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The paper introduces algorithms for constructing negative representations as
well as operations for updating and maintaining them.

Keywords Negative Databases · Immune-inspired Algorithms · Privacy ·
Information Hiding · Data Representations

1 Introduction

Large collections of data are ubiquitous, and the demands we place on them
continue to increase. We expect data to be available on demand but to be
protected from malicious parties; we would like the ability to search data
collections in new ways, drawing inferences about large-scale patterns and
trends, while preventing the wrong kinds of inferences (as in baseless racial
profiling). Content and the rules for accessing it must be continually updated
and, eventually, we will want the ability to audit the uses to which our
personal data are put. Although many of these problems are old, they must
now be solved more quickly for larger and more dynamic collections of data
under more stringent privacy requirements.

In this paper we introduce an approach to representing data that ad-
dresses some of these issues, particularly those related to privacy and dis-
tributed data. Our goal is to devise data representations that prevent inap-
propriate queries and inferences, while supporting legitimate operations.

There are several motivating scenarios for our work. Consider, for exam-
ple a watch list that is to be made available to airline agents. It is desirable
for these agents to have the ability to verify whether a given name is on the
list, but at the same time not to have the ability to arbitrarily browse its
contents (or even assess its size), lest it fall into the wrong hands. A second
goal involves distributed data, where we would like to privately determine
the intersection of sets owned by different parties. For example, two or more
entities might wish to determine which of a set of possible items (e.g. trans-
actions) they have in common without revealing the totality of the contents
of their database or its cardinality. A longer term motivation concerns a large
database of personal records, which an outside entity might need to search,
for example, to identify suspicious activities or to conduct epidemiological
studies. Under this scenario, it is desirable that the database support only
the legitimate queries while protecting the privacy of individual records, say
from inspection by an insider.

We present negative databases as a specific example of representing data
negatively. In this approach, the negative image of a set of data records
is represented rather than the records themselves (Figure 2). Initially, we
assume a universe U of finite-length records (or strings), all of the same
length l and defined over a binary alphabet. We logically divide the space of
possible strings into two disjoint sets: DB representing the set of records that
holds the information of interest, and U −DB denoting the set of all strings
not in DB. We assume that DB is uncompressed (each record is represented
explicitly), but we allow U − DB to be stored in a compressed form called
NDB. We refer to DB as the positive database and NDB as the negative
database.
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Consider, for example, a banking database of the tuples <Name, Transac-
tion type, Date> with a total length of 400 bits, where the first field stores the
name of a client, the second has the description of the banking transaction
like “withdrawal” or “deposit” and the third stores the date the transac-
tion took place. The positive database will contain the actual names of the
bank’s clients, their transactions and the date they occurred, while the neg-
ative database will instead have all possible 400 bit combinations except the
ones corresponding to the bank’s factual data. From a logical point of view,
either database will suffice to answer questions regarding DB. However, the
different representations present different advantages. For instance, in a pos-
itive database, inspection of a single record provides meaningful information.
However, inspection of a single (negative) record reveals little about the con-
tents of the original database. Because the positive tuples are never stored
explicitly, a negative representation would be much more difficult to misuse.
Similarly, depending on the specific representation of NDB, the efficiency of
certain kinds of queries may be significantly different than the efficiency of
the same query under DB. Some applications may benefit from this change
of perspective. Most applications seek to retrieve information about DB as
efficiently and accurately as possible, and they typically are not explicitly
concerned with U −DB. Yet, in situations where privacy is a concern it may
be useful to adopt a scheme in which certain queries are efficient and others
are provably inefficient.

This paper describes the concept of a negative representation, gives some
initial results on its feasibility, and illustrates how alternative negative rep-
resentations can produce distinct properties with respect to retrieving in-
formation or protecting privacy. We do not yet fully understand all of the
properties of the negative data representations we present, and there may be
other representations with different properties appealing to distinct applica-
tions.

In the following sections, we first show that implementing NDB is com-
putationally feasible. We do this by introducing a scheme that requires O(ln)
negative records to represent the complement of a positive database consist-
ing of n l-bit strings, and then giving an algorithm for finding such a represen-
tation efficiently. We next investigate some of the privacy implications of the
negative scheme. In particular, we show that the general problem of recov-
ering a positive database from our negative representation is NP-hard. We
then present a randomized algorithm for creating negative representations
that are difficult to reverse, as well as operations for updating and main-
taining a negative database. We discuss what types of queries can be carried
out efficiently under this representation and how negative databases can be
used to perform set intersection—an important operation among databases.
Finally, we review related work, discuss the potential consequences of our
results, and outline areas of future investigation.

2 Representation

In order to create a database NDB that is reasonable in size, it is necessary to
compress the information contained in U −DB. We introduce one additional
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symbol to the binary alphabet, known as a “don’t care,” written as ∗. The
entries in NDB will thus be l-length strings over the alphabet {0, 1, ∗}. The
don’t-care symbol has the usual interpretation and will match either a one or
a zero at the bit position where the ∗ appears. Positions in a string that are
set either to one or zero are referred to as “defined” or “specified” positions,
and locations where a ∗ appears are referred to as “unspecified” positions.
With this new symbol we can potentially represent large subsets of U −DB
with just a few entries.

For example, the set of strings U −DB can be exactly represented by the
NDB set shown below:

DB (U − DB) NDB

001
000 010 0*1
111 011 ⇒ *10

100 10*
101
110

The convention is that a binary string s is taken to be in DB if and only
if s fails to match each of the entries in NDB. This condition is fulfilled
only if for every string tj ∈ NDB, s disagrees with tj in at least one defined
position.

2.1 The Prefix Algorithm

In this section we present an algorithm as proof that a negative database
NDB can be constructed in reasonable time and of reasonable size. The
prefix algorithm introduced here is deterministic and reversible—DB can
be recoved by inspecting NDB—which has consequences for the kinds of
inferences that can be made efficiently from NDB. The algorithm works by
iteratively finding every prefix wi not contained in DB. For each such wi it
creates a record in NDB consisting of wi with the remaining positions set
to *. Figure 1 gives the pseudo code for the algorithm. An implementation
of the prefix algorithm and all the other algorithms described in this paper
is available from http://cs.unm.edu/∼forrest/negdb.html. An example DB,
U − DB and the NDB produced by the prefix algorithm is given in Figure
2.

Lemma 1 The prefix algorithm creates a database NDB that matches ex-
actly those strings not in DB.

Proof Every string not in DB must have a minimum length prefix that is
not a prefix of any string in DB. Step three of the algorithm (Fig. 1) finds
these prefixes and, for every such prefix, it appends a representation of every
possible string with that prefix to NDB (step five). If a pattern—a specific
sequence of 1s and 0s— is not present in DB’s window wi+1 and its own
prefix is not in wi then it must have been inserted in NDB before. Step two
initializes W0 so that the first iteration considers every pattern absent from
DB.
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Prefix algorithm(DB)
Let wi denote an i-bit prefix and Wi a set
of i-length bit patterns.
1. i← 0
2. Set Wi to the empty set

Repeat
3. Set Wi+1 to every bit pattern not present in

DB’s wi+1 but with prefix in Wi

4. for each pattern Vp in Wi+1{
5. Create a record using Vp as its prefix

with the remaining positions set to *
6. Add record to NDB.}
7. Increment i by one
8. Set Wi to every pattern in DB’s wi

9. Until i = l.

Fig. 1 The Prefix algorithm outputs a negative database NDB of size O(l · |DB|)
representing the strings in U −DB. See Figure 2 for an example input/output of
the Prefix algorithm.

Theorem 1 The negative data set (U −DB) can be represented using O(l ·
|DB|) records.

Proof For every window of size i there are at most |DB| “negative” records
created and inserted in NDB (steps 4–6). The number of windows is at most
l (step 9) therefore, the number of negative records is O(l · |DB|).

The NDB produced by the prefix algorithm has some interesting properties.
For example, each string in U −DB is matched by exactly one NDB record.
This non-overlapping property allows NDB to support more powerful queries
than simple membership, as shown in Section 4.1. Consider, for instance, the
NDB produced by the prefix algorithm from the banking database with
tuples <Name, Transaction type, Date> discussed in Section 1. It is easy
to determine how many transactions “John Doe” made on “01/01/2003” by
selecting, from NDB, all records that match the name and date, and then
counting the number of *s in the transaction field to determine how many
strings a particular negative record represents (by exponentiating 2 to this
number). Since the records are non-overlapping, the addition of the number
of strings each such record represents amounts to the total transactions not
made by John Doe in 01/01/2003. Subtracting this quantity from the total
number of possible transactions for a specific name on a specific date (given
by exponentiating 2 to the number of bits in the Transaction field) will yield
the desired total. This is particularly interesting if the records in NDB are
distributed among several parties, as no proper subset of the parties can
compute this value.

In general, we would like some inferences to be hard (e.g., inferring the
original DB from NDB) and other inferences to be easy, depending on the
application (e.g., finding certain kinds of correlations in DB as in the above
example). In the following section, we focus on the question of how easy it is
to recover the original DB from NDB.
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DB U −DB NDB c-keys RNDB
0001 0000 11** 11** 11**
0100 0010 001* 0*1* 0*1*
1000 0011 011* *11* 1110
1011 0101 0000 00*0 *111

0110 0101 *1*1 00*0
0111 1001 1*01 *1*1
1001 1010 **10 0101
1010 1*01
1100 **10
1101 *010
1110
1111

Fig. 2 Column 1 gives an example DB, column 2 gives the corresponding U−DB,
column 3 gives the corresponding NDB generated by the prefix algorithm, column 4
presents some possible c-keys extracted from NDB, and column 5 gives an example
output of RNDB(see Section 5).

3 Reversibility

In Section 2.1 we presented an algorithm for generating NDB that demon-
strates the feasibility of a negative representation. We now turn our attention
to one property of negative representations—the difficulty of inferring the
positive database from the entire negative database. First we establish that
the representation described in Section 2 is potentially difficult to reverse (it
is an NP-hard problem), and in Section 5 we present an algorithm aimed at
producing hard-to-reverse instances.

Reconstruction of DB from NDB is NP-hard in the following sense1.

Definition 1 Self Recognition (SR):
INPUT: A set U − DB of binary strings represented by a collection NDB

of length l strings over the alphabet {0, 1, ∗}, and a candidate self set DB.
QUESTION: Does NDB represent the self set DB?

We establish that SR is NP-hard. Note that NDB represents an arbitrary
set U − DB, and we do not specify how it was obtained. First we establish
the NP-completeness of the following problem.

Definition 2 Non-empty Self Recognition (NESR):
INPUT: A set U − DB of binary strings represented by a collection NDB
of length l strings over the alphabet {0, 1, ∗}.
QUESTION: Is DB nonempty? That is, is there some string in U = {0, 1}l

not matched by NDB?

Theorem 2 NESR is NP-complete.

Proof NESR is clearly in NP . (If we guess a string, it is easy to verify that
it is not matched, and thus a member of DB, by comparing it against every
record in NDB.)

1 For historical reasons we sometimes refer to DB as Self.
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The NP-completeness of NESR is established by transformation from 3-
SAT. Start with instance I of 3-SAT. Let X be the set of variables {xi}, and
suppose l is the number of variables. The constructed instance of NESR will
be over length l strings. Each clause {Li, Lj, Lk} in I (Li is a literal, which is
either xi or xi complement) creates a length l string in NDB as follows. All
positions other than i, j, or k contain ∗. Position i contains 0 if Li is xi and
contains 1 if Li is x̄i (complemented xi). A similar construction is used for
the other two literals Lj and Lk in this clause. Figure 3 shows an example
of this mapping.

Claim: There exists a truth assignment satisfying I if and only if there
exists a string in U = {0, 1}l not matched by NDB (and therefore in DB).
In the following, if A is a truth assignment to the variables in X , S(A) is the
string in U obtained by setting the ith bit to 1 if A assigns xi = T and the
ith bit to 0 if A assigns xi = F .

We have:
A satisfies I

⇐⇒ for every clause Cq = {Li, Lj, Lk}, at least one literal is satisfied
⇐⇒ S(A) fails to match at least one of the bits i, j, k of the qth

member of NDB (generated from Cq), because uncomplemented literal
Li generates 0 in the ith position and complemented Li generates 1 in
ith position, and similarly for Lj , Lk

⇐⇒ S(A) is in DB.

Corollary 1 NESR is NP-complete even if every record of NDB contains
exactly three defined positions.

Proof Our transformation always produces such an instance of NESR.

Corollary 2 Empty Self Recognition (ESR, the complement of NESR, an-
swers YES if and only if NDB represents the empty set) is NP-hard.

Proof Trivial Turing transformation from NESR.

Theorem 3 Self Recognition (SR, defined above) is NP-hard.

Proof We have established this to be the case even when the candidate self
set DB is empty, and even when every member of NDB contains exactly
three defined positions.

4 Applications

In this section we give two examples of how a negative representation might
be useful. First, we discuss queries against a negative database, a subject
whose full treatment is left for future work. A second possible application
involves distributed negative databases, where we use set intersection as an
example
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Boolean Formula NDB
(x1 or x2 or x̄5) and 00**1
(x̄2 or x3 or x5) and *10*0
(x2 or x̄4 or x̄5) and ⇒ *0*11
(x̄1 or x̄3 or x4) 1*10*

Fig. 3 Mapping SAT to NDB: In this example the boolean formula is written in
conjunctive normal form (CNF) and is defined over five variables {x1, x2, x3, x4,
x5}. The formula is mapped to an NDB where each clause corresponds to a record
and each variable in the clause is represented as a 1 if it appears negated, as a 0
if it appears un-negated and as a ∗ if it does not appear in the clause at all. It is
easy to see that a satisfying assignment of the formula such as {x1= FALSE, x2=
TRUE, x3= TRUE, x4= FALSE, x5= FALSE } corresponding to string 01100 is
not represented in NDB and is therefore a member of DB.

4.1 Queries

Using the representation described above, negative databases consist of a
set of strings defined over {0, 1, ∗}l. Queries to such databases are also ex-
pressed as strings defined over the same alphabet. Using the banking exam-
ple from Section 1, the binary string representing “John Doe, withdrawal,
01/01/2003” is interpreted as the query Q: Did John Doe make a with-
drawal on 01/01/2003? And the ternary string representing “John Doe, *,
01/01/2003” is interpreted as the query Q′: What transactions did John Doe
make on 01/01/2003?

When a query Q consists only of defined positions, i.e. it has no *s, we
refer to it as an authentication or simple membership query. Answering such
a query is straightforward as it is necessary to ascertain only if Q is matched
by any one of the strings in NDB (matching is described in Section 2). On
the other hand, if Q contains an arbitrary number of unspecified positions,
answering it is equivalent to asking whether the corresponding SAT formula
has any satisfying assignments when an arbitrary number of its variables have
pre-assigned truth values. This remains an NP-hard problem for arbitrary
sets of pre-assigned truth values. This contrasts with a positive database DB,
where the records are stored explicitly and answering such queries takes time
proportional to the size of DB.

For example, consider the query Q′: What transactions did John Doe
make on 01/01/2003? and the corresponding string defined over {0, 1, ∗}. If
Q′ is issued to DB, and computed by comparing it against each entry of DB,
it will return only those strings that match the specified fields, even though
Q′ might actually represent an exponential number of strings. However, if
Q′ is issued to NDB, it will be necessary to find which of all the possible
strings of length l = 400 whose defined positions correspond to “John Doe”
and “01/01/2003” that are not in NDB and output them. It is an NP-
hard problem to accomplish this under our representation of NDB for an
arbitrary choice of defined positions. Note, however, that it is possible to con-
struct NDBs with specific structures for which this query can be answered
efficiently, as discussed in Section 2.1. Intuitively, what makes some queries
inefficient is not the size of NDB, as it is only polynomially larger than DB,
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but the fact that a single element of U , a single tuple, can be represented by
several NDB entries and that a single NDB entry represents several tuples.
This makes it difficult to determine, in general, if there are even any instances
at all of a given field in DB.

In summary our representation scheme opens the door for negative databases
that naturally restrict the type of information that can be retrieved efficiently,
limiting queries to the authentication class; queries of an exploratory nature
will, in general, be intractable. Several applications may profit from hav-
ing databases that support only this limited type of queries, an example is
presented in the following section.

A longer term goal is to control this complexity boundary, either through
a deeper understanding of the existing representations or by devising new
ones. This would allow us to support a limited set of queries (say, those
allowed by law) and prevent arbitrary exploratory searches.

4.2 Set Intersection

One potential use of negative databases is for privately computing the in-
tersection of several sets. This operation has applications in many domains
such as recommender systems aimed at matching sets of preferences or, for
example, finding the common entries in a collection of watch-lists. Due to
the inherent properties of negative databases it is possible to perform these
computations while hiding, at the same time, some potentially sensitive in-
formation.

Consider the banking example from Section 1 where the database has the
tuples <Name, Transaction type, Date>. Suppose there are n banks, each
an owner of a database DBi, that wish to establish as part of some money
laundering investigation which items they have in common, i.e. {DB1 ∩ · · · ∩
DBn}, without revealing the totality of their databases or their cardinality. If
each party produces a (hard to reverse) negative database NDBi representing
all records not in their DBi to share with the other parties (we are assuming
that all parties encode their information in exactly the same way), the ith

bank can compute the set intersection by simply establishing which of the
entries of its database DBi are not matched by any string in {NDB1 ∪ · · · ∪
NDBn}, i.e. DBi − {U − DB1 ∪ · · · ∪ U − DBn}. An operation that can be
carried out efficiently as discussed in Section 4.1. It is easy to see, using De
Morgans’s Laws, that x ∈ {DB1∩· · ·∩DBn} ↔ x 6∈ ¬{DB1∩· · ·∩DBn} ↔
x 6∈ {U − DB1 ∪ · · · ∪ U − DBn}

This simple scheme conceals the cardinality of each party’s database be-
cause, as discussed in Section 3, it is NP-hard to enumerate DB given its
negative representation NDB. However, this scheme does not prevent party
j from testing if an arbitrary string x is a member of DBi, regardless of
it being in the intersection or not; as such, the proposed set-up could leak
unintended information.

Alternatively, assume the existence of a protocol that allows us to anony-
mously create {NDB1∪· · ·∪NDBn} (for instance, using anonymous routing
[18,52] and the operations described in Section 5.2) in such a way that it is
infeasible to determine which party contributed which strings. The resulting
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negative database can only be used to retrieve the intersection of the DBis,
regardless of whether it is hard to reverse or not (if it is hard to reverse a
DBi would be necessary to obtain it). This example illustrates how the char-
acteristics of a negative representation can be exploited to naturally secure
certain operations.

5 Negative Database Algorithms

The prefix algorithm presented in Section 2.1 is simple and demonstrates that
a compact negative representation NDB can be obtained from DB. Although
we have shown in Section 3 that the general problem of reversing a given
set NDB to obtain DB is NP-hard, using the simple prefix algorithm to
obtain NDB from DB raises two concerns regarding privacy: (a) The prefix
algorithm produces only an easy subset of possible NDB instances, and (b)
If the action of the prefix algorithm (or any algorithm) that produces NDB
from DB could be reproduced by an adversary, then the adversary could
easily decide for a given NDB and candidate DB whether NDB represents
U − DB. The two concerns are of course related, for if an algorithm were
capable of producing only one NDB for each DB it is given as input, the
image of the algorithm could not define an NP-hard set of instances of NESR.

In this section we present algorithms that address both of these concerns.
The section is divided into two subsections, the first addresses how to create
an initial negative database while the second deals with how it can be updated
to reflect changes in the composition of DB. In addition, each subsection
analyzes the algorithm’s correctness and examines some of its properties.

5.1 Initialization

The RNDB algorithm in Figure 4 takes as input a positive database DB
(which might be initially empty) and outputs a negative database NDB

(chosen probabilistically) that exactly matches U −DB. Its basic strategy is
similar to that of the prefix algorithm in that, for a given permutation π—an
ordering of the bit positions of a string—applied to every string in DB, it
finds every prefix Vp not present in π(DB) (see steps 0,2,3,4). For every such
prefix, the algorithm randomly chooses an additional 0 ≤ n ≤ O(log2(l))
positions and creates 2n (linear in l) strings with Vp and the additional
n positions set to every possible bit assignment (steps 7,8,9)(see Lemma
2 below). This allows us to create strings that have specified bits beyond
the prefix but still limit the size of the resulting NDB. Function Pattern
Generate (Figure 5) replaces some of the specified bits by * symbols, taking
care that no string in DB is matched by the operation (see Definition 3
below).
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Randomize NDB(DB,l)
Let wi denote an i-bit prefix and Wi a set
of i-length patterns.
0. Find a random permutation π and apply it to DB.
1. Randomly select 1 ≤ i ≤ O(log2(l))
2. Initialize Wi to the set of every pattern of i bits.

Repeat
3. Set Wi+1 to every pattern not present in

π(DB)’s wi+1 but with prefix in Wi

4. for each pattern Vp in Wi+1 {
5. Randomly choose 1 ≤ j ≤ O(l)
6. for k = 1 to j do {
7. Randomly select an additional

0 ≤ n ≤ O(log2(l)) distinct positions.
8. for every possible bit assignment Vq of the

selected positions (a total of 2n patterns){
9. Vpe ← Vp · Vq

10. Vpg ←Pattern Generate(π(DB), Vpe)
11. Append π′(Vpg) to NDB.}}}a

12. Increment i by one
13. Set Wi to every pattern in π(DB)’s wi

14. Until i = l or Wi is empty.

a π′ denotes the inverse permutation of π

Fig. 4 The Randomize NDB (RNDB) algorithm randomly generates a negative
database representing the strings in U −DB.

Pattern Generate(DB, Vpe)
1. Find a random permutation π.

Let n← |Vpe|
2. for i = 1 to n do {
3. Construct a pattern π(Vpe)

† with all but the ith bit from π(Vpe)
4. if π(Vpe)

† not in π(DB){
5. π(Vpe) ← π(Vpe)

†

6. Keep track of the value of the ith bit in a set indicator
vector (SIV) }}

7. Randomly choose 0 ≤ t ≤ |SIV |
8. R ← t randomly selected bits from SIV
9. Create a pattern Vk using π(Vpe), the bits indicated by R and *

symbols in the remaining positions.
10. Return π′(Vk). a

a π′ is the inverse permutation of π.

Fig. 5 Pattern Generate produces a string over {0, 1, ∗} that matches Vpe without
matching any string in DB.

5.1.1 Correctness

Definition 3 A string y is subsumed by string x if and only if every string
matched by y is also matched by x. A string x obtained by replacing some
of y’s defined positions with don’t cares, subsumes y.
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Lemma 2 A set of 2n distinct strings that are equal in all but n positions
match exactly the same set of strings as a single string with those n positions
set to the don’t care symbol.

Lemma 3 Pattern Generate(DB,Vpe) outputs a string that matches every
string matched by the input pattern Vpe without matching any other strings
in DB.

Proof To see that Pattern Generate (as shown in Figure 5) produces a string
that matches everything Vpe matches, it suffices to note that the output
string specifies a subset of the positions set in the input pattern Vpe: lines
1–6 discard some of the positions that comprise Vpe, while lines 7–9 reinstate
some of them (see Definition 3).

Additionally, the subpattern found in lines 1–6 (a c-key according to
Definition 4 in Section 5.1.2) is guaranteed not to match any string in DB

(lines 3–4). This subpattern is included in the final string output by the
function, ensuring it will not match any string in DB.

Theorem 4 The Randomize NDB algorithm, under any sequence of ran-
dom choices, produces an NDB that exactly represents U − DB.

Proof Let nsj be any string in U −DB and let i be the length of the smallest
prefix Vp of nsj that is absent from DB under permutation π. The algorithm
will find this prefix at iteration i (line 3) and will insert a series of strings
into NDB that match the same strings as Vp as follows: Lines 7–11 create a
collection of strings that subsume Vp by augmenting it with additional posi-
tions (lines 7–9 and Lemma 2) and assigning every possible pattern to these
positions. Then, for each augmented pattern, function Pattern Generate (line
10) creates a string that subsumes it without matching anything in DB (see
Lemma 3). The resulting string is finally inserted into NDB (line 11).

In the case where DB is empty, lines 1–3 will consider the strings rep-
resented by every possible pattern of length i + 1 in the i + 1 length prefix
(under permutation π), which encompasses all of U . Lines 4–11 insert the
appropriate strings into NDB as discussed above. The function iterates once
and exits.

5.1.2 Properties

Section 3 presents a transformation from 3-SAT to NDB, and in what follows
we will use the formalisms interchangeably. In particular, DB and sets of
assignments will be used interchangeably, NDB and formula φ will be used
interchangeably, and the output of the algorithms to be presented in this
section can be viewed either as strings in NDB or clauses in φ. For this
reason we restrict clauses in φ to have no repeated variables.

The algorithm presented in Section 5.1 has the flexibility, by manipulat-
ing some of its parameters, to produce NDBs or SAT formulae with vary-
ing structures (see instance-generation models [45,13,14]). The following are
some properties of the outputs it is able to produce.
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Definition 4 A c-key is bit pattern not present in DB with no extraneous
bits: A c-key defines a minimal pattern in that the removal of any bit yields
a pattern in DB (see Figure 2). A c̄-key is the complement of a c-key.

Lemma 4 Let DB be a set of assignments and φ a CNF formula. φ is
satisfied by every x ∈ DB if and only if every clause Cq in φ contains a
c̄-key with respect to DB.

Proof Suppose clause Cq of φ contains a c̄-key. Then, by Definition 4, no
x ∈ DB contains the complement pattern of a c̄-key. Each x ∈ DB contains
at least one bit appearing in c̄-key which satisfies the corresponding literal
and therefore satisfies Cq.

Now assume each x ∈ DB satisfies each clause of φ (that is, each x is a
satisfying truth assignment for φ). Suppose to the contrary, that some clause
Cq does not contain a c̄-key. Then, the complement pattern of c̄-key appears
in DB, and in particular in at least one x ∈ DB. But then x contains no bit
appearing in c̄-key, thus failing to satisfy each of the corresponding literals
in Cq. This contradicts our original supposition, hence, it must be that every
clause Cq contains a c̄-key.

Lemma 5 For every possible clause satisfied by DB contained in the input
pattern Vpe, there is some execution of Pattern Generate (Fig. 5) (with an
appropriate sequence of random choices) that will generate it.

Proof Let Cq be a clause satisfied by DB and Pq its corresponding bit pattern
(see Figure 3 for the mapping). Suppose Pq is contained in the input pattern
Vpe, then by Lemma 4 it must have as a subpattern some c-key K. For every
pattern Vpe and every c-key K contained in Vpe, there exists a permutation
π such that K occupies the |K| rightmost bit positions of π(Vpe) (step 1).
The algorithm proceeds by discarding one by one, from left to right, every
bit it examines for as long as there is a c-key present within the remaining
subpattern (steps 2–6). It follows that since K is a c-key and occupies the |K|
rightmost positions of π(Vpe) that K is the pattern that will be found2. Steps
7–9 of the algorithm generate a string containing K plus, by the appropriate
random choice, the additional bits that comprise Cq.

Lemma 6 For every clause satisfied by DB there is at least one string in
U − DB that contains the corresponding pattern.

Proof Suppose Cq is a clause satisfied by DB and Pq the corresponding bit
pattern, then by Lemma 4 Cq has a c̄-key and Pq a c-key K. By the definition
of c-key (Definition 4) there is no string in DB with K as a subpattern, hence
every string with K as a subpattern must be in U − DB, including the one
containing Pq.

Theorem 5 The RNDB algorithm, during any execution, can produce any
clause with O(log(l)) or fewer literals that is satisfied by DB.

2 Note that it is not required for the c-key to be contiguous or to occupy the
rightmost bits to be found. It is only convenient to focus on this case for the proof.
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Proof Let Cq be a clause of k ≤ O(log(l)) literals satisfied by DB and Pq

its corresponding bit pattern. For each Pq there is at least one string Nc

in U − DB that contains it (Lemma 6). String Nc, under permutation π,
has a prefix of length i that is not present in DB which will come under
consideration at iteration i of the algorithm (line 3). Suppose m of the k
bits of Pq are included in the i length prefix of Nc, the remaining k − m

positions will be set in steps 7–8 by the appropriate random choice and the
string corresponding to Cq will be found by Pattern Generate (Lemma 5 ).

The cycle of line 5 ensures that each prefix is considered O(l) times al-
lowing any particular clause contained within a string with that prefix to be
found independently.

Corollary 3 The RNDB algorithm can produce any sequence of O(l) clauses
with O(log(l)) literals that are satisfied by DB as part of its output.

Proof Theorem 5 states that any clause satisfied by DB, can be generated
during any execution of the algorithm. It follows that, since the algorithm
can generate formulas with O(l) clauses, it can generate any sequence of O(l)
clauses that are satisfied by DB as part of its output.

It is important to note that the RNDB algorithm is unable to produce
every (polynomial size) formula (in polynomial time) that is satisfied exactly
by DB. In fact, it can be shown that there is no efficient algorithm that, given
DB as input, can generate all and only formulae that are exactly satisfied by
DB, unless CoNP = NP . We saw, however, that the algorithm can generate
every formula of a given length that is satisfied exactly by DB together with
clauses that are superfluous3 (Corollary 3).

We have shown in [22] that the image of RNDB algorithm does in fact
define an NP-hard problem as a function of the size of the resulting NDB,
albeit not necessarily as a function of the size of the original DB. Further,
given that NP-hardness is a worst case analysis, this property alone is not
sufficient to guarantee that a negative database is hard to reverse in practice.

The challenge is to generate databases that are hard to reverse on av-
erage. In section 3 we discussed the isomorphism between boolean formulas
and negative databases. This relationship suggests that results from this dis-
cipline can be leveraged for our purposes; in particular, the SAT community
has extensive analysis on what makes for hard SAT instances. For instance,
formulas with the right ratio of clauses to variables and formulas with the
right statistical distribution of literals tend to be hard [45,1,36]. The algo-
rithms presented above provide the flexibility to induce the corresponding
structures on our negative databases.

We believe, however, that there are many applications where even if it is
infeasible to provide full cryptographic protection, some degree of protection
is important. Examples include data collection (such as surveys where the act
of answering a survey question cannot be encrypted), fingerprint databases
(where exact matches are unlikely, so encryption could be problematic), or

3 This observation implies that identifying superfluous clauses is an NP-hard
problem itself.



15

sensor networks where distributed negative databases could reduce the risk
of individual sensors being compromised.

Finally we note that Pattern Generate runs in time O(l · |DB|) and that
the Randomize NDB algorithm outputs a database with O(l2|DB|) entries
in O(l3|DB|2) time.

5.2 Updates

We now turn our attention to modifying the negative database NDB once it
has been initialized. We review three operations: Insert, Delete and Clean-up,
initially introduced in [21]. It is worth mentioning that the meanings of the
insert and delete operations are inverted from their traditional sense, since we
are storing a representation of what is not is some database DB. For instance,
using the banking example of Section 1, the command “insert <John Doe,
withdrawal, 01/01/2003> into DB” is implemented as “delete <John Doe,
withdrawal, 01/01/2003> from NDB” and the request “delete <John Doe,
deposit, 01/02/2003> from DB” executed as “insert <John Doe, deposit,
01/02/2003> into NDB”.

The core operation for the procedures, named Negative Pattern Generate
(Figure 6), creates a string over {0, 1, ∗}l that subsumes x and matches
nothing else in DB. Its functionality is similar to that of Pattern Generate
(Figure 5) and could be replaced by it. However, the difference is that
Negative Pattern Generate does not need DB to be available, a potentially
useful feature. This variation is reflected in lines 3–5 where extracting a sub-
pattern from input x is accomplished by determining if replacing a specified
bit in x by a * yields a string that is represented by NDB ∪{x}. 4 Owing to
the similarity between procedures, the proof that Negative Pattern Generate
is correct is very similar to Lemma 3 and is therefore omitted.

5.2.1 Insert into NDB

The purpose of the insert operation is to cause the negative database to
represent all the binary strings depicted by the input string x ∈ {0, 1, ∗}, i.e.
to match every binary string matched x, together with those strings already
represented by NDB (x might be a string with no * symbols at all). It is
important to note that in order to insert a string x into NDB it would be
sufficient to simply append to NDB. However, this would leave a record of
the operation. In order to alleviate this, Insert may specify some additional
positions, creating some additional strings to insert (see Lemma 2) (steps
6,7,8,9), and then select a subset of the total specified positions for the string
to keep (step 10). The Insert operation may insert several strings (step 1) per
input string x, it is important to note that all of these entries are expected
to be different due to the random nature of adding extra positions (steps
6,7,8), as well as to the non-deterministic fashion in which specified positions

4 Note that this subpattern does not necessarily constitute a c-key (it is easy to
see that extracting c-keys form NDB is NP-hard).
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Negative Pattern Generate(NDB, x)
1. Create a random permutation π
2. for all specified bits bi in π(x)
3. Let x′ be the same as π(x) but with bi complemented
4. if x′ is subsumed a by some string in π(NDB)
5. Keep track of the value of the ith bit in a set indicator vector (SIV)
6. Set the value of the ith bit of π(x) to the * symbol
7. Randomly choose 0 ≤ t ≤ |SIV |
8. R ← t randomly selected bits from SIV
9. Create a pattern Vk using the specified bits of π(x), the bits of R,

and * in the remaining positions.
10. return π′(Vk)b

a See Definition 2 in Section 5.1.1.
b π′ is the inverse permutation of π.

Fig. 6 Negative Pattern Generate. Takes as input a string x defined over {0, 1, ∗}
and a database NDB and outputs a string that matches x and nothing else outside
of NDB.

Insert(x, NDB)
1. Randomly choose 1 ≤ j ≤ O(l)
2. m ← number of unspecified bits in x
3. if m > log2(l)
4. m← log2(l)
5. for k = 1 to j do
6. Randomly select 0 ≤ n ≤ m
7. Randomly select from x, n distinct unspecified bit positions
8. for every possible bit assignment Vp of the selected positionsa

9. x′ ← x · Vp

10. y ← Negative Pattern Generate(NDB, x′) b

11. add y to NDB

a Note that the loop iterates 2n times, when n = 0 x′ should be the
same as x.

b Note that Pattern Generate(DB, x′) can be used instead, provided
DB is available.

Fig. 7 Insert into NDB.

become unspecified during the call to Negative Pattern Generate (step 10).
Figure 7 shows the pseudocode for this operation.

Theorem 6 Function Insert(x, NDB) outputs a negative database that ex-
actly matches (U − DB) ∪ {x}.

Proof It follows directly from Lemma 2 and Lemma 3.

5.2.2 Delete from NDB

This operation removes a set of binary strings from NDB. The function first
identifies all the NDB entries, Dx, that match x—the string to be removed—
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and withdraws them from NDB (steps 1,2). If the operation were to stop
here, there would likely be many strings besides x that are inadvertently
deleted from NDB. To avoid this, the function determines for every string
in Dx which strings it matches, other than x, and reinserts them into NDB

(steps 4,5,6,7).
Figure 8 gives a general algorithm for this task.

Theorem 7 Delete(x, NDB) outputs a negative database that exactly matches
U − (DB ∪ {x}).

Proof Lines 1–2 identify the subset, Dx, of NDB that matches x and removes
it from NDB. Note that there is no string in NDB − Dx that matches any
binary string matched by x.

Lines 3–7 reinsert all the strings represented by Dx except x: For each
string y in Dx and for each of its unspecified positions (don’t care symbols)
there is a string yi created which differs from x in its ith position (line 6) and
inserted into NDB (see Theorem 6). None of the new strings yi match x.

If a string z ∈ {0, 1}l other than x is matched by some y ∈ Dx then z
must have the same specified positions as y. Given that z is different from x

it follows that it must disagree with it in at least one bit, say bit k, z will be
matched by y′

k. Therefore only x is eliminated from NDB. Finally, observe
that since y subsumes each new entry y′

i (see Definition 3) no unwanted
strings are included by the operation.

Delete(x, NDB)
1. Let Dx be all the strings in NDB that match x.
2. Remove Dx from NDB.
3. for all y ∈ Dx

4. for each unspecified position qi of y

5. if the ith bit of x is specified
6. Create a new string yi using the specified bits of y and the

complement of the ith bit of x.
7. Insert(yi, NDB.)

Fig. 8 Delete from NDB.

One important effect of the Insert and Delete operations is that they both
cause NDB to grow, especially in the latter case when the number of new
entries in NDB is a function of the number of entries matched by the strings
to be deleted. To address this problem we introduce a clean-up operation
designed to reduce the size of the negative database and thus reduce the
number of entries expected to match any binary string.

5.2.3 Clean-up

The operation presented here (Fig. 9) takes as input a negative database
NDB and outputs a negative database NDB′ that represents exactly the
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same set of binary strings, and therefore, matches exactly those strings not
in DB. The function includes a parameter τ (line 4) which is meant to drive
the size of the resulting database. If the Insert operation introduces fewer
than τ entries per call then Clean-up will not increase the size of NDB and
will likely reduce it.

Clean-up(NDB, τ)
1. Randomly select a string x from NDB.
2. Find a subpattern K of x not found in any DB string a.
3. Let DK be all strings in NDB that have K.
4. if |DK | > τ
5. Remove DK from NDB;
6 Create a string VK of length l with K as

a subpattern and the remaining positions set to *.
7. Insert(VK , NDB)

a According to lines 1–6 of Fig.6 or lines 1–6 of Fig. 5.

Fig. 9 Clean-up. Outputs a negative database that represents the same strings as
its input NDB with equal or fewer entries.

Theorem 8 The output of Clean-up is a negative database that represents
the same set of binary strings as its input NDB.

Proof Lines 1–2 find a subpattern K of a string in NDB, such that no string
in DB has that pattern (see Definition 4 Lemma 3) i.e. every string in {0, 1}l

with such a pattern must be represented in NDB. Line 3 finds all NDB

entries DK that exhibit this pattern, line 5 removes them. Only strings in
{0, 1}l that have K stop being represented in NDB, for if a string y is
matched by DK then it must also be matched by K. Therefore, the removal
of DK causes only strings with K as a subpattern to be excluded. Line 6–7
reinsert every string and only strings with K as a subpattern into NDB (see
Theorem 6).

5.2.4 Properties

It was previously mentioned that Pattern Generate could be used in place of
Negative Pattern Generate within the Insert and Delete operations. In the
case of Clean-up, extraction of a minimal pattern (line 2) can be achieved
with lines 1–6 of Pattern Generate or Negative Pattern Generate depend-
ing on the availability of DB. If the former is used, it is easy to see that
the resulting negative database preserves the properties of the RNDB algo-
rithm’s output outlined in Section 5.1.2. On the other hand, if the latter is
applied then it is not feasible to determine if a pattern constitutes a c-key,
and therefore, the number of clauses that can possibly be generated will be
restricted.

An important property of the Insert, Delete and Clean-up operations is
that, in general, their application does not make the problem of reversing a
given NDB any easier. Consider the following problem:
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Definition 5 Self-Recognition-Pair (SR-Pair)

INSTANCE: (φ, S, φ′, S′) where φ is a SAT instance, S a set of assign-
ments to φ, φ′ is a SAT instance obtained by inserting or deleting an arbitrary
assignment x and only x from φ by means of any polynomial time algorithm
A. S′ is obtained by inserting or deleting x from S accordingly.

QUESTION: Is φ′ exactly satisfied by S′?

Theorem 9 SR-Pair is NP-hard

Proof We prove the theorem by reducing SAT to SR-pair. The proof is di-
vided into the case in which A is used to insert a satisfying assignment x to
φ and the case in which it is used to delete a satisfying assignment x from φ.

1. Insertion version of SR-Pair is NP-hard.
Given instance φ of SAT. Pick any assignment x. If x satisfies φ answer
YES to instance φ of SAT. If x does not satisfy φ use A to create φ′ that
is exactly satisfied by the assignments which satisfy φ, union {x}. Then
(φ, {}, φ′, {x}) is a valid instance of the insertion version of SR-Pair and:
φ is a NO instance of SAT ⇐⇒ (φ, {}, φ′, {x}) is a YES instance of
SR-Pair.

2. Deletion version of SR-Pair is NP-hard.
Given an instance φ of SAT. Pick any assignment x. If x satisfies φ answer
YES to instance φ of SAT. Otherwise, x does not satisfy φ and use A to
create φ′ that is exactly satisfied by the assignments which satisfy φ,
minus {x} (note φ is logically equivalent to φ′.) Then (φ, {}, φ′, {}) is a
valid instance of the deletion version of SR-Pair and:
φ is NO instance of SAT ⇐⇒ (φ, {}, φ′, {}) is a YES instance of SR-Pair.
We conclude by stating that there is a polynomial time reduction from
SAT to SR-Pair and hence that SR-Pair is NP-hard.

It follows that the application of the Insert, Delete and Clean-up oper-
ations doesn’t make a difficult instance any easier to reverse. However, we
emphasize that the practical reversal difficulty of a specific NDB depends
on the heuristics used to solve it, and hence these operations can decrease or
increase the actual time required by a given heuristic.

The complexity of the algorithms is as follows: Negative Pattern Generate
runs in time O(l ·|NDB|). Insert takes O(l3|NDB|) time if Negative Pattern
Generate is used, or O(l3|DB|) if Pattern Generate is employed and inserts

O(l2) strings per call into NDB. The Delete operation runs in O(l4|NDB|2)
or O(l4|NDB||DB|) time depending on whether the negative or positive pat-
tern generate procedures are used. Delete causes the addition of O(l2|NDB|)
entries in NDB. The Clean-up time complexity is dominated by its call to
Insert and has the same complexity. Note that these bounds are due, in great
part, to the generality that the algorithms afford. It is expected that the pro-
duction of hard NDB instances will require limiting some parameters which
will, in turn, reduce the complexity of the operations.
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Randomize NDB({},4) Delete(1111,NDB) Insert(1111,NDB)
000* 000* 000*
001* 001* 001*
01*0 01*0 01*0
01*1 01*1 01*1
10*0 10*0 10*0
10*1 10*1 10*1
111* 110* 110*
110* 11*0 11*0

*110 *110
*11*

Fig. 10 Possible states of NDB after successive initialization, deletion and inser-
tion of a string.

6 Related work

The algorithms presented in this paper are concerned with exact representa-
tions of U −DB—everything except the database. There is, however, a grow-
ing body of work dealing with representing data negatively in an imprecise
way [24,40,20], where the negative image of DB might not represent U −DB

entirely. This representations have slightly different properties and are use-
ful in some scenarios. An alternative representation for negative databases
is investigated in [15]. The cited scheme relies on cryptographic guarantees
for the data security and yields compact representations; however, it limits
some of the manipulations on the data that the present proposal allows. More
operations on negative databases are presented in [25].

There are several other areas of research that are potentially relevant to
the ideas discussed in this paper. These include: encryption, zero-knowledge
sets, privacy-preserving databases, privacy-preserving data-mining, query re-
striction, multi-party computation and negative data.

An obvious starting point for protecting sensitive data is the large body of
work on cryptographic methods, e.g., as described in [53]. Some researchers
have investigated how to combine cryptographic methods with databases [28,
27,6,56], for example, by encrypting each record with its own key.

Zero-knowledge sets were recently introduced in [44] and provide a prim-
itive for constructing databases that have many of the same properties as
negative databases, namely, the restriction of queries to simple member-
ship. There are several differences between the two approaches. First, zero-
knowledge sets are based on widely believed cryptographically secure meth-
ods. Second, zero-knowledge sets require a controlling entity for answering
queries. The relaxation of this requirement allows negative databases to per-
form operations such as set intersection privately and efficiently. Finally, to
date, there is no efficient way of updating a zero-knowledge set, while Section
5.2 gives efficient algorithms for on-line operations on negative databases. A
similar construction to zero-knowledge sets is presented in [50] in which range
queries such as “Are there any keys in [a, b]” are possible.

Cryptosystems founded on NP-complete problems [26] have been pro-
posed such as the Merkle-Hellman cryptosystem [43], which is based on the
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general knapsack problem. These systems rely on a series of tricks to conceal
the existence of a “trapdoor” that permits retrieving the hidden information
efficiently. However, almost all knapsack cryptosystems have been broken
[49], and it has been shown [8,9] that if breaking such a cryptosystem is
NP-hard then NP=CoNP . In general, if a scheme based on a NP-hard
result, such as the one proposed here, is to be used in a privacy setting it
will be necessary to study under what situations it does indeed produce hard
to reverse instances and if these instances can be readily obtained. There is
a large body of work regarding the issues and techniques involved in gener-
ating hard-to-solve NP-complete problems [35,34,49,43] and in particular
of SAT instances [45,13]. Much of this work is focused on the case where
instances are generated without knowledge of their specific solutions. Efforts
concerned with the generation of hard instances possessing some specific so-
lution, or solutions with some specific property include [29,1]. Finally, the
problem of learning a distribution, whether by evaluation or generation [38,
47], is also closely related to constructing the sort of databases in which we
are interested.

Of particular relevance are one-way functions [31,48]—functions that are
easy to compute but hard to reverse— and one-way accumulators [5,11] which
are similar to one-way hash functions but with the additional property of be-
ing commutative. One key distinction between these methods and negative
databases is that the output of a one-way function is usually compact, and
the message it encodes typically has a unique representation. By represent-
ing data negatively, as described here, a single message has many possible
encodings, an idea that is exploited in probabilistic encryption [33,7].

Multi-party computation schemes [57,32], in which complex operations
across databases can be performed privately are relevant to our discussion,
in particular, when they involve applications such as set intersection. Other
approaches to set intersection include [39,55,46] where several protocols and
data structures are introduced to perform the operation securely and effi-
ciently.

In privacy-preserving data mining, the goal is to protect the confidential-
ity of individual data while still supporting certain data-mining operations,
for example, the computation of aggregate statistical properties [4,3,2,16,
19,56,54]. In one example of this approach (ref. [4]), relevant statistical dis-
tributions are preserved, but the details of individual records are obscured.
Negative databases are roughly the reverse of this approach, in that they
support simple membership queries efficiently but higher-level queries may
be expensive.

Negative databases are also related to query restriction [41,12,16,17,54],
where the query language is designed to support only the desired classes
of queries. Although query restriction controls access to the data by out-
side users, it cannot protect an insider with full privileges from inspecting
individual records to retrieve information.

The term “negative data” sounds similar to our method, but is actu-
ally quite different. The deductive database model (e.g., [30] presents an
excellent survey of the foundations of the model) supports in the intensional
database (IDB) the negative representation of data. The objectives, mech-
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anisms, and consequences here are quite different from our scheme. In a
deductive database, traditional motivations for “negative data” include re-
ducing space utilization, speeding query processing, and the specification and
enforcement of integrity constraints.

There is a large body of work in finding compact representations of a
set of binary strings or functions (for example, [37,51,42,10]). Our work
differs in its need to obtain a compact representation of the complement of
the input set without explicitly calculating it, for it may be exponentially
larger than its counterpart. Also, the nature of our representation makes
many operations, such as comparing whether two functions are equivalent,
potentially difficult. This is in contrast to techniques whose objective is to find
compact representations of Boolean formulas, while preserving the ability to
perform a wide range of operations on their representations. However, some
of the compaction schemes may be useful in future work for exploiting other
properties of negative representations.

To summarize, the existence of sensitive data requires some method for
controlling access to individual records. The overall goal is that the contents
of a database be available for appropriate analysis and consultation without
revealing information inappropriately. Satisfying both requirements usually
entails some compromise, such as degrading the detail of the stored informa-
tion, limiting the power of queries, or database encryption.

7 Discussion

In this paper we have established the feasibility of a new approach to rep-
resenting information. Specifically, we have shown that negative representa-
tions are computationally feasible, that they can be difficult to reverse, and
that some interesting operations can be performed on them. However, there
are many important questions and issues remaining. Which classes of queries
can be computed efficiently and which cannot? Our initial results address two
extremes—the case of testing simple membership for a specific, single record
and the case of reconstructing the entire positive database. We would like
to understand the computational complexity at points across the spectrum
between these two extremes, as well as understanding what computational
properties are desirable in a privacy-protecting context. A related question
involves the costs of database updates under our representation. We have
investigated algorithms that perform inserts and deletes in polynomial time,
and we showed theoretically what their impact is on the complexity of the
resulting negative database. We also introduced an operation that takes as
input a negative database NDB and outputs a negative database NDB′

which matches exactly the same set of binary strings as NDB. We would
like to investigate ways in which this operation can be used to explore other
potentially hard instances. And, we believe that more efficient algorithms
might be designed to make the method practical for large-scale databases.

Are there other useful representations of NDB? Once we understand
more completely the computational properties of our current representations,
we may be able to devise other representations whose properties are more
appropriate for some applications.
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In this paper we emphasized the irreversibility properties of negative
databases, as a means of protecting the privacy of individual records and
as a method for privately computing the intersection of sets owned by differ-
ent parties. There are additional characteristics and applications which we
intend to investigate in our future work, such as the properties of a negative
database when it is partitioned into several fragments and the qualities of
the operations afforded by it.

Finally, we are interested in inexact representations. The NDB repre-
sentation is closely related to partial match detection [23] which has many
applications in anomaly detection. We are interested in studying how those
methods might be combined with NDB either for designing an adaptive
query mechanism or for approximate databases.

8 Conclusion

In this paper we introduced the concept of negative representations of in-
formation and presented a specific instantiation of this idea called negative
databases. We established that a negative database can be constructed in
time polynomial in the size of its positive counterpart. We presented algo-
rithms for creating and maintaining such a database and offered an analysis
of their properties and the properties of the negative databases they produce.
Further, we investigated one characteristic of negative databases, namely that
given a negative database it is an NP-hard problem to recover its positive
image. We also showed that, even though reversing a negative database is
hard, there are certain types of queries that can be carried out efficiently,
and discussed how this property can be exploited to privately compute the
intersection of two sets. In current work we are exploring how to make the
representations and algorithms more practical, and we are exploring several
applications that seem well-suited to negative representations.

In conclusion, although we have shown that negative representations of
data are computationally feasible, and in some cases difficult to reverse, there
are many possible avenues for future work. We are optimistic that by tailoring
a negative representation to particular requirements we can address at least
some of the problems presented by large collections of sensitive data.

9 Acknowledgments

The authors gratefully acknowledge the support of the National Science
Foundation (CCR-0331580, CCR-0311686, and DBI-0309147), Defense Ad-
vanced Research Projects Agency (grant AGR F30602-00-2-0584), the Intel
Corporation, and the Santa Fe Institute. F.E. also thanks Consejo Nacional
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