A Lightweight Kernel Operating System for PetaFLOPS-Era Supercomputers
(AKA The Lightweight Kernel Project)

Overview and Current Status

Ron Brightwell
Sandia National Laboratories
Outline

• History
• Project overview
• Current status
• Future directions
Original LWK Project Goals

- Three-year project to design and implement next-generation lightweight kernel for compute nodes of a distributed memory massively parallel system
- Assess the performance and reliability of a lightweight kernel versus a traditional monolithic kernel
- Investigate efficient methods of supporting dynamic operating system services
- Leverage open-source OS projects as much as possible
Original Approach

• Port Cougar LWK to Cplant™ cluster and perform a direct comparison with Linux
 – Performance
 – Scalability
 – Determinism
 – Reliability
Limitations of Original Approach

• **Cougar**
 – Not open-source
 – Export controlled
 – Not portable
 – Old

• **Cplant™**
 – Alpha is gone
 – Old
Current Approach

• Short-term
 – Compare Cougar and Linux on ASCI/Red hardware
• Beyond that
 – Figure out how best to leverage Linux or other open-source operating systems to achieve important characteristics of previous LWKs
 – Provide a basis for future OS research activities
Motivation for Linux/Cougar Comparison

• No direct comparison of LWK versus full-service OS since SUNMOS versus OSF1/AD nearly ten years ago
• Much has changed (improved?) since
• A direct comparison between a LWK and Linux is important for providing insight into what is important
• Platform balance is important
• Need real numbers to show people like (Beckman|Minnich|Riesen|Camp)
ASCI Red Hardware

- 4640 compute nodes
 - Dual 333 MHz Pentium II Xeons
 - 256 MB RAM
- 400 MB/sec bi-directional network links
- 38x32x2 mesh topology
- Red/Black switchable
- First machine to demonstrate 1+ TFLOPS
- 2.38/3.21 TFLOPS
- Deployed in 1997
ASCI Red Development Systems

- **Polaris**
 - 8 nodes
 - 200 MHz Pentium Pro
 - Everything else is the same
 - Same memory subsystem
- **Nighten**
 - 144 nodes
 - Identical hardware as production ASCI Red machine
ASCI Red Compute Node Software

- Puma lightweight kernel
 - Follow-on to Sandia/UNM Operating System (SUNMOS)
 - Developed for 1024-node nCUBE-2 in 1993 by Sandia/UNM
 - Ported to 1800-node Intel Paragon in 1995 by Sandia/UNM
 - Ported to ASCI Red in 1996 by Intel and Sandia
 - Productized as “Cougar” by Intel
ASCI Red Software (cont’d)

• Cougar
 – Space-shared model
 – Exposes all resources to applications
 – Consumes less than 1% of compute node memory
 – Four different execution modes for managing dual processors
 – Portals 2.0
 • High-performance message passing
 • Avoid buffering and memory copies
 • Supports multiple user-level libraries (MPI, Intel N/X, Vertex, etc.)
Cougar Goals

• Targets high performance scientific and engineering applications on tightly coupled distributed memory architectures
• Scalable to tens of thousands of processors
• Fast message passing and execution
• Small memory footprint
• Persistent (fault tolerant)
Cougar Approach

• Separate policy decision from policy enforcement
• Move resource management as close to application as possible
• Protect applications from each other
• Let user processes manage resources
• Get out of the way
Cougar General Structure

- PCT
 - libc.a
 - libmpi.a

- App. 1
 - libc.a

- App. 2
 - libc.a
 - libnx.a

- App. 3
 - libc.a
 - libvertex.a

Q-Kernel: message passing, memory protection
Cougar Quintessential Kernel (QK)

- Policy enforcer
- Initializes hardware
- Handles interrupts and exceptions
- Maintains hardware virtual addressing
- No virtual memory support
- Static size
- Small size
- Non-blocking
- Few, well defined entry points
Cougar Process Control Thread (PCT)

- Runs in user space
- More privileged than user applications
- Policy maker
 - Process loading
 - Process scheduling
 - Virtual address space management
 - Name server
 - Fault handling
Cougar PCT (cont’d)

• Customizable
 – Single-tasking or multi-tasking
 – Round robin or priority scheduling
 – High performance, debugging, or profiling version

• Changes behavior of OS without changing the kernel
Cougar Processor Modes

- Chosen at job launch time
- Heater mode (proc 0)
 - QK/PCT and application process on system CPU
- Message co-processor mode (proc 1)
 - QK/PCT on system CPU
 - Application process on second CPU
- Compute co-processor mode (proc 2)
 - QK/PCT and application process on system CPU
 - Application co-routines on on second CPU
- Virtual node mode (proc 3)
 - QK/PCT and application process on system CPU
 - Second application process on second CPU
Linux on ASCI Red

- RedHat 7.2 - Linux 2.4.18
- Adapted Linux bootloader and startup code to work with bootmesh protocol
- Service node receives Linux kernel via bootmesh and root filesystem from attached SCSI disk
- Compute nodes mount root filesystem from service node
- Sparse compute node services
 - sshd for remote access
 - Enough libraries for MPI jobs to run
Linux IP Implementation for ASCI Red

- Implemented a Linux network driver for CNIC
 - Interrupt-driven ring buffer
 - Based on isa-skeleton.c
- Varying IP MTU from 4 KB (1 page) to 16 KB (4 pages) showed no noticeable difference in bandwidth
- Bandwidth is CPU limited
 - 45 MB/s for 333 Mhz processors
 - 32 MB/s for 200 MHz processors
- Custom raw device achieved 310 MB/s
Linux Processor Modes

• Modified CNIC driver to support Cougar processor modes
 – Little difference in performance due to interrupts
• Virtual node mode is default
MPI Ping-Pong Latency

for the United States Department of Energy under contract DE-AC04-94AL85000.
NPB 2.4 - IS
NPB 2.4 - MG

![Graph: Total MOPS vs. Number of Processors]

- **Cougar**
- **Linux**

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000.
CTH Family of Codes

- Models complex multi-dimensional, multi-material problems characterized by large deformations and/or strong shocks
- Uses two-step, second-order accurate finite-difference Eulerian solution
- Material models for equations of state, strength, fracture, porosity, and high explosives
- Impact, penetration, perforation, shock compression, high explosive initiation and detonation problems
CTH Steps

• CTHGEN
 – Problem setup
 • Create computational mesh, insert materials, calculate volume fraction of each material in cells
 – Assign material properties and run-time controls
 • Broadcasting data is main type of message passing
 – Generate initial restart file, one file per node

• CTH
 – Read initial restart file, one file per node
 – Simulate shock wave physics
 • Many nearest-neighbor communications, a few global reductions per time step
 – Write results to restart, history, and viz files
 – Performance measured in grind time
 • Time to compute all calculations on a single cell for a single time step
CTH Performance

![Graph showing CTH performance with lines for Cougar and Linux, indicating decreasing grind time with increasing number of processors.](image-url)
Issues

• Compilers and runtime
 – Cougar numbers are from (old) PGI compilers
 – Linux numbers are from (new) Intel compilers

• Determinism
 – No variability in Cougar execution times
 • Even on a loaded machine
 – Significant (>5%) variability in Linux execution times

• Level of effort
 – Maintaining LWK may be equivalent to maintaining a Linux driver
Ongoing Activities

- Completed implementation of Portals 3.2 CNIC driver in Linux
 - 55 µs latency, 296 MB/s
- Currently gathering data for NPB and CTH
 - Need to debug MPI implementation and runtime system
- Linux 2.5
 - Large page support
- Cougar
 - Provide a modern set of compilers/libraries
Conclusions

- Don’t have a real apples-to-apples comparison yet
- Will have a Granny Smith-to-Red Delicious comparison soon
Acknowledgments

• Project team
 – Marcus Epperson, Mike Levenhagen, Rolf Riesen, Keith Underwood, Zhaofang Wen (Sandia)
 – Kurt Ferreira (HP)
 – Trammell Hudson (OS Research, Inc.)
 – Patrick Bridges, Barney Maccabe (UNM)