
The Crossover Closure and Partial Match Detection

Fernando Esponda, Stephanie Forrest, and Paul Helman

Department of Computer Science
University of New Mexico

Albuquerque, NM 87131-1386
{fesponda, forrest, helman}@cs.unm.edu

Abstract.
The crossover closure generation rule characterizes the generalization achieved by artificial immune
systems using partial match detection. The paper reviews earlier results and extends the previously
introduced notion of crossover closure to encompass additional match rules. For concreteness, the dis-
cussion focuses on r-chunks matching, giving alternative ways that detectors can be used to implement
the crossover closure.

1 Introduction

Much of the success of artificial immune systems (AIS) and other learning systems depends on the choice of
representation. In an AIS it is common to represent information using a population of detectors, analogous to
immune cells in the body. A matching criterion is typically defined that determines for any given detector how
closely it matches a certain data item. This is analogous to receptor/ligand binding in the immune system.
We refer to this as partial match detection, that is, detection of a concept class based on partial matching
rules. In this paper, we focus on a particular class of match rules, which have formed the basis of several
earlier AIS implementations. We are interested in the properties of the match rule itself, independently of
how it is employed in an immune system framework. For example, many of the results we present apply both
to positive detection and negative detection systems, and can be used to examine tradeoffs between these two
detection schemes. In an earlier paper, we developed an extensive formal framework for analyzing positive
and negative detection under various matching criteria [12]. Much of this paper is devoted to summarizing
those earlier results, illuminating their importance for artificial immune systems and extending them to cover
a more general set of conditions.

The paper adopts some terminology from the machine learning literature, and accordingly, the problem
addressed by the paper is described as follows: Given a collection of instances drawn from some concept class,
where the instances are represented as attribute vectors or strings, we wish to derive some means for induc-
tively determining the underlying concept (or in the case of negative detection, the counter concept(s)). The
resulting characterization must be flexible enough to accommodate both concept drift and distributability.

Although the paper adopts a machine learning perspective, our approach draws its inspiration from an
important component of the immune system. In the immune system a collection of lymphocytes are deployed
throughout the body to monitor the well-being of an organism. Lymphocytes are equipped with receptors
able to bind peptides on the surface of cells, and if such a binding occurs an immune response may be
initiated. T-cells, in particular, are subjected to a selection process before they are released into the body,
which ensures they will recognize only nonself peptides.1 Analogously, the proposed system is comprised of
a set of detectors, the counterpart of lymphocytes. Whenever a new string (instance) is observed, a detector
determines if the instance refers to it or not, i.e., if they bind. This said, we are interested in establishing a
scheme whose generalization is readily understood and analyzed. In doing this we will be in a better position
to establish mechanisms and policies to control it. In this paper we set forth the crossover closure generation
rule as a learning paradigm and review a match rule and two detection schemes that implement it.

In the following sections, we first give a brief overview of related work. Then, we define a small extension of
the crossover closure, giving an example and some motivation. We then review several variants of contiguous
1 Although T-cells undergo both positive and negative selection in the thymus, this detail is not directly relevant to

this paper, as we are ignoring the role of MHC in peptide presentation.



bits matching rules, introducing two new variants. In section 5, we summarize the detection schemes most
relevant to the paper, and in section 6, we describe some of the interesting properties of the various r-chunks
decompositions. Section 6.1 reviews our earlier results on overlapping fixed-size windows, and section 6.2
gives new results on nonoverlapping fixed size windows. We then discuss the significance of these results and
conclude with a summary of the paper.

2 Related Work

The r-chunks match rule, on which our paper focuses, was introduced in [3, 12]. It is a simplification of
the r-contiguous bits (rcb) match rule [13, 28, 29], which has been used in many artificial immune system
projects. Modeling projects incorporating this rule include [13, 28, 29, 14], and application projects using
the rule include [15, 8, 18, 26, 5–7, 30, 2]. Many formal studies of immune algorithms are based on systems
employing r-contiguous bits, e.g. [10, 9, 32, 31, 33].

The problem discussed in this paper, broadly stated, has been studied in the machine learning and
statistical learning literature, often under the term “one-class learning.” In [23, 24] some theoretical results
for learning without counter-examples are given. A review of unsupervised learning, of which many AISs
are an example, is presented in [22]. Ref. [1] discusses a variety of instance-based learning algorithms, and
a survey of on-line learning algorithms can be found in [4]. Finally a comprehensive explanation of the
theoretical underpinnings of classification and learning in general, can be found in [11, 16, 27, 25].

3 The Crossover Closure

Consider a sample S (for self) of strings taken from a concept class RS (real self) which we wish to charac-
terize. We adopt a simple categorical division into “similar to S” versus “dissimilar from S” and distinguish
these categories by means of a generation rule which attempts to characterize the underlying set RS from
which S is likely drawn. It has been shown experimentally that this interpretation of the detection task often
captures sufficient detail of process behavior to provide effective detection [20, 19].

Definition: A generation rule Q is a mapping from a set S of length l strings to a set Q(S) of length l
strings containing S.

We focus our attention on a generation rule that is both simple to analyze and intuitively appealing,
the crossover closure. The crossover closure was introduced in [12], where it was restricted to contiguous
windows of attributes. Here, we remove this restriction and extend it to a set of features. The basic idea of
the crossover closure is as follows: Given examples of some concept class represented as a vector of features,
the crossover closure is a hypothesis stating that only some combinations of the observed features define
instances of the concept class.

Consider a simple example of the concept vehicle, exemplified by the following instances (S), where each
row of the table corresponds to a single instance:

Wheels Color Max. Speed (mph)
4 red 100
2 black 200

Under the crossover operator the following are also valid instances of the class vehicle:

Wheels Color Max. Speed (mph)
4 black 100
4 red 200
4 black 200
4 red 100
2 black 100
2 red 200
2 black 200
2 red 100



Formally, given a set S of strings, and a fixed 1 ≤ r ≤ l, the crossover closure CC(S) of S is defined in
terms of its features as:

CC(S) = {u ∈ U |(∀features w)(∃s ∈ S) u[w] = s[w]} (1)

where U is the set of possible strings and u[w] is the projection of string u onto feature w. In words, a string u
of length l is in the crossover closure of S if and only if each of u’s features exactly matches the corresponding
feature of some member of S. In the above example, instances of the concept vehicle are represented as strings
with three features: Wheels, Color and Max. Speed. A string containing any combination of the sampled values
for these features is part of the crossover closure. When S is such that CC(S) = S we say that S is closed
under crossover closure. In general, we understand a feature to be any combination or function of attributes
of the instance vectors, and not necessarily a specific attribute. This broader interpretation of “feature” is
the sense in which this definition of crossover closure extends our earlier definition.

An interesting motivation and justification for this rule stems from the similarities it has with some
well known relational database operations [12]. The join operator and the crossover closure are closely
related, under some partial match rules, leading us to believe that the crossover closure may be a useful
characterization for many practical data sets.

The name “crossover closure” was partially inspired by the crossover operation in genetic algorithms (GA)
[21]. However, these notions do not exactly correspond, as the crossover discussed here depends on what a
feature is defined to be. For the example presented above, in which features are nonoverlapping, the crossover
closure corresponds exactly to the set of possible strings that can be generated (from an initial population
S) using the GA crossover operator alone. However, other decompositions such as the one discussed in
Sect. 6.1 do not exactly correspond to the traditional one point (or multi-point) crossover operator. In the
overlapping case (Sect. 6.1), the crossover closure is a proper subset of the possible strings generated by the
GA’s crossover operator.

4 R-chunks matching

As outlined in Sect. 1, an AIS is typically composed of a collection of detectors or agents. The detectors are
independent in the sense that each binding event is determined locally by each detector on its own, even if
the classification of a string is ultimately resolved by some combination of matches. Thus, we are interested
in match rules between detectors and data than are local, but which correspond in the aggregate to the
crossover closure.

Further, a detector should be as simple as possible since we want its operation to be efficient in generation
time, storage requirements, and run-time (cost of determining a match). Recall from the above that the
instances from which the learning process is to take place are represented as attribute vectors or strings.
In this context, a natural way to represent a detector is also as a string and to use string matching as the
method of detection. In what follows, we give examples of a class of partial matching rules, some of which
correspond to the crossover closure generation rule. The variations appear to be interesting because they
open the possibility of more efficient algorithms for some AIS applications.

All of the rules studied in the following sections are derived from the r-contiguous bit matching rule
(rcb) introduced in [28, 29, 17]. A detector under rcb is a string of length l, and is said to match another
string, of the same length, if it has at least r consecutive bits in common. One simplification of rcb, which
corresponds exactly to the crossover closure, is known as r-chunks. In r-chunks matching, only r contiguous
positions are specified, rather than fully specifying all l attributes of a string. Thus, an r-chunks detector can
be thought of as a string of r bits, together with its starting position within the string, known as its window.
An r-chunks detector d is said to match a string x if all the symbols of d are equal to the r symbols of x in
the window specified by d. More formally, if d is an r-chunk on window w, the matching rule considered is:

dMx ↔ x[w] = d .

where dMx denotes that detector d matches string x and x[w] is the projection of string x onto window w.
Therefore, an r-contiguous bit detector can be decomposed into l− r + 1 overlapping r-chunks detectors, as
the following figure illustrates. Let d = 1101 be an r-contiguous bit detector with l=4, r=2 and d[1], d[2], d[3]
the corresponding r-chunk detectors:



d: 1 1 0 1

d[1]: 1 1

d[2]: 1 0

d[3]: 0 1

Interesting variants of the overlapping window r-chunks rule can be constructed, and we are currently
exploring such variants and their properties. For example, we can require that the windows not overlap (the
nonoverlapping variant) as shown in the following figure.

d: 1 1 0 1

d[1]: 1 1

d[2]: 0 1

A second variant can be constructed by relaxing the assumption that r is fixed, although we do not study
it in this paper.

It was shown in [12] that the r-chunks and the rcb match rules are not equivalent in terms of the
languages they recognize. However, the result depends on the details of how the match rules are deployed, a
topic addressed in the next section. In particular, under certain detection schemes (Sect. 5), it was shown that
the r-chunks match rule corresponds exactly to the crossover closure and that rcb rules do not. To simplify
the discussion of the crossover closure (eq.1), we focus on the special case when a feature is understood to
be the r attributes encompassed by a window, and we consider the overlapping and nonoverlapping variants
in sections 6.1 and 6.2 respectively.

5 Detection Schemes

In [12], a taxonomy of detection schemes was given in terms of the languages—the set of strings—that a
detection scheme is able to recognize. This taxonomy is constructed along two dimensions. The first specifies
whether detectors are tailored to match strings in self or nonself, denoted as P or N respectively. Many
AIS systems use the idea of negative detection, in which a set of detectors is generated that recognizes the
complement of self (known as nonself). Various claims have been made by several research groups about the
efficacy of this detection scheme, and in particular, how it compares with a more traditional positive detection
approach to pattern recognition, in which a representation of the positive instances is stored explicitly.

The second dimension specifies how many matches are required to determine the membership of a string.
We considered two options, one in which a single match suffices and a second in which we require a detector
to match in each window, although we note the possibility of intermediate schemes. We refer to these as
disjunctive matching (D) and conjunctive matching (C) respectively. Let Υ be a set of r-chunk detectors:

– Negative Disjunctive Detection SchemeND:
SchemeND(Υ ) is the set of strings x in U such that (∀features w)(@d ∈ Υ )(dMx).

– Positive Conjunctive Detection SchemePC :
SchemePC(Υ ) is the set of strings x in U such that (∀features w)(∃d ∈ Υ )(dMx).

Consider, for instance, the following sets of positive detectors: Υ1 = {01, 11} detectors meant to match the
first two bits in a string and Υ2 = {10, 11} detectors for the last two bits. Under SchemePC only strings
that are matched by a Υ1 detector in their first window and a Υ2 detector in their second window will be
considered part of the language: SchemePC(Υ1 ∪ Υ2) = {010, 011, 110, 111}. Now consider the case where Υ1

and Υ2 are negative detectors. Then a string matched in its first window by a Υ1 detector or in its second
window by a Υ2 detector will be considered outside the language: SchemeND(Υ1∪Υ2) = {000, 001, 100, 101}.
Although these two examples do not result in identical sets it turns out that the class of languages recognized
by SchemeND and SchemePC is identical, and is exactly the class of sets closed under crossover closure when
r-chunks matching is used [12].



6 R-chunks Decompositions

In this section we discuss two decompositions based on the r-chunks match rule under the detection schemes
of the previous section. We will examine the overlapping and nonoverlapping variants in terms of the size of
their detector sets and the size of the generalization they induce (the crossover closure).

6.1 Overlapping Fixed Size Windows

In the following two sections we summarize some properties of SchemePC and SchemeND under the r-chunks
match rule when a sliding window decomposition is used. Given a set of instances S it is straightforward
to compute exactly how many distinct detectors can be generated. For SchemePC , it requires counting the
number of distinct patterns for each of the t windows that comprise the strings in S, whereas for SchemeND,
enumerating the distinct patterns that are not present in each window will result in the number of detectors.
We are interested in how the number of detectors behaves as a function of the window size r and the number of
training instances. In the following, we consider the case when S is a random, uniformly generated collection
of strings defined over some finite alphabet A. In such a scenario, the expected number of positive detectors
Epos and the expected number of negative detectors Eneg are given by:

Epos = tEr (2)
Eneg = t(Ar − Er) (3)

where Er u Ar − Ar(1− A−r)|S|, t = l − r + 1 is the number of windows.
With these formulas it is possible to determine when one scheme is beneficial over the other with regards

to the number of detectors they require. For this purpose, it suffices to compute the number of strings in S
for which both schemes yield the same number of detectors (i.e., when Epos = Eneg), and note that a sample
smaller than this value will require fewer detectors for the positive scheme, and fewer negative detectors if
the sample exceeds it. Both schemes have an equal number of detectors when:

|S| ≈ (0.693)Ar . (4)

Note that this value depends only on the choice of r and the cardinality of the alphabet and not on the
actual string length.

A detector set generated in this manner is highly likely to be redundant. That is, it will likely contain
some detectors whose removal would not change the recognized language recognized. Redundancy might be
a desirable feature, especially if detectors are to be distributed. However, it is important to understand how
much redundancy is present and address the related question of finding an efficient detector set. Intuitively,
redundancy arises from the fact that for some strings a match in window i implies a match in window i + 1.
For example, for l = 3 and r = 2 consider the following sample S = {000, 101}. The implied generalization
consists of strings CC(S) = {000, 101, 001, 100}. Clearly, the positive detectors for window 1, {00, 10}, match
every string in the closure, and only such strings. Thus, it is unnecessary to check for a match in window 2.
It is easily verified that the same holds if negative detectors are used, the case most relevant to AIS. The
following two equations eliminate this source of redundancy from the detector set when an binary alphabet
is used:

EminN = 2r − Er + (l − r)(Er − 2(Er − Er−1)) (5)
EminP = Er + (l − r)(Er − 2(Er − Er−1)) . (6)

The size of the sample S for which EminN and EminP yield the same number of detectors is the same as
with the full repertoire (4).

The Crossover Closure and its Expected Size In order to examine the size of the crossover closure
as a function of the sample size |S| and window size r, a similar assumption is made as in the preceding
section, namely we consider the case of a random sample of strings over a binary alphabet. This problem
can be mapped into a graphical representation, a directed acyclic graph (DAG), where each level contains



nodes corresponding to the positive detectors derived from S for each of its windows. Nodes in consecutive
levels are connected if the detectors to which they correspond overlap (crossover) i.e., this is if they match
in their common r − 1 positions. Take, for instance, a self set S comprised of the following two strings
S = {0101, 1111} with l = 4, r = 2, which can be represented by the following DAG:
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In this example, where r = 2, there is only one bit position that overlaps between adjacent windows and
whose symbols must match for the corresponding nodes to be connected. Thus, nodes whose label ends with
symbol 1 are connected to nodes in the next level with label starting with symbol 1, and nodes that end in 0
are connected to nodes that start with 0. Under this representation, the crossover closure is exactly the set
of strings formed by traversing the graph from level 1 to level t (the number of windows) CC(S) = {0101,
1111, 0111, 1101}.

In order to compute the number of strings in the closure, note from the DAG that the number of paths
departing from a given node doubles if it has two outgoing edges, i.e., if the corresponding detector crosses-
over with two detectors in the following window. The closed form solution for the expected number of paths
in such a graph and hence the size of the crossover closure is given by:

CC(t) = Er(ō)(t−1) (7)

where Er is the expected number of positive detectors given by (2), ō is the expected outdegree of each node2

and t is the number of windows.
The size of the generalization, CC(S), can be determined by the size of S or by the size of the detector

set (obtaining an estimate for |S| from either (3) or (2) and substituting in (7)). It is important to note
that the actual size will depend on the structure of the specific self set. Nevertheless, the analysis provides
insight into its behavior and enables us to ascertain the impact of allowing novel strings into the sample.
This can be useful for determining, in a dynamic scenario, when (or at what rate) detectors should be added
or deleted from the working set.

6.2 Nonoverlapping Fixed Size Windows

As noted in Sect. 4 the r-chunks match rule does not necessarily require the use of a sliding window nor is
it restricted to a fixed window size. As an illustration of another matching scheme for which the crossover
closure is the characteristic generalization, we discuss an alternative decomposition based on the r-chunks
match rule.

This decomposition restricts detector creation to non-overlapping windows but maintains a fixed size for
each window. For simplicity we assume that r exactly divides l. In the case of positive detection, all distinct
patterns in non-overlapping windows are potential detectors as are all absent patterns potential negative
detectors. It is straightforward to see that the generalization implied by this design is the crossover closure
of the strings in the training sample S (according to (1)). In fact its size is easier to compute than with the
sliding window model and is simply the product of the number of detectors for each window:

CC(S) =
∏

i

|Υ [i]| (8)

where Υ [i] is the set of detectors for the ith window.
Likewise the number of detectors can be obtained as the sum of the number of detectors for each window:∑

i

|Υ [i]| . (9)

2 For an estimate of the out degree see [12].



If we consider, as we did above, a random sample of strings S, the expected number of detectors is simply
tEr for positive detectors and t(Ar − Er) for negative detectors, where Er is given by (2) and t = l

r is the
number of windows. Interestingly, the tradeoff point between negative and positive detectors is the same as
with the sliding window model (4). Lastly, the number of strings encompassed in the generalization follows
directly from (8): CCr(S) = (Er)t. Figure 1 plots the size of the crossover closure of the two decompositions
reviewed in this paper.

Fig. 1. The crossover closure as a function of the size of a random sample of binary strings for both the sliding
window and non-overlapping decompositions-

7 Discussion

It is difficult if not impossible to determine in general what the best generation rule is and how best to
represent a detector that implements it. However, having a clear understanding of what the generalization
is allows us to exert more precise control over its performance, balancing its benefits and shortcomings.
The results presented in this paper still leave some questions unanswered. In particular, how is r to be
determined? Although the above analysis might provide some guidelines for setting this parameter in terms
both of the size of the detector set and the size of the generalization, implicit in this rule is the prior
assumption that important attributes are contiguous within the string. In order to improve and adjust
classification performance as well as the space requirements, it will be necessary to define a mechanism that
is able to change the relative position of attributes within the string and an algorithm for finding suitable
arrangements. One such mechanism, permutation masks, has been proposed before but was used as a means
of reducing the size of the generalization [12, 17]. However, this mechanism naturally alters the contiguity of
bits and hence can be used for finding better decompositions. What remains is to design an algorithm for
finding a good permutation. This is the focus of our current research.

These are only the first steps toward building an AIS with a firm formal footing. It remains to establish
what are the policies and mechanisms that will permit the tracking of a shifting self and the distribution
of detectors. These are important issues as they are some of the potential benefits that an immune inspired
design might have over other paradigms.

8 Conclusion

In this paper we explored the crossover closure generation rule as a learning model for artificial immune
systems. We discussed two detection schemes, together with a match rule that implements this generalization.



A summary of theoretical results regarding the partial matching rule described in this work was presented,
including results for the size of the detector set and the size of the generalization as a function of its parameters
and the sample size. We described a positive detection scheme for which detectors are customized to match
instances of self and a negative detection scheme where they match instances of nonself. We reviewed how
both schemes partition the instance space equivalently and some of the tradeoffs involved in using one scheme
over another.
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