoSQL? * RDBMS vs NoSQL * NoSQL Taxonomy * Towards NewSQL

Graph Store

I Use graph structures with nodes, edges and properties to store
pieces of data and relations between them

I Every element contains direct pointers to its adjacent
elements. No index

I Computing answers to queries over the DB corresponds to
finding suitable paths on the graph structure

NoSQL DBMSes



* Some History * What is NoSQL? * Why NoSQL? * RDBMS vs NoSQL * NoSQL Taxonomy * Towards NewSQL

Graph Store

NoSQL DBMSes



* Some History * What is NoSQL? * Why NoSQL? * RDBMS vs NoSQL * NoSQL Taxonomy * Towards NewSQL

Summarizing

I Key/Value Store
+ Very fast lookups
– Stored data cannot have any schema

I Document-Column Store
+ Tolerant of incomplete data
– Query performance

I Graph Store
+ Exploit well known graph algorithms (shortest path,

connectedness, . . . )
– Have to traverse the entire graph to achieve a definitive answer

I Any NoSQL Store
– NO JOIN! Pieces of related data have to be stored together
– no standard query language

NoSQL DBMSes





Dynamic&schema&

MongoDB&has&databases,&collec3ons,&and&

indexes&much&like&a&tradi3onal&RDBMS.&&

In&some&cases&(databases&and&collec3ons)&these&

objects&can&be&implicitly&created,&however&

once&created&they&exist&in&a&system&catalog&

(db.systems.collec3ons,&db.system.indexes).&



Schema&free&

•  Collec3ons&contain&(BSON)&documents.&Within&

these&documents&are&fields.&

•  &In&MongoDB&there&is&no&predefini3on&of&fields&

(what&would&be&columns&in&an&RDBMS).&&

•  There&is&no&schema&for&fields&within&

documents&–&the&fields&and&their&value&

datatypes&can&vary.&&

•  Thus&there&is&no&no3on&of&an&"alter&table"&
opera3on&which&adds&a&"column".&



Schema&free&

•  In&prac3ce,&it&is&highly&common&for&a&collec3on&

to&have&a&homogenous&structure&across&

documents;&however&this&is&not&a&

requirement.&&

•  This&flexibility&means&that&schema&migra3on&

and&augmenta3on&are&very&easy&in&prac3ce&

















findOne()&

•  For&convenience,&the&mongo&shell&(and&other&

drivers)&lets&you&avoid&the&programming&

overhead&of&dealing&with&the&cursor,&and&just&lets&

you&retrieve&one&document&via&the&findOne()&

func3on.&&

•  findOne()&takes&all&the&same&parameters&of&the&

find()&func3on,&but&instead&of&returning&a&cursor,&

it&will&return&either&the&first&document&returned&

from&the&database,&or&null&if&no&document&is&

found&that&matches&the&specified&query.&





Architecture&Replica&Sets,&

Autosharding&

• MongoDB&uses&replica&sets&to&provide&read&

scalability,&and&high&availability.&&

•  Autosharding&is&used&to&scale&writes&(and&
reads).&&

•  Replica&sets&and&autosharding&go&hand&in&hand&
if&you&need&mass&scale&out.&&



Replica&sets&

•  The&major&advantages&of&replica&sets&are:&&

– business&con3nuity&through&high&availability,&&
– data&safety&through&data&redundancy,&&
– read&scalability&through&load&sharing&
(reads).&

•  &Replica&sets&use&a&share&nothing&architecture.&



Replica&sets&

•  Typically&you&have&at&least&three&MongoDB&

instances&in&a&replica&set&on&different&server&

machines.&&

•  You&can&add&more&replicas&of&the&primary&if&

you&like&for&read&scalability,&but&you&only&need&

three&for&high&availability&failover.&





Replica&sets&

•  By&default&replica3on&is&nonXblocking/async.&&
•  This&might&be&acceptable&for&some&data&category&&

– descrip3ons&in&an&online&store&
•  but&not&other&data&
– shopping&cart's&credit&card&transac3on&data&&

•  For&important&data,&the&client&can&block&un3l&data&

is&replicated&on&all&servers&or&wri[en&to&the&

journal.&&

•  The&client&can&force&the&master&to&sync&to&slaves&

before&con3nuing.&

– &This&sync&blocking&is&slower.&&



Replica&sets&

Async/nonXblocking&is&faster&and&is&o\en&described&as&

eventual&consistency.&Wai3ng&for&a&master&to&sync&is&a&

form&of&data&safety.&&

Here&is&a&list&of&some&data&safety&op3ons&for&MongoDB:&

•  Wait&un3l&write&has&happened&on&all&replicas&

•  Wait&un3l&write&is&on&two&servers&(primary&and&one&

other)&

•  Wait&un3l&write&has&occurred&on&majority&of&replicas&

•  Wait&un3l&write&opera3on&has&been&wri[en&to&journal&



Sharding&

•  Sharding&allows&MongoDB&to&scale&

horizontally.&&

•  Sharding&is&also&called&par33oning.&
– &You&par33on&each&of&your&servers&a&por3on&of&the&
data&to&hold&or&the&system&does&this&for&you.&&

• MongoDB&can&automa3cally&change&par33ons&

for&op3mal&data&distribu3on&and&load&

balancing,&and&it&allows&you&to&elas3cally&add&

new&nodes&










