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Abstract A set DB of data elements can be repre-
sented in terms of its complement set, known as a nega-
tive database. That is, all of the elements not in DB are
represented, and DB itself is not explicitly stored. This
method of representing data has certain properties that
are relevant for privacy enhancing applications.

The paper reviews the negative database (NDB) rep-
resentation scheme for storing a negative image com-
pactly, and it proposes using a collection of NDBs to
represent a single DB, that is, one NDB is assigned for
each record in DB. This method has the advantage of
producing negative databases that are hard to reverse in
practice, i.e., from which it is hard to obtain DB. This
result is obtained by adapting a technique for generating
hard-to-solve 3-SAT formulas. Finally we suggest poten-
tial avenues of application.

Keywords Negative Database · Boolean satisfiability ·
k-SAT · Privacy · Security

1 Introduction

Controlling access to information and restricting the types
of inferences that can be drawn from it is an increasing
concern. Demands for data availability and the criteria
for confidentiality are continually evolving, complicat-
ing the task of protecting sensitive data. Current en-
cryption technology (for protecting the data itself) and
query restriction (for controlling access to data) help en-
sure confidentiality, but neither solution is appropriate
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for all applications. In the case of encryption, the ability
to search data records is hindered; in the case of query
restriction, individual records are vulnerable to insider
attacks. Further, many current solutions rely on a single
set of assumptions, e.g., prime factoring, which intro-
duces a single point of failure should the assumptions
ever be violated.

In this paper, we describe an approach to represent-
ing data that addresses some of these concerns and pro-
vides a starting point for the design of new applications.
A motivating scenario involves a database of personal
records that an outside entity might need to consult, for
example, to verify an entry in a watch-list. It is desir-
able to have a database that supports a restricted type
of query, disallowing arbitrary inspections (even from an
insider), which can be updated without revealing the na-
ture of the changes to an observer.

In our approach, the negative image of a set of data
elements is represented rather than the elements them-
selves (Fig. 1). Initially, we assume a universe U of finite-
length strings (or records), all of the same length l and
defined over a binary alphabet. We logically divide the
space of possible strings into two disjoint sets: DB repre-
senting a set of positive records (holding the information
of interest), and U − DB denoting the set of all strings
not in DB. We assume that DB is uncompressed (each
record is represented explicitly), but we allow U − DB
to be stored in a compressed form called NDB. We refer
to DB as the positive database and NDB as the nega-
tive database. From a logical point of view, either will
suffice to answer questions regarding DB; however, they
present different advantages. For instance, in a positive
database, inspection of a single string provides meaning-
ful information; inspection of a single ’negative’ string
reveals little about the contents of the original database.
Given that the positive tuples are never stored explic-
itly, a negative database could be much more difficult to
misuse.

The negative database idea was introduced in [20,
17], and the theoretical foundation was established for
certain properties of the representation, especially with
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respect to privacy and security. This paper addresses
some practical concerns regarding the security of neg-
ative databases and the efficiency of updating them. We
introduce a new storage design that better supports up-
date operations, and we adapt techniques from other
fields to create negative databases that are more secure
in practice.

The following section reviews the negative database
representation, gives some examples, and explains how
to query it. Sect. 3 investigates implications of the ap-
proach for privacy and security. In particular, the general
problem of recovering the positive set from our negative
representation is NP-hard [20,21,17]. We then present a
method for creating negative databases that are hard to
reverse in practice. The scheme also overcomes some of
the update inefficiencies of previous approaches, and, in
Sect. 4, we describe a scenario that highlights the prop-
erties of the scheme and suggests prospective areas of
application. Finally, we review related work, discuss po-
tential consequences of the results, and outline areas of
future investigation.

2 Representation

To create a negative database (NDB) that is reasonable
in size, we must compress the information contained in
U -DB while retaining the ability to answer queries. We
introduce an additional symbol to the binary alphabet,
known as a “don’t-care” and written as ∗. The entries in
NDB are strings of length l over the alphabet {0, 1, ∗}.
The don’t-care symbol has the usual interpretation, rep-
resenting both one and zero at the string position where
the ∗ appears. String positions set to one or zero are
referred to as “defined positions”. This symbol allows
large subsets of U − DB to be represented with just a
few entries in NDB (see example in Fig. 1).

A string s is taken to be in DB if and only if s fails to
match all the entries in NDB. The condition is fulfilled
only if for every string y ∈ NDB, s disagrees with y in
at least one defined position.

DB U −DB NDB
000 001 001
100 010 *1*
101 011

110
111

DB U −DB NDB
0001 0000 11**
0100 0010 001*
1000 0011 011*
1011 0101 0000

0110 0101
0111 1001
1001 1010
1010
1100
1101
1110
1111

Fig. 1 Different examples of a DB, its corresponding U -DB,
and a possible NDB representing U -DB.

Boolean Formula NDB
(x1 or x2 or x̄5) and 00**1
(x̄2 or x3 or x5) and *10*0
(x2 or x̄4 or x̄5) and *0*11
(x̄1 or x̄3 or x4) 1*10*

Fig. 2 Mapping SAT to NDB: In this example the boolean
formula is written in conjunctive normal form (CNF) and is
defined over five variables {x1, x2, x3, x4, x5}. The formula
is mapped to a NDB where each clause corresponds to a
negative record, and each variable in the clause is represented
as a 1 if it appears negated, as a 0 if it appears un-negated,
and as a ∗ if it does not appear in the clause at all. It is
easy to see that a satisfying assignment of the formula such
as {x1= FALSE, x2= TRUE, x3= TRUE, x4= FALSE, x5=
FALSE }, corresponding to string 01100, is not represented
in NDB and is therefore a member of DB.

Queries are also expressed as strings over the same
alphabet; a string, Q, consisting entirely of defined posi-
tions —only zeros and ones— is interpreted as “Is Q in
DB?”, and we refer to it as a simple membership or au-
thentication query. Answering such a query requires ex-
amining NDB for a match, as described above, and can
be done in time proportional to |NDB|. The work in [20]
demonstrates an efficient mapping between boolean sat-
isfiability formulas and NDBs (see Fig. 2), and it shows
that determining the reverse of NDB—its positive im-
age, DB—is NP-hard and that deciding whether DB is
empty or not is NP-complete. Consequently, answering
complex queries with an arbitrary number of * symbols
is also intractable.

As an example, consider a negative database with
tuples of the form < name, address, profession >. The
query “Is <Tintan, 69 Pine Street, Plumber> in DB?”
(written as a binary string Q) would be easily answered,
while retrieving the names and addresses of all the engi-
neers in DB (expressed as a query string with the profes-
sion field set to the binary encoding of ’engineer’ and the
remaining positions to *) would be intractable in general.

Not all NDBs, however, have the hardness properties
we seek. For example, it is possible to construct NDBs
with specific structures for which complex queries can
be answered efficiently (see Refs. [20,17]). Indeed, creat-
ing negative databases that are hard to reverse in prac-
tice is difficult; the next section addresses this issue and
presents an algorithm for creating negative databases
that only support authentication queries efficiently.

3 Hard-to-Reverse Negative Databases

In [20,18,21,17] several algorithms were given that ei-
ther produce NDBs that are provably easy to reverse,
i.e., for which there is an efficient method to recover DB,
or that have the flexibility to produce hard-to-reverse in-
stances in theory, but have yet to produce them experi-
mentally. It was shown in [20] that reversing a NDB is
an NP-hard problem, but this, being a worst case prop-
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erty, presents the challenge of creating hard instances in
practice.

This section focuses on a generation algorithm that
aims at creating hard-to-reverse negative databases in
practice; In order to create negative databases that are
hard-to-reverse in practice, we rely on the relationship
between negative databases and the boolean satisfiabil-
ity problem (SAT) (Fig. 2), taking advantage of the body
of work devoted to creating difficult SAT instances (e.g.,
[42,2,33,32]). As an example, we focus on the model in-
troduced in [32] and use it as a basis for creating NDBs.
This differs from the algorithms described in [20,18,21,
17] in two ways: First, it generates an NDB for each
string in DB; And second, it creates an inexact represen-
tation of U -DB, meaning that some strings in addition
to DB will not be matched by NDB.

The following subsections describe the generation al-
gorithm, outline how the problem of extra strings can
be dealt with, and show empirically that the resulting
databases are hard to reverse.

3.1 Using SAT Formulas as a Model for Negative
Databases

In [32] an algorithm is given for creating SAT formulas,
and this is the basis for the negative database construc-
tion. The algorithm’s objective is to create a formula that
is known to be satisfiable, but which SAT-solvers are un-
able to solve. In our construction, we will use one SAT
formula to represent each record in the positive database.
The approach is to start with an assignment s (a binary
string representing the truth values for the variables in
the formula), and then create a formula satisfied by it—
much like the algorithms in [20,18,21,17], except that
the resulting formula might also be satisfied by other
unknown assignments. Given the assignment s, the algo-
rithm randomly generates clauses with t > 0 literals such
that each clause is satisfied with probability proportional
to qt for q < 1 (q is an algorithm specific parameter used
to bias the distribution of clauses within the formula).
The purpose of the method is to balance the distribution
of literals in such a way as to make the formulas statis-
tically indistinguishable from one another. This process
produces a collection of clauses, each satisfied by s, which
can be readily transformed into a negative database (see
Fig. 2).

Initially, we consider a database (DB) of size at most
one (Sect. 3.4 extends this case to DBs with more than
one record) , containing a l-length binary string s. We
create a negative database (NDB) with the following
properties:

1. Each entry in the negative database has exactly three
specified bits.

2. s is not matched by any of NDB’s entries.
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Fig. 3 Number of strings not matched by NDB (mem-
bers of DB′) as a function of the hamming distance to s—
the original DB entry. The plot shows the expected num-
bers for q = 0.5 and several r values: from top to bottom
r = 5.5, 6.0, 7.0, 8.0, 9.0, 10.0. An interplay between q and r
determines how difficult the NDB will be to reverse and how
many “extra” strings will go unmatched by NDB.

3. Given an arbitrary l-bit string, it is easy to verify if
the string belongs to NDB or not (in time propor-
tional to the size of NDB).

4. The size of NDB is linear in the length of s. The
tunable parameter r = m/l determines the size of
the database and its reversal difficulty—l is the size
of s and m is the number of entries in NDB.

5. The size of NDB does not depend on the contents
of DB, i.e., it has the same size for |DB| = 1 and
|DB| = 0.

6. s is “almost” the “only” string not matched by NDB,
i.e., almost the only string contained in the positive
image DB′ of NDB. The other entries in DB′ are
close in hamming distance to s (see Sect. 3.2).

7. The negative database NDB is very hard to reverse,
meaning no known search method can discover s in a
reasonable amount of time (provided that the number
of bits in s be greater than 1000, as explained below).

Properties one through five follow from the isomor-
phism of negative databases with a 3-SAT formulae (see
Fig. 2) and the characteristics of the algorithm. Point
six is addressed in the next section, and completes the
negative database generation scheme. Property seven is
ascertained empirically in Sect. 3.3.

3.1.1 The Algorithm

We now describe the core algorithm used for generating
the negative databases of this paper in more detail. The
technique was originally introduced in [32] as a means
to generate boolean satisfiability (SAT) formulae and is
reproduced in Fig. 4 for convenience. Based on a well-
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INPUT: A binary string s
Integers l and k
Floating point numbers 0 < q < 1 and r > 0
OUTPUT: A negative database, NDB, that
does not match s

0. Let n← l ∗ r, initialize NDB = {}
1. Repeat
2. Select k distinct positions, Υ , uniformly at

random from [0, l − 1]
3. Create a string z of length l and set z[Υ ] = s[Υ ] a.

Set the remaining positions to ∗, the “don’t-care”
symbol

4. Repeat
5. For each position i in Υ
6. Complement the value of z[i] with

probability q
7. Until at least one value has been changed
8. Add z to NDB
9. Until |NDB| ≥ n.

a z[Υ ] denotes the projection of z onto positions Υ ,
the values of z at such positions.

Fig. 4 Algorithm for generating hard-to-reverse negative
databases. The pseudocode paraphrases the algorithm pre-
sented in [32] with minor modifications. The input variable l
stands for the length of strings in the universe of discourse;
k for the number of specified bits per negative record; q for
the probability that every bit in a negative record has of dis-
agreeing with the corresponding bit of s; and r for the desired
negative record to string length density (r determines the size
of the output NDB).

INPUT: Integers l and k
Floating point number r > 0
OUTPUT: A negative database, NDB, that
matches every string in U

0. Let n← l ∗ r, initialize NDB = {}
1. Repeat
2. Select k distinct positions, Υ , uniformly

at random from [0, l − 1]
3. Create a string z of length l and choose values

for z[Υ ] uniformly at random.a Set the remaining
positions to ∗, the “don’t-care” symbol

4. Add z to NDB
5. Until |NDB| ≥ n.

a z[Υ ] denotes the projection of z onto positions Υ—
the values of z at such positions.

Fig. 5 Algorithm for generating a hard-to-reverse negative
database that represents the empty positive database. The
meaning of the input variables is the same as in Fig. 4.

known random method for creating unsatisfiable formu-
lae, Fig. 5 describes the algorithm for generating a nega-
tive database that represents all strings of a given length
(the negative representation of DB = ∅). It is similar to
that of Fig. 4 and is presented separately in the inter-
est of clarity. The connection between SAT and negative
databases, described in Fig. 2, is the basis for using these
algorithms.

The algorithm (Fig. 4) proceeds by randomly gener-
ating negative database records that do not match the
positive database string s. Each negative record has ex-

actly k specified bits, the rest of the positions set to the
don’t-care symbol.

Step 2 determines, uniformly at random, which bit
positions to specify in the current record, and step 3
initializes it to have the same values as s in the chosen
positions. Steps 4–7 set the final values for the negative
record according to a random process—notice that step
7 insures that no negative record matches s.

In step 6, q is used to probabilistically determine the
k values that will be used to create each record; choos-
ing q appropriately (q < 1) rebalances the distribution of
values at each bit position such that it is not indicative
of the value of s—a probability q = 0.5, recommended
in [32], is used throughout this paper. The interplay be-
tween q, the probability that a bit in a negative record
does not match the corresponding bit in s, and r, the ra-
tio of the number of strings in NDB to the string length,
determines how difficult NDB will be to reverse and how
many extra strings will go unmatched by NDB (see Sect.
3.2). Step 8 includes the resulting record in the negative
database. There is a small chance of creating duplicate
records which must be accounted for in order to achieve
n unique entries; we omit this provision for simplicity.

Increasing the value of r reduces the number of su-
perfluous solutions (see Sect. 3.2), and, as shown in step
0, increases the number of negative records NDB must
have. Since the length of the input string also affects the
size of the database, there is room for play in the value
of r as the length of the input increases. We used an r
value of 5.5 as difficult instances lie close to this value
(Ref. [32]). For the purpose of our current experiments
we use a k value of three, however, increased values of
k can be used noting that the value of r will likely vary
with k in some way. Both the size and difficulty of re-
versing databases with a larger k value is expected to be
greater.

Figure 5 displays the pseudocode for generating a
negative database that represents every string in U (mi-
nus a few superfluous strings). It proceeds in a similar
manner as the algorithm of Fig. 4 and produces NDBs
of the same size for the same parameter settings. The
difference is that there is no string s given as input, and
that the values at the defined positions in each negative
record (step 3) are chosen uniformly at random.

Reference [19] discusses the possibility of inserting
and removing strings from the positive image of a neg-
ative database by manipulating the negative database
itself. Some preliminary experiments show that there is
an explosion in the size of the negative database when a
new string is included in the positive image, and that the
difficulty of finding such a string, using SAT solvers, is
greatly reduced. The original solution, however, remains
effectively hidden.
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3.2 Superfluous Strings

A consequence of the above method for generating nega-
tive databases, is the potential inclusion of extra strings
in the corresponding positive database. That is, DB′—
the reverse of NDB—could include strings that are not
in the original DB from which it was created; we refer
to these strings as superfluous 1.

Figure 3 displays the expected number of strings not
represented by NDB (and hence members of DB′) as
a function of their normalized Hamming distance to s—
the true member of DB— and shows that all superfluous
strings are within 0.13 distance from s (for the given
parameter settings)2.

Increasing the value of r reduces the number of su-
perfluous strings; however, it also increases the size of the
database and, more importantly, leads to NDBs that are
potentially easier to reverse (see [27,3,1]).

To address the incidence of superfluous strings, we in-
troduce a scheme that allows us to distinguish, with high
probability, the true members of DB from the artifacts.
Rather than creating an NDB using s as input, we con-
struct a surrogate string s′—appending to s the output
of some function F of s—and use it to generate NDB.
The membership of an arbitrary string u is established
by computing F (u) and testing whether u concatenated
with F (u) is represented in NDB 3. The purpose of the
function is to divide the possible DB′ entries into valid
and invalid—valid strings having the correct output of
F appended to them—and reduce the probability of in-
cluding any unwanted valid strings in DB′.

The choice of function impacts both the accuracy of
recovery (avoidance of superfluous strings) and the per-
formance of the database: the more bits appended to s,
the less likely to mistake a false string for a true one (as-
suming a reasonable code) and the larger the resulting
NDB. There is a wide variety of codes that can be used
for this purpose: parity bits, checksums, CRC codes, and
even hash functions like SHA or MD5 with upwards of a
100 bits 4.

To provide an idea of how the function impacts accu-
racy we consider a general model which assumes, for sim-
plicity, valid strings are uniformly distributed and sam-
pling with replacement. The chance of randomly finding
a valid string is 2−c, where c is the number of bits intro-
duced by the function. The probability of including an
unwanted valid string is 1− (1− 2−c)|DB

′|, where |DB′|
is the number of strings unmatched by NDB. The model
illustrates (see Fig. 6) the dependence of accuracy on the

1 Note that DB ⊆ DB′.
2 The definition of the plotted function is: f(α) =

1
αα(1−α)1−α

(

1− (q(1−α)+α)k−αk

(1+q)k−1

)r

, for details see [32].
3 Naturally F needs to be publicly known.
4 It’s important to emphasize that the proposed scheme

relies on F solely for reducing the incidence of false entries
and not, in any way, for the secrecy of the true ones.
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Fig. 6 Probability of including an unwanted valid string as
a function of the error correcting code, c, according to 1 −

(1−2−c)|DB′|. |DB′| denotes the expected number of strings
unmatched by NDB; it is calculated for a string length, l, of
1000 and r = 5.5.

code size—the density of valid strings—and the num-
ber of strings introduced by the generation algorithm.
Clearly, a sophisticated code such as the CRC, which
attempts to maximize the minimum hamming distance
between valid strings, will greatly increase the accuracy
of the generation scheme in section 3.1.

3.3 Hardness

To illustrate how hard to reverse these NDBs are, we
produced instances for strings ranging from 50 to 300
bits in length and r = 5.5. Their difficulty is assessed by
the ability of well established SAT-solvers to find a string
in DB′. There are two types of solvers: complete and
incomplete. Complete solvers search the space exhaus-
tively, while incomplete solvers explore only a fraction
of it and can handle much larger instances (in terms of
string length l); however, unlike complete solvers, their
failure to find a solution does not imply that one doesn’t
exist.

Figure 7 shows the results for the zChaff complete
solver (zChaff is often the champion of the yearly SAT
competition) and Fig. 8 shows the results for WalkSAT,
a well known incomplete solver. The experiments show
that both zChaff and WalkSAT find a DB′ entry in time
exponential in the length of the string l. Consider that
fully reversing NDB, i.e., finding all of the strings in
DB′, will entail running the solver |DB′| +1 times (the
extra run is to establish that there are no more strings
left). Additionally, we tested 100 NDBs with l = 1000
on zChaff and WalkSAT, as well as on two other solvers:
SATz and SP (the first complete the second incomplete).
No DB′ entry was found for any of them before the in-
complete solvers terminated and the complete solvers ran
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Fig. 7 Running time of zChaff on NDB with strings
of length l, ranging from 50 to 300.
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Fig. 8 Running time of WalkSAT on NDB with
strings of length l, ranging from 50 to 300.

out of memory or timed out after 24 hours (the default
timeout value for zChaff).

3.4 Multi-record Negative Databases

The preceding section explored how to create a hard-
to-reverse negative representation of a DB with zero or
one entries; now, we briefly outline how this can be ex-
tended for DBs of an arbitrary size—the work in [20,18]
is concerned with creating negative databases for any
DB, regardless of its size, but does not show that the
instances they output are hard to reverse in practice.

Our scheme can be used to generate the negative rep-
resentation of any set of strings DB by creating an indi-
vidual NDBsi for each string si in DB, i.e., each record
in the resulting NDB is itself some negative database
(see Fig. 9). Under this architecture a string x is con-

sidered to be a member of DB if and only if x is not
represented in at least one NDBsi.

It is important to point out that all NDBsi’s are the
same size (and are thus indistinguishable by this mea-
sure) and that some may represent the empty (positive)
set.

DB NDB0 NDB4 NDB5 NDB∅

000 *1* *1* 0** 0**
100 1** **1 **0 *1*
101 0*1 000 *11 10*

Fig. 9 A sample DB with possible NDBsi (NDB∅ repre-
sents the empty set). The final NDB collects all NDBsi’s.
Note that the output of the algorithm presented in Sect.
3 generates NDBsi’s with exactly three specified bits per
record and does not exactly represent U -DB; the present ex-
ample, however, serves to illustrate the non-monolithic struc-
ture of the final NDB.

Compare this scheme to the method described in [20,
18] and the examples in Fig. 1, where a monolithic NDB
represents all of DB. First, there is additional informa-
tion leakage 5, as the size of the underlying DB can be
bounded by the number of records (NDBsi’s) in NDB—
a bound, since NDB may contain any number of records
that represent the empty set. Second, an NDB created
in this manner is much easier to update: inserting a string
si into DB is implemented as finding which records in
NDB represent si and removing them; deleting si from
DB amounts to generating its corresponding NDBsi and
appending it as a record to NDB. The result is a data-
base in which updates take linear time (or better) and
whose size remains linear in |DB|. Moreover, our scheme
allows many operations to be parallelized, given that the
database can be safely divided into subsets of records
and the results easily integrated. This contrasts with the
databases and update operations presented in [18], where
a single “insert into DB” requires access to all of NDB,
runs in O(l4|NDB|2|) time, and may cause the database
to grow exponentially when repeatedly applied. Finally,
the nature of updates remain ambiguous to an observer,
given that a record can represent the empty set and that
different records (different NDBsi’s) can stand in for the
same DB entry.

We foresee other differences between the two schemes
as more complex operations such as joins, projections,
intersection, unions, etc., are investigated in the context
of negative representations of data.

4 Properties and Applications

In this section we summarize the properties of our ap-
proach and create an imaginary scenario that points to

5 Determining the size of DB from a hard-to-reverse NDB
is an intractable problem.
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ways in which negative databases might be used. We
start with a brief description of each property:

Hard to reverse: The results presented in this paper pro-
vide evidence that negative databases can be used to
constrain the type of inferences drawn from a dataset
DB. The only queries that can be processed effi-
ciently are authentication queries of the form “Is s
in DB?”

Singleton Negative Databases: A singleton negative data-
base is the negative representation of a single binary
string or of no string at all. In our approach, a sin-
gleton hard-to-reverse negative database, NDBs, is
created for every record s in DB. The collection of
all NDBs compose a multi-record negative database.

Easy to Update: Adding and deleting entries from the
negative database is easily done by inserting or re-
moving singletons from a multi-record negative data-
base.

Obfuscated Size: The size of the positive image corre-
sponding to some NDB, is obfuscated by the fact
that it is hard to distinguish singleton negative data-
bases that represent the empty set, from those that
don’t. A multi-record NDB can be constructed that
contains an arbitrary number of NDB∅ (represent-
ing the empty DB), revealing only an upper bound
to the size of DB.

Probabilistic: A particular binary string s has many pos-
sible negative database representations; the creation
process (see Figs. 4 and 5) chooses one probabilisti-
cally. It is hard to determine if two singleton negative
databases represent the same string.

String based: One of the more salient features of our
scheme is that it is based on string matching. This
permits us to meaningfully affect a positive image by
manipulating the entries of its negative database; ref-
erences [17,18] discuss some applications of this idea.
In the coming paragraphs we present an operation
that illustrates the usefulness of this property.

The following scenarios serve to exhibit and further
clarify the properties of hard-to-reverse negative data-
bases. In these examples, each party is the owner of some
positive dataset and certain operations are to be per-
formed on some or all of these sets. A collection of hard-
to-reverse singleton negative databases provides the ve-
hicle for exchanging data without revealing the contents
or size of the positive image. Both of the situations il-
lustrate how datasets with different attributes, or fields,
can be manipulated in their negative representations to
accomplish specific membership queries. We omit a rigor-
ous security analysis for this particular setup, as the pur-
pose here is to exemplify the features of negative data-
bases and suggest possible avenues of application.

A surveillance agency, S, wishes to track the behav-
ior of a group of individuals whose identifying informa-
tion: name and credit-card number, is kept in a watch-
list DBS . The data of interest is generated by assorted

businesses, such as airlines, home improvement stores,
libraries, phone companies, etc. These agents are eager
to cooperate with S but wish to safeguard, as much as
possible, consumer privacy and sensitive information re-
garding their operations. S’s purpose is to determine
purchasing patterns of specific products during certain
time periods; it wishes to find the intersections between
its watch-list and the businesses’ databases.

Each business is to create a multi-record negative
database, as described in section 3.4, of the tuples

<name, credit-card number, month, year>

appearing in the transactions for a particular product—
the month and year refer to when the transaction took
place. S will receive, for each product it solicits and for
each business, one such negative database.

Consider three business agents: two travel agencies
and one home improvement store. Let DBA and DBB

be databases of airplane ticket purchases from agencies
A and B, and NDBA and NDBB their corresponding
negative databases. Likewise, let NDBH be the nega-
tive database of acquisitions from store H of certain
garden supplies. The following three tables give some ex-
ample databases and their corresponding negative repre-
sentations. For simplicity every field in the tuple <name,
credit-card number, month, year> occupies one bit, and
the error correcting code used to eliminate superfluous
strings (see Sect. 3.2) is omitted.

DBA NDBA0 NDBA4

0000 1*** 1***
0100 01** 00**

*01* 0*1*
*0*1 *1*1

DBB NDBB0 NDBB10 NDBB15

0000 1*** 0*** 0***
1010 0*1* 1*0* 1*0*
1111 01** 11** 10**

**01 *0*1 1**0

DBH NDBH0 NDBH4 NDBH10

0000 ***1 ***1 ***1
0100 **10 1**0 **00
1010 1**0 *0*0 00**

*1*0 **10 *1*0

S receives NDBA = {NDBA0, NDBA4} from A;
NDBB = {NDBB0, NDBB10, NDBB15} from B; and
NDBH = {NDBH0, NDBH4, NDBH10} from H . The
subscripts on the labels in each negative database are
used for exposition purposes only and wouldn’t be used
to betray their contents in a real application.

New items can be individually transmitted to S and
added to the multi-record NDB. S can also easily con-
solidate databases submitted by different businesses, and
can readily dispose of entries it deems no longer useful.
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Notice is that the length of the strings in the watch-
list DBS are not of the same length as strings in the busi-
nesses’ databases, the latter have the additional fields for
the month and year the transaction took place. For S to
query a negative database about the membership of any
string from its watch-list it will need to augment it with
a specific month and year. We refer to a set of augmented
strings as DB′

S
. Let the surveillance agency’s watch-list

be DBS = {00, 10}; the augmented set for the fixed year
value of ’0’ and the augmented set for the fixed month
of ’1’ are:

DBS DB′
S
(year=’0’) DB′

S
(month=’1’)

00 0000 0010
10 0010 0011

1000 1010
1010 1011

Notice that for a fixed year, all bit combinations repre-
senting the month are generated for each DB’s string,
and likewise when the month is fixed.

4.1 Extracting Information

We now examine how some information can be extracted
from the negative databases using S’s watch-list.

Let DB′
S
−NDB denote the set of strings represented

in the positive database DB′
S

that are not also repre-
sented —matched by any entry— in the negative data-
base NDB. This is, in effect, the intersection of DB′

S

and the positive image of NDB. For the case in which
NDB is a multi-record negative database, we compute
the operation as the union of the individual differences:

DB′
S −NDB =

⋃

(DB′
S
− NDBi)

S can determine if anybody in its watch-list, DBS ,
has bought an airplane ticket from A or from B dur-
ing 2006 (e.g., year=’0’), i.e., (DB′

S
∩ DBA) ∪ (DB′

S
∩

DBB), by assessing the membership of each DB′
S

string
in NDBA and NDBB, this is, by computing (DB′

S
−

NDBA) ∪ (DB′
S
− NDBB). In our running example

DB′
S
−NDBA =

(DB′
S − NDBA0) ∪ (DB′

S − NDBA4) = {0000}

and

DB′
S
−NDBB =

(DB′
S − NDBB0) ∪ (DB′

S − NDBB10) ∪

(DB′
S − NDBB15) = {0000, 1010},

yield {0000, 1010} as the end result of the operation.
Now suppose S wishes to find out which entries in

the watch-list have bought a ticket from A and a garden
supply from H during 2006, i.e., DB′

S
∩DBA∩DBH . We

can rewrite this expression as (DB′
S
∩ DBA) ∩ (DB′

S
∩

DBH). Using the corresponding negative databases, the
operation is implemented as (DB′

S
−NDBA) ∩ (DB′

S
−

NDBH). In our running example, this results in the set
{0000}.

Other information such as the common elements be-
tween DBA, DBB and DBH that are not also in the
annotated watch-list cannot be accomplished efficiently.
Inspecting NDBA, NDBB and NDBH does not reveal
this information, since the particular singleton negative
database for each <name, credit-card number,month, year
> tuple is chosen at random among the many possi-
bilities —negative databases representing the same set
of elements look completely different (see the example
for NDBA4 and NDBH4 for instance). Moreover, since
the databases are hard-to-reverse, arbitrary explorations
are inefficient (note that the strings in our running ex-
ample are by necessity of a short length and, therefore,
their corresponding databases not hard to reverse). Infor-
mation such as how many transactions businesses have
in common, or purchasing patterns of individuals not
specifically sought for, cannot be readily attained. This
could be of importance for agency A if for some reason
NDBA were to fall into its competitors hands. Further,
multi-record negative databases hide the exact number
of strings contained in its positive counterpart, due to
the possibility that some singleton databases might rep-
resent the empty set—only an upper bound to its size
can be gleaned.

4.2 Modifying a Negative Database

One important characteristic of negative databases is
that data—the positive information—is not scrambled
or transformed in an unpredictable manner, as it would
be were it encrypted or hashed. Rather, something else is
kept in its place, a representation of its complement set
that retains the same semantics for each string position.
This property allows for some operations to be carried
out on negative databases without specific knowledge of
their actual content.

In the following, we explore an operation, first sug-
gested in [17], akin to a “Select” and a “Project” on a
positive database, that restricts the contents of a positive
database using only its negative counterpart.

Enter agent O owner of database DBO, perhaps an-
other watch-list of names and credit-card numbers. S,
the surveillance agency, is interested to know if any of
the elements in O’s watch-list are also in a subset of A’s
database. S does not want O or A to know they are
participants in the same investigation or to reveal de-
tails such as which subsets of A—the criteria with which
they are selected—are of interest. O is unwilling to re-
linquish DBO to S, but will return any subset that in-
tersects with SA. Unlike the scenario in which S wanted
to know the intersection of its own database and some-
one else’s, having the negative database NDBO does not
serve this purpose. Recall that establishing the intersec-
tion between two negative databases cannot be accom-
plished by comparing the two.
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INPUT: A bit pattern v
A position vector Υ
A negative database, NDB, for strings of length l
OUTPUT: A negative database NDBo for strings of
length l − |Υ |

0. Initialize NDBo to the empty set: NDBo = {}
1. For every string x ∈ NDB such that x[Υ ] matches va

1a. Create a string z = x[Ω − Υ ] b

1b. Insert z in NDBo.

a x[Υ ] denotes the projection of string x onto posi-
tions Υ .

b Ω is the set of all l string positions. The subtrac-
tion denotes all string positions except Υ .

Fig. 10 Algorithm for creating a negative database for the
strings in positive database DB that exhibit bit pattern v
at positions Υ . The output NDBo is defined for strings of
length l − |Υ | by omitting the Υ positions, where l is the of
strings in DB.

The strategy is for S to generate a version of A’s
negative database that represents the restricted version
of DBA. This needs to be accomplished using NDBA

and without knowledge of the contents of DBA itself.

For the purpose of the current discussion we are inter-
ested in selecting the strings in DBA that have a certain
value v at positions Υ—Υ is a string position vector and
v specifies the bit values at each position. For example,
we might want the subset of DBA of strings that have
month=0; here month specifies the string position Υ and
’0’ the specific value that positions must have.

Selecting a subset of this form is implemented us-
ing a negative database by modifying its entries so that
every string satisfying the selection criteria is matched.
Figure 10 gives the pseudocode for this particular kind
of projected select. Line 1 of the algorithm selects all
the strings in the negative database that match the in-
put bit pattern. For each such string s, line 1a creates
a new string that is exactly the same as s, but with the
Υ positions removed—the new string is of length l− |Υ |,
where l is the length of s and |Υ | the number of posi-
tions specified in the matching criterion. The removal of
string positions serves two purposes: to conceal the se-
lection criteria and to avoid including unwanted strings
in the positive image. Consider not removing the Υ po-
sitions and setting them to v; then not only is v revealed
but the corresponding positive database will include all
strings that do not have v at their Υ positions, an un-
wanted side-effect. By removing Υ we ensure that the
only strings that are not represented are those strings in
the original positive database that have v in Υ .

Back to our running example, suppose that S wishes
to determine the name and credit-card numbers of indi-
viduals that bought a plane ticket from A during month
’0’ that also appear in O’s watch-list. S can accomplish
this by selecting from NDBA, according to Fig. 10 (see
example below), those records with month=’0’ and send-
ing O the negative databases NDBA0(S) and NDBA4(S)

of the tuples <name, credit-card number, year >. O can
then return to S only those entries in DBO that are not
matched by both NDBA0(S) and NDBA4(S) for years ’1’
and ’0’—recall that O will need to augment its database
with a year field.

NDBA0 NDBA0(S) (month =’0’)
1*** 1**
01** 01*
∗01* *01
∗0*1

NDBA4 NDBA4(S) (month =’0’)
1*** 1**
00** 00*
0*1* *11
∗1*1

Suppose O’s database is DBO = {01, 11}. Then, by
creating the annotated database DB′

0 for both years ’1’
and ’0’ :

DBO DB′
O

01 010
11 011

110
111

O can determine that ’010’ is the only entry in DB′
O

not
present in at least one negative database (NDBA4(S) in
this case) and can therefore return entry ’01’ to S. Only
S knows this is the intersection of O’s data with A’s in-
formation for transactions during month ’0’. O knows
only that customer ’01’ is in the negative database pro-
vided by S.

Finally, we turn back to our original scheme in which
strings in DB have a code appended to them. In Sect. 3.2
we discussed how some strings can be included in the pos-
itive image of a negative database using the algorithm of
Fig. 4, and how appending a code to each DB string, be-
fore creating NDB, can help alleviate this phenomenon.
If a negative database is going to be operated upon as
suggested in this section, then care should be taken as
to how the code is generated so that the negative data-
base can be modified accordingly. Recall that the code
is the product a function of each positive string s and
that the code is needed for consulting NDB; therefore,
altering a negative database without adjusting the code
renders it useless. The code should be easily modified
without knowing the contents of the positive database.
One straight forward alternative is to compute a sepa-
rate code for each field in s, where a field is understood
to be a subset of the bit positions of s and all fields are
disjoint. In this manner, operating on a negative data-
base using the algorithm discussed in Fig. 10 requires
including the code in v and the code’s position in Υ .
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5 Related work

Reference [20] introduced the concept of negative in-
formation, presented negative databases (NDBs) as a
means to compactly represent negative information, and
pointed to the potential of NDBs to conceal data. Ad-
ditional properties of representing information in this
way are outlined in [17]. To date, there are three ba-
sic algorithms for creating NDBs: the Prefix algorithm
[20] is deterministic and always creates a NDB that is
easy to reverse; the Randomized algorithm [20] is non-
deterministic and can theoretically produce hard-to- re-
verse NDBs, but the required settings are unknown; and
finally the On-line algorithms [18,19] designed to update
NDBs (insert and delete strings) rely on having an al-
ready hard-to-reverse NDB for their security.

There are many other topics that relate to the ideas
discussed in this paper. Most relevant are the techniques
for protecting the contents of databases—database en-
cryption, zero-knowledge sets, privacy-preserving data
mining and query restriction—security systems based on
NP-hard assumptions, and one-way functions.

Some approaches for protecting the contents of a data-
base involve the use of cryptographic methods [24,23,9,
44], for example, by encrypting each record with its own
key. Zero-knowledge sets [37,41] provide a primitive for
constructing databases that have many of the same prop-
erties as negative databases; namely, the restriction of
queries to simple membership. However, they are based
on widely believed cryptographically secure methods (to
which NDBs are an alternative), require a controlling
entity for answering queries, and are difficult to update.

In privacy-preserving data mining, the goal is to pro-
tect the confidentiality of individual records while sup-
porting certain data-mining operations, for example, by
computing aggregate statistical properties [7,5,4,14,16,
44,43]. In one example of this approach (Ref. [7]), rele-
vant statistical distributions are preserved, but the de-
tails of individual records are obscured. Negative data-
bases contrast with this, in that they support simple
membership queries efficiently, but higher-level queries
may be expensive.

Negative databases are also related to query restric-
tion [35,12,14,15,43], where the query language is de-
signed to support only the desired classes of queries. Al-
though query restriction controls access to the data by
outside users, it cannot protect from an insider with full
privileges inspecting individual records.

Cryptosystems reliant on NP-complete problems [22]
have been previously studied, e.g., the Merkle-Hellman
cryptosystem [36], which is based on the general knap-
sack problem. These systems rely on a series of tricks to
conceal the existence of a “trapdoor” that permits re-
trieving the hidden information efficiently (NDBs have
no trapdoors); however, almost all knapsack cryptosys-
tems have been broken [40]. There is a large body of work
regarding the issues and techniques involved in generat-

ing hard-to-solve NP-complete problems [31,30,40,36]
and in particular of SAT instances [38,13]. Much of this
work is focused on the case where formulas are generated
without knowledge of their specific solutions. Efforts con-
cerned with the generation of hard instances possessing
some specific solution, or solutions with some specific
property include [32,25,2].

One-way functions [28,39] and one-way accumulators
[8,11] take a string or set of strings and produce a di-
gest from which it’s difficult to obtain the original in-
put. One distinction between these methods and nega-
tive databases is that the output of a one-way function
is usually compact, and the message it encodes typically
has a unique representation (making it easy to verify if
a string corresponds to a certain digest). Probabilistic
encryption studies how a message can be encrypted in
several different ways [29,10].

In section 4 we provide a scenario whereby, among
other things, an agent can privately learn what items
from its database are also present in someone else’s data
set. This problem is formally known as private match-
ing and several traditional cryptographic techniques have
been used to address it, see for example [6,26,34]. One
interesting feature of our approach, however, is that it
allows altering a negative database to restrict the con-
tents of its positive image, which opens the door to more
flexible schemes, as discussed in section 4.

As the availability of data, the means to access it, and
its uses increase, so do our requirements for its security
and our privacy. There is no single solution for all of our
demands, as evidenced by the many methods reviewed
in this section; hard-to-reverse NDBs, with their unique
characteristics, are an addition to this toolbox.

6 Discussion and Conclusions

In this paper we took the work presented in [20,18,17]
and addressed some of its practical concerns. In par-
ticular, the previous work outlines algorithms that are
expected to generate hard-to-reverse NDBs once their
parameters are appropriately set; however, no hints on
what their values should be or evidence of them gener-
ating any hard instances is provided. The present paper
introduced a novel and efficient way to generate negative
databases that are extremely hard to reverse—for which
it is hard to find the values of their positive image. The
scheme takes advantage of the relationship the negative
data representation has with SAT formulae and borrows
from that field a technique for generating the database
and the means to test its reversal difficulty. The method
we adopted creates an inexact negative image of DB, in
that the resulting NDB negatively represents DB along
with a few additional strings. We addressed this issue
with the inclusion of error detecting codes that help dis-
tinguish between DB and the extra, superfluous strings.
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In addition, our design departs significantly from the
previous work’s construction of negative databases by se-
curing the contents of the database on a per record basis,
i.e., we create a hard-to-reverse NDBAi for each entry
Ai in DB, the collection of which constitutes our NDB.
The present work sketched this setup and outlined some
of its characteristics; our current efforts include explor-
ing these database constructions and its applications in
more detail.

We showed how negative databases can be manipu-
lated to meaningfully restrict the contents of its positive
image, without explicit knowledge of what the content
of this image actually is. An imaginary scenario was pre-
sented that highlights all the properties of our approach
and suggests applications for which it might be appro-
priately suited.

We have also demonstrated how knowledge from the
well established field of SAT can be successfully adapted
for the creation and evaluation of negative databases,
albeit not always straightforwardly—witness our need to
introduce error detecting codes. We expect that more
tools and techniques will be transfered in the future, and
that better technologies for SAT, e.g., harder formulas
to solve, will lead to improved techniques for negative
databases and vice versa.

Finally, we are optimistic that some of the problems
presented by sensitive data can be addressed by tailoring
a negative representation to its particular requirements.
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