
Online Negative Databases

Fernando Esponda, Elena S. Ackley, Stephanie Forrest, and Paul Helman

Department of Computer Science
University of New Mexico

Albuquerque, NM 87131-1386
{fesponda,elenas,forrest,helman}@cs.unm.edu

Abstract. The benefits of negative detection for obscuring information
are explored in the context of Artificial Immune Systems (AIS). AIS
based on string matching have the potential for an extra security feature
in which the “normal” profile of a system is hidden from its possible
hijackers. Even if the model of normal behavior falls into the wrong
hands, reconstructing the set of valid or “normal” strings is an NP-hard
problem. The data-hiding aspects of negative detection are explored in
the context of an application to negative databases. Previous work is
reviewed describing possible representations and reversibility properties
for privacy-enhancing negative databases. New algorithms are described,
which allow on-line creation and updates of negative databases, and fu-
ture challenges are discussed.

1 Introduction

A striking feature of the natural immune system is its use of negative detection in
which self is represented (approximately) by the set of circulating lymphocytes
that fail to match self. The negative-detection scheme has been used in several
artificial immune system (AIS) applications, and the benefits of such a scheme
have been explored in terms of the number of required detectors [24,14,13,49,
50], success in distinguishing self from nonself [20,16], and the ease with which
negative detection can be distributed across multiple locations. In this paper
we explore a fourth interesting property of negative representations, namely
their ability to hide information about self. This information hiding ability has
interesting implications for intrusion detection as well as for applications in which
privacy is a concern and where it may be useful to adopt a scheme in which only
the negative representation is available for querying.

This paper extends results first presented in [15] which introduced the con-
cept of a negative database. In a negative database, a collection of data is rep-
resented by its logical complement. The term positive information denotes the
elements of the category or set of interest (e.g., self) while negative information
denotes all the other elements of the universe. A negative database is then a
representation of the negative information. In addition to introducing this con-
cept, the previous paper showed that negative information can be represented
efficiently (even though the negative image will typically be much larger than the

G. Nicosia et al. (Eds.): ICARIS 2004, LNCS 3239, pp. 175–188, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

176 F. Esponda et al.

positive image), that such a representation can be NP-hard to reverse (thereby
hiding the exact composition of self), and that simple membership queries can
be computed efficiently. For instance, a query of the form “is string x in the
database” can be answered promptly, while a request of the form “give me all
the strings in the positive image that start with a 1” cannot. However, the paper
did not show that common database operations (such as inserts and deletes) can
be performed easily on the negative representation or that a negative database
can be maintained dynamically. Section 4 presents new algorithms that address
these matters.

Many AIS used for anomaly detection represent the entity to be protected
as a set of strings and, in parallel with the immune system, identification of
anomalies is performed by an alternate set of strings (known as detectors) and a
match rule that are designed not to match elements of self. In this context, there
may be an additional incentive for negative detection using negative databases.
When the negative information is represented as discussed in [15], it is provably
hard to infer the positive image even if all the negative information is available.
In the context of anomaly detection and security this provides an extra level of
protection since it prevents someone from hijacking the detector set, deriving
from it the normal profile of the system, and using that information to devise
new attacks.

Section 2 reviews earlier work that is generally relevant to the topic of nega-
tive information; Section 3 reviews previous work on negative databases, showing
that a negative representation can be constructed which occupies only polyno-
mially more space than its positive counterpart, while retaining some interesting
querying capabilities. Section 4 presents on-line algorithms, including how to
initialize a negative database and how to perform updates. Section 5 considers
the implications of our results.

2 Related Work

Negative representations of data have had several proponents in the past, espe-
cially in art where artists like Magritte and Escher have taken advantage of the
so called figure-ground relationship. Examples can also be found in mathemat-
ics and statistics where sometimes it is easier to obtain an answer by looking
at the complement of the problem we intend to solve and complementing the
solution. For the purpose of this paper, however, we will review how negative
representations of information have influenced the field of AIS.

As mentioned in the introduction, the natural immune system can be in-
terpreted as representing data negatively. This observation has led to algorithm
designs which take advantage of some of the inherent properties of negative repre-
sentations. In particular, designers have taken advantage of the fact that negative
detectors are more amenable to distributed implementations than positive de-
tectors and that, for the purposes of anomaly detection, negative representations
of data seem more natural. The negative selection algorithm whereby a set of
negative detectors is created was introduced in [19]. Anomaly-detection systems

Online Negative Databases 177

based on these ideas can be found in [46,3,51,32,11,26,27,28]. Other applications
have also been proposed that range from image classification to recommender
systems [33,47,25,42,46,8,5,6]. We note that many AIS are not based on string
matching and therefore are not directly affected by the results presented here;
the interested reader is referred to [12,45].

Protecting information stored in a database from examination by unautho-
rized parties has been a concern since the inception of the field [41,40,44]. Some
approaches relevant to the current discussion involve cryptographic protection
of databases [17,43,48], multi-party computation schemes [52,23], the use of one-
way functions [22,38], and dynamic accumulators [7,4].

Section 4 outlines an algorithm for generating and maintaining negative
databases. These operations need to be adjusted in order to produce “hard”
negative databases. There is a large body of work regarding the issues and tech-
niques involved in the generation of hard-to-solve NP-complete problems [30,
29,39,34] and in particular of SAT instances [35,9]. Much of this work is focused
on the case where instances are generated without paying attention to their
specific solutions. Efforts concerned with the generation of hard instances when
there is a specific solution we want the instance to possess include [18,1]. Finally,
the problem of learning a distribution, whether by evaluation or generation [31,
37], is also closely related to constructing the sort of databases in which we are
interested.

3 Negative Databases

The notion of negative databases was introduced in [15], whereby for a given set
of fixed length strings, called the positive database DB (self), all the possible
records or strings not in DB are represented i.e. U − DB (nonself) where U de-
notes the universe of all possible strings of the same length defined over the same
alphabet. It was shown that the size of the resulting negative database, denoted
NDB, can be constructed to be polynomially related to the size of DB, even
though (U −DB � DB) in the expected case. The intuition behind our compact
representation is that there must be subsets of strings with significant overlaps,
and that these overlaps can be used to represent these subsets succinctly. We
have adopted the strategy of extending the alphabet over which strings are de-
fined, in this case binary, to include an extra symbol ∗ known as the don’t care
symbol. A string exhibiting the ∗ at position i represents two strings; one with
a 1 at position i and one with a 0 at position i with the remaining positions un-
changed, as the following example illustrates. Position i in the string is referred
to as a “defined position” if it contains either a 0 or a 1.

DB (U − DB) Negative Database
010 000
011 001 *0*
110 100 ⇒

101 1*1
111

178 F. Esponda et al.

Including this third symbol allows one entry (or record) in the negative database
to represent several strings (records) in U − DB1. A string x is represented in
NDB —meaning x is not in DB, if there is at least one string y in NDB that
matches it, otherwise the string is in DB. Two strings are said to match if all of
their positions match; the don’t care symbol is taken to match everything.

Esponda, Forrest and Helman [15] give two algorithms for creating an NDB
under the representation described above. One common feature is that both
take as input DB —meaning DB must be held in its entirety at one time. Both
operate by examining chosen subsets of bit positions to determine which patterns
are not present in DB and must be depicted in NDB, the basic objective being
to find the subsets of bit positions that serve to represent the largest number of
strings in U − DB.

An interesting property of this representation concerns the difficulty of in-
ferring DB given NDB. For an arbitrary set of strings defined over {0, 1, ∗}
determining which strings are not represented is an NP-hard problem. To sus-
tain this claim it is sufficient to note that there is a mapping from Boolean
formulae to NDBs such that finding which entries are not represented by NDB
(that is, which entries are in DB) is equivalent to finding satisfying assignments
to the corresponding boolean formula, which is known to be an NP-hard prob-
lem. The specifics of the proof can be found in Ref. [15], and an example of the
mapping is given in Figure 1.

Boolean Formula NDB

(x2 or x̄5) and *0**1
(x̄2 or x3) and *10**

(x2 or x̄4 or x̄5) and ⇒ *0*11
(x1 or x̄3 or x4) and 0*10*
(x̄1 or x2 or x̄4 or x5) 10*10

Fig. 1. Mapping SAT to NDB: In this example the boolean formula is written in
conjunctive normal form and its defined over five variables (x1, x2, x3, x4, x5). The
formula is mapped to an NDB where each clause corresponds to a record and each
variable in the clause is represented as a 1 if it appears negated, as a 0 if it appears
un-negated and as a ∗ if it does not appear in the clause at all. In easy to see that
a satisfying assignment of the formula such as {x1= TRUE, x2= TRUE, x3= TRUE,
x4= FALSE, x5= FALSE } corresponding to string 11100 is not represented in NDB.

4 Creating and Maintaining Negative Databases

In this section we present an on-line algorithm for creating and maintaining
a negative database under the representation discussed in Section 3. Negative
databases should be viewed as logical containers of strings or detectors and it
1 We consider DB to remain defined over the {0,1} alphabet.

Online Negative Databases 179

is important to point out that when the strings stored therein implement some
partial matching rule, as is the case in AIS, removing or inserting a single string
changes the definition of DB or self according to the particulars of that match
rule.

The algorithms discussed in this section have the flexibility to create negative
databases with varying structures (see instance-generation models [35,9,10]), an
implementation of the algorithms must make some restrictions in order to yield
NDBs that are hard to reverse on average. The following are some properties,
regarding string matching, that the algorithms take advantage of:

Property 1: A string y is subsumed by string x if every string matched by y
is also matched by x. A string x obtained by replacing some of y’s defined
positions, with don’t cares, subsumes y.

Property 2: A set of 2n distinct strings that are equal in all but n positions
match exactly the same set of strings as a single one with those n positions
set to the don’t care symbol.

4.1 Initialization

A natural default initialization of DB is to the empty set. And, the corresponding
initialization of NDB would be to U—the set of all strings. As discussed in
Section 3 an NDB contains strings defined over {0, 1, ∗} so one possible initial
state for NDB would be simply to store the string ∗l, where l is the string length.
This clearly matches every string in U , but doing so would trivially defeat our
purpose of making it difficult for someone to know exactly what NDB represents.
We need to make it hard to know what DB is, even when DB is empty.

The algorithm presented in Figure 2 creates a database whose strings will
match any string in U (see example in Fig. 3). The rationale behind it comes from
the isomorphism between NDBs and Boolean formulae (Sect. 3, Fig. 1). Hence,
our algorithm is designed to potentially create the equivalent of unsatisfiable
SAT formulas of l variables. The high-level strategy is to select m bit positions
and create, for each possible bit assignment Vp of these positions, a string with
Vp and don’t care symbols elsewhere. A negative database created in this way
will have 2m records, each matching 2l−m distinct strings, clearly covering all of
U .

Figure 2 modifies this strategy to expand the number of possible NDBs
output by the algorithm. The modifications are:

– Potentially add more than one string to match a specific pattern (line 3).
– Augment the original pattern with n other positions. This allows each of

the l possible positions to be specified in the resulting pattern. However the
choice of n has great impact on the complexity of the algorithm as line 6
loops 2n times. A value of 3 will suffice to generate some types of 3-SAT
formulas (see Fig. 1) while keeping the complexity reasonable.

– Using a subset of positions of the selected patterns to create an entry (line
7–8).

180 F. Esponda et al.

It is straightforward to verify using the properties laid out at the beginning
of the section that the algorithm produces an NDB that matches every string
in U .

The purpose of the current choices of k1 and k2, lines 3 and 7 respectively, is to
give the algorithm the necessary flexibility to generate genuinely hard-to-reverse
NDB instances. We return to this question in Section 5, as some restriction to
these values might be warranted to produce hard instances in practice.

Empty NDB Create(l)
1. Pick �log(l)� bit positions at random
2. for every possible assignment Vp of this positions{
3. select k1 randomly 1 <= k1 <= l
4. for j=1 to k1{
5. select an additional n distinct positions
6. for every possible assignment Vq of these positions{
7. Pick k2 bits at random from Vp · Vq.
8. Create a entry for NDB with the k2

chosen bits and fill the remaining l − k2

positions with the don’t care symbol.}}}

Fig. 2. Empty NDB Create. Randomly creates a negative database that represents
every binary string of length l.

Empty NDB Create(4) Delete(1111,NDB) Insert(1111,NDB)
000* 000* 000*
001* 001* 001*
01*0 01*0 01*0
01*1 01*1 01*1
10*0 10*0 10*0
10*1 10*1 10*1
111* 110* 110*
110* 11*0 11*0

*110 *110
11

Fig. 3. Possible states of NDB after successively performing initialization, deletion
and insertion of a string.

4.2 Updates

We now turn our attention to modifying the negative database NDB in a dy-
namic scenario. The policies and algorithms used for selecting which strings
should be added or retired remain application specific. It is worth emphasizing
that the meaning of the insert and delete operations are inverted from their

Online Negative Databases 181

traditional sense, since we are storing a representation of what is not is some
database DB. For instance, the operation “insert x into DB” would have to be
implemented as “delete x from NDB” and “delete x from DB” as “insert x into
NDB”.

The core operation for both the insert and delete procedures, presented in
Figure 4, takes a string x and the current NDB and outputs a string y that
subsumes x without matching any other string in DB. The function starts by
picking a random ordering π of the bit positions so as to remove biases from
later choices. Lines 2–6 find a minimum subset of bits from the input string x
such that no string outside {U −DB} ⋃{x} is matched. Step 4 of the algorithm
ensures that inserting a don’t care symbol at the selected position doesn’t cause
the string to match something in DB. Property 1, listed at the beginning of
the section, establishes that the resulting string matches whichever strings the
original input string x matched. Steps 7–9 create a string containing the pattern
found in the previous steps plus possibly some extra bits, note that the added
bits were part of the original input string x so it is automatically guaranteed
that the result will subsume x. It is important to emphasize that, for an actual
implementation of the algorithm, the value of t (line 7) might be restricted or
even fixed to provide a desired NDB structure.

Negative Pattern Generate(x, NDB)
1. Create a random permutation π
2. for all specified bits bi in π(x)
3. Let x′ be the same as π(x) but with bi flipped
4. if x′ is subsumed by some string in π(NDB)
5. π(x) ← π(x)− ith bit (set value to ∗)
6. Keep track of the ith bit in a set indicator vector (SIV)
7. Randomly choose 0 ≤ t ≤ |SIV |
8. R ← t randomly selected bits from SIV
9. Create a pattern Vk using π(x) and the bits indicated by R.
10. return π′(Vk)a

a π′ is the inverse permutation of π.

Fig. 4. Negative Pattern Generate. Take as input a string x defined over {0, 1, ∗} and a
database NDB and outputs a string that matches x and nothing else outside of NDB.

Insert into NDB. The purpose of the insert operation is to introduce a sub-
set of strings into the negative database while safeguarding its irreversibility
properties. Figure 5 shows the pseudocode of the insert operation, lines 1 and 2
enable the procedure to create several entries in NDB portraying x, as for the
initialization of NDB shown in Fig. 2, the actual number of entries should be
set to accommodate efficiency constraints and to preserve the irreversibility of
NDB. Likewise steps 3 and 4 set some of the unspecified positions of x (if any)

182 F. Esponda et al.

so that it may be possible for a set of strings representing x, that exhibit bits
not found in x, to be entered in NDB (see property 2 at the top of the section).
Finally the call to Negative Pattern Generate (see Sect. 4.2 and Fig. 4) produces
a string representing x which is then inserted in NDB (see example in Fig. 3).

Insert(x, NDB)
1. Randomly choose 1 ≤ j ≤ l
2. for k = 1 to j do
3. Randomly select from x at most n distinct unspecified bit positions
4. for every possible bit assignment Bp of the selected positions
5. x′ ← x ·Bp

6. y ← Negative Pattern Generate(x′, NDB)
7. add y to NDB

Fig. 5. Insert into NDB.

Delete. This operation aims to remove a subset of strings from being repre-
sented in NDB. It is worth noting that this operation cannot simply be imple-
mented by looking for a particular entry in NDB and removing it, since it may
be the case that a string is represented by several entries in NDB and an entry
in NDB can in turn represent several strings, some of which might not be our
intent to remove. Figure 6 gives a general algorithm for removing a string or set
of strings from being depicted in NDB, note that input x may be any string
over {0, 1, ∗} an thus many strings may cease from being represented by a single
call.

The algorithm takes the current NDB and the string to be removed x as in-
put, line 1 identifies the subset, Dx, of NDB that matches x and removes it. As
mentioned previously, removing an entry that matches x might also unintention-
ally delete some additional strings. Lines 3–6 reinsert all the strings represented
by Dx except x. For each string y in Dx that has n unspecified positions (don’t
care symbols) there are n strings to be inserted into NDB that match every-
thing y matches except x. Each new string y′

i is created by using the specified
bits of y and the complement of the bit specified at the ith position of x as the
following example illustrates:

x Dx All but x

111*0*
101001 1*1*0* 1*110*

1*1*00

To see that this in fact excludes x from NDB, and nothing else, note the
following: Each new string y′

i, by construction, differs from x in its ith position

Online Negative Databases 183

therefore none of the new strings match x. If a totally specified string z �= x is
matched by y ∈ Dx then z must have the same specified positions as y, now, since
z is different from x it follows that it must disagree with it in at least one bit,
say bit k, z will be matched by y′

k. Finally, observe that since y subsumes each
new entry y′

i no unwanted strings are included by the operation (see example in
Fig. 3).

Delete(x, NDB)
1. Let Dx be all the strings in NDB that match x
2. Remove Dx from NDB.
3. for all y ∈ Dx

4. for each unspecified position qi of y
5. Create a new string y′ using the specified bits of y and the

complement of the bit specified at the ith position of x.
6. Insert(y′, NDB)

Fig. 6. Delete from NDB.

One very important fact to point out about this algorithm is that it may cause
the size of NDB to grow unreasonably, even exponentially. It is important for
any implementation to prevent the number of entries |Dx| in NDB that match
a particular, totally specified, string from being a function of the size of the
negative database and/or to instrument a clean up operation that bounds the
size of NDB.

5 Discussion

In this paper we have reviewed the concept of negative databases and introduced
them as a means for storing strings or detector sets in the context of anomaly
detection systems based on string matching. Negative representations of data can
provide an extra level of protection for systems in which acquiring the detector
set (the set of strings that detect anomalies) might produce a security breach.
We described an algorithm for generating negative databases on-line that, unlike
the previous work where the positive database was assumed to exist at one place
and at one time in order to obtain its negative representation, allows for the
negative representation to be updated dynamically.

In applications of AIS to anomaly detection, the set of detectors or strings
typically implement a partial matching rule. This allows the system to include,
in the definition of self, strings that have not been observed before (also known
as a generalization), this contrasts with the previous negative database work
where the negative information of a set is represented exactly. An important
observation in regards to partial matching is that, for the irreversibility result
to hold, it must be the case that the match rule complies with the generalized
satisfiability problem [21] according to the isomorphism with Boolean formulas

184 F. Esponda et al.

described in Section 3. Moreover, even though it was shown in [15] that finding
DB given only NDB is NP-hard, this does not mean that every NDB is hard
to reverse. The algorithms presented in Section 4 have a series of free parameters
that will need to be tuned in order to realize the irreversibility properties afforded
by the negative representation. We have developed a preliminary version of the
online algorithms presented here and those introduced in Ref. [15], referred to as
the batch method. Quantitative results are still premature but some qualitative
observations are relevant: Unlike the batch method, where the critical time cost
is querying many negative patterns against the positive database, the online
version spends its time querying the input record against the negative database.
The negative database is typically larger than the positive database, and has
been so in our tests.

The prototype, based on the algorithms in this paper is limited to records
constructed from small two or three letter alphabets (16 to 24 bits). We have
made a number of restrictions to the algorithms as a first step in understanding
its effects and to limit the size of NDB and its running time. We constrained
the number of passes through the Insert algorithm Fig. 5 to one (in line 1 j = 1)
and kept k1 = 1 and n = 3 for the initialization phase (Fig. 2 lines 3 and 5
respectively). Further, both the processes of insertion and deletion cause NDB
to grow in size, so it will be indispensable in the future to implement a clean-up
operation that eliminates redundant strings.

In order to evaluate the difficulty of retrieving positive records given only
NDB we convert NDB into a Boolean formula, taking advantage of the rela-
tionship an NDB has with SAT, and input it to a well-known SAT solver [36,2].
The solver returns the difficulty of obtaining a solution (specific to the particular
heuristics used in the solver). One interesting observation is that the complexity
of reversing the output of the on-line algorithm is significantly higher that that
of the batch version. It appears that starting from an unsatisfiable formula and
gradually adding satisfying assignments (adding records to DB, deleting them
from NDB) is more challenging for the heuristics employed by the solver. Fi-
nally, our current implementation of the on-line algorithm can produce strings
with a variable or constant number of specified bits. This latter restriction is in
accordance with [35] and has, in our experience, greatly increased the complexity
of reversing NDB.

Negative detection has been a trademark characteristic of artificial immune
systems since they were first introduced and it is often lauded for its ability
for distributed detection and its flexibility in detecting anomalies. Our research
has led us to investigate the more general question of negative data representa-
tions and their properties. This led to the discovery that representing negative
information in a certain manner exhibits an interesting and potentially useful
property, namely that it makes it hard to recover the corresponding positive in-
formation. In the context of AIS for anomaly detection it adds an extra layer of
security by making it hard to retrieve the profile of the system being monitored
by simply analyzing the detector set. In other applications involving databases,
it enhances privacy by naturally allowing only certain types of queries. Our cur-

Online Negative Databases 185

rent efforts are focused on the practical aspects of generating negative databases
as well as in drawing out some additional properties that distinguish them from
their positive counterpart.

Acknowledgments. The authors gratefully acknowledge the support of the
National Science Foundation (CCR-0331580, CCR-0311686, and DBI-0309147),
Defense Advanced Research Projects Agency (grant AGR F30602-00-2-0584),
the Intel Corporation, and the Santa Fe Institute. F.E. also thanks CONACYT
grant No. 116691/131686.

References

1. D. Achlioptas, C. Gomes, H. Kautz, and B. Selman. Generating satisfiable problem
instances. In Proceedings of the 7th Conference on Artificial Intelligence (AAAI-
00) and of the 12th Conference on Innovative Applications of Artificial Intelligence
(IAAI-00), pages 256–261, Menlo Park, CA, July 30– 3 2000. AAAI Press.

2. Boolean Satisfability Research Group at Princeton. zChaff.
http://ee.princeton.edu/ chaff/zchaff.php, 2004.

3. M. Ayara, J. Timmis, R. de Lemos, L. N. de Castro, and R. Duncan. Negative selec-
tion: How to generate detectors. In J Timmis and P J Bentley, editors, Proceedings
of the 1st International Conference on Artificial Immune Systems (ICARIS), pages
89–98, University of Kent at Canterbury, September 2002. University of Kent at
Canterbury Printing Unit.

4. J. Cohen Benaloh and M. de Mare. One-way accumulators: A decentralized alter-
native to digital signatures. In Advances in Cryptology—EUROCRYPT ’93, pages
274–285, 1994.

5. D. W. Bradley and A. M. Tyrrell. The architecture for a hardware immune sys-
tem. In D. Keymeulen, A. Stoica, J. Lohn, and R. S. Zebulum, editors, The Third
NASA/DoD Workshop on Evolvable Hardware, pages 193–200, Long Beach, Cali-
fornia, 12-14 July 2001. IEEE Computer Society.

6. D. W. Bradley and A. M. Tyrrell. Immunotronics: Novel finite state machine archi-
tectures with built in self test using self-nonself differentiation. IEEE Transactions
on Evolutionary Computation, 6(3):227–238, June 2002.

7. J. Camenisch and A. Lysyanskaya. Dynamic accumulators and application to
efficient revocation of anonymous credentials. In Moti Yung, editor, Advances in
Cryptology – CRYPTO ’ 2002, volume 2442 of Lecture Notes in Computer Science,
pages 61–76. International Association for Cryptologic Research, Springer-Verlag,
Berlin Germany, 2002.

8. D. L. Chao and S. Forrest. Generating biomorphs with an aesthetic immune sys-
tem. In Russell Standish, Mark A. Bedau, and Hussein A. Abbass, editors, Artificial
Life VIII: Proceedings of the Eighth International Conference on the Simulation
and Synthesis of Living Systems, pages 89–92, Cambridge, Massachusetts, 2003.
MIT Press.

9. S. A. Cook and D. G. Mitchell. Finding hard instances of the satisfiability problem:
A survey. In Du, Gu, and Pardalos, editors, Satisfiability Problem: Theory and
Applications, volume 35 of Dimacs Series in Discrete Mathematics and Theoretical
Computer Science, pages 1–17. American Mathematical Society, 1997.

186 F. Esponda et al.

10. J. M. Crawford and L. D. Anton. Experimental results on the crossover point
in satisfiability problems. In Richard Fikes and Wendy Lehnert, editors, Pro-
ceedings of the Eleventh National Conference on Artificial Intelligence, pages 21–
27, Menlo Park, California, 1993. American Association for Artificial Intelligence,
AAAI Press.

11. D. Dasgupta and F. Gonzalez. An immunity-based technique to characterize in-
trusions in computer networks. IEEE Transactions on Evolutionary Computation,
6(3), June 2002.

12. L.N. de Castro and J.I. Timmis. Artificial Immune Systems: A New Computational
Intelligence Approach. Springer-Verlag, 2002.

13. P. D’haeseleer, S. Forrest, and P. Helman. An immunological approach to change
detection: algorithms, analysis and implications. In Proceedings of the 1996 IEEE
Symposium on Computer Security and Privacy. IEEE Press, 1996.

14. F. Esponda, S. Forrest, and P. Helman. The crossover closure and partial match
detection. In Jonathan Timmis, Peter J. Bentley, and Emma Hart, editors, Proceed-
ings of the 2nd International Conference on Artificial Immune Systems (ICARIS),
pages 249–260, Edinburgh, UK, Sep 2003. Springer-Verlag.

15. F. Esponda, S. Forrest, and P. Helman. Enhancing privacy through negative rep-
resentations of data. Technical report, Univerity of New Mexico, 2004.

16. F. Esponda, S. Forrest, and P. Helman. A formal framework for positive and
negative detection schemes. IEEE Transactions on Systems, Man and Cybernetics
Part B: Cybernetics, 34(1):357–373, 2004.

17. J. Feigenbaum, M. Y. Liberman, and R. N. Wright. Cryptographic protection of
databases and software. In Distributed Computing and Cryptography, pages 161–
172. American Mathematical Society, 1991.

18. C. Fiorini, E. Martinelli, and F. Massacci. How to fake an RSA signature by encod-
ing modular root finding as a SAT problem. Discrete Appl. Math., 130(2):101–127,
2003.

19. S. Forrest, A. S. Perelson, L. Allen, and R. CheruKuri. Self-nonself discrimination
in a computer. In Proceedings of the 1994 IEEE Symposium on Research in Security
and Privacy, Los Alamitos, CA, 1994. IEEE Computer Society Press.

20. A. A. Freitas and J. Timmis. Revisiting the foundations of AIS: A problem oriented
perspective. In Jonathan Timmis, Peter J. Bentley, and Emma Hart, editors,
Proceedings of the 2nd International Conference on Artificial Immune Systems
(ICARIS), pages 229–241, Edinburgh, UK, Sep 2003. Springer-Verlag.

21. M. R. Garey and D. S. Johnson. Computers and Intractability : A Guide to the
Theory of NP-Completeness. W.H. Freeman & Company, San Francisco, 1978.

22. O. Goldreich. On the foundations of modern cryptography. Lecture Notes in
Computer Science, 1294:46–??, 1997.

23. S. Goldwasser. Multi party computations: past and present. In Proceedings of the
sixteenth annual ACM symposium on Principles of distributed computing, pages
1–6. ACM Press, 1997.

24. F. Gonzalez, D. Dasgupta, and L. F. Nino. A randomized real valued negative
selection algorithm. In Jonathan Timmis, Peter J. Bentley, and Emma Hart, edi-
tors, Proceedings of the 2nd International Conference on Artificial Immune Systems
(ICARIS), pages 261–272, Edinburgh, UK, Sep 2003. Springer-Verlag.

25. J. Greensmith and S. Cayzer. An AIS approach to semantic document classifica-
tion. In Jonathan Timmis, Peter J. Bentley, and Emma Hart, editors, Proceed-
ings of the 2nd International Conference on Artificial Immune Systems (ICARIS),
pages 136–146, Edinburgh, UK, Sep 2003. Springer-Verlag.

Online Negative Databases 187

26. S. Hofmeyr. An immunological model of distributed detection and its application
to computer security. PhD thesis, University of New Mexico, Albuquerque, NM,
1999.

27. S. Hofmeyr and S. Forrest. Immunity by design: An artificial immune system. In
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO),
pages 1289–1296, San Francisco, CA, 1999. Morgan-Kaufmann.

28. S. Hofmeyr and S. Forrest. Architecture for an artificial immune system. Evolu-
tionary Computation Journal, 8(4):443–473, 2000.

29. R. Impagliazzo, L. A. Levin, and M. Luby. Pseudo-random generation from one-
way functions. In Proceedings of the twenty-first annual ACM symposium on The-
ory of computing, pages 12–24. ACM Press, 1989.

30. R. Impagliazzo and M. Naor. Efficient cryptographic schemes provably as secure as
subset sum. In IEEE, editor, 30th annual Symposium on Foundations of Computer
Science, October 30–November 1, 1989, Research Triangle Park, NC, pages 236–
241, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1989. IEEE
Computer Society Press.

31. M. Kearns, Y. Mansour, D. Ron, R. Rubinfeld, R. E. Schapire, and L. Sellie. On
the learnability of discrete distributions. In Proceedings of the twenty-sixth annual
ACM symposium on Theory of computing, pages 273–282. ACM Press, 1994.

32. J. Kim and P. J. Bentley. An evaluation of negative selection in an artificial
immune system for network intrusion detection. In Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO), pages 1330–1337, San Francisco,
CA, 2001. Morgan-Kauffman.

33. P. May, K. C. Mander, and J. Timmis. Software vaccination: An AIS approach.
In Jonathan Timmis, Peter J. Bentley, and Emma Hart, editors, Proceedings of
the 2nd International Conference on Artificial Immune Systems (ICARIS), pages
81–92, Edinburgh, UK, Sep 2003. Springer-Verlag.

34. R. C. Merkle and M. E. Hellman. Hiding information and signatures in trapdoor
knapsacks. IEEE-IT, IT-24:525–530, 1978.

35. D. Mitchell, B. Selman, and H. Levesque. Problem solving: Hardness and easiness
- hard and easy distributions of SAT problems. In Proceeding of the 10th National
Conference on Artificial Intelligence (AAAI-92), San Jose, California, pages 459–
465. AAAI Press, Menlo Park, California, USA, 1992.

36. M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and Sh. Malik. Chaff:
Engineering an Efficient SAT Solver. In Proceedings of the 38th Design Automation
Conference (DAC’01), June 2001.

37. M. Naor. Evaluation may be easier than generation (extended abstract). In Pro-
ceedings of the twenty-eighth annual ACM symposium on Theory of computing,
pages 74–83. ACM Press, 1996.

38. M. Naor and M. Yung. Universal one-way hash functions and their cryptographic
applications. In Proceedings of the Twenty First Annual ACM Symposium on
Theory of Computing: Seattle, Washington, May 15–17, 1989, pages 33–43, New
York, NY 10036, USA, 1989. ACM Press.

39. Odlyzko. The rise and fall of knapsack cryptosystems. In PSAM: Proceedings of the
42th Symposium in Applied Mathematics, American Mathematical Society, 1991.

40. G. J. Popek. Protection structures. COMPUTER, 7(6):22–33, June 1974.
41. J. H. Saltzer and M. D. Schroeder. The protection of information in computer

systems. Proceedings of the IEEE, 63(9):1278–1308, September 1975.
42. S. Sathyanath and F. Sahin. Artificial immune systems approach to a real time

color image classification problem. In Proceedings of the IEEE International Con-
ference on Systems, Man, and Cybernetics, 2001.

188 F. Esponda et al.

43. B. Schneier. Applied Cryptography: Protocols, Algorithms, and Source Code in C.
John Wiley and Sons, Inc., New York, NY, USA, 1994.

44. A. Silberschatz, H. F. Korth, and S. Sudarshan. Database System Concepts (Fourth
Edition). Mc Graw Hill, 2002.

45. A. O. Tarakanov, V. A. Skormin, and S.P. Sokolova. Immunocomputing:Principles
and Applications. Springer-Verlag, 2003.

46. D. W. Taylor and D. W. Corne. An investigation of negative selection for fault
detection in refrigeration systems. In Jonathan Timmis, Peter J. Bentley, and
Emma Hart, editors, Proceedings of the 2nd International Conference on Artificial
Immune Systems (ICARIS), pages 34–45, Edinburgh, UK, Sep 2003. Springer-
Verlag.

47. P. A. Vargas, L. Nunes de Castro, R. Michelan, and F. J. Von Zuben. An immune
learning classifier network for automated navigation. In Jonathan Timmis, Peter J.
Bentley, and Emma Hart, editors, Proceedings of the 2nd International Conference
on Artificial Immune Systems (ICARIS), pages 69–80, Edinburgh, UK, Sep 2003.
Springer-Verlag.

48. P. Wayner. Translucent Databases. Flyzone Press, 2002.
49. S. T. Wierzchon. Generating optimal repertoire of antibody strings in an artificial

immune system. In M. A. Klopotek, M. Michalewicz, and S. T.Wierzchon, edi-
tors, Intelligent Information Systems, pages 119–133, Heidelberg New York, 2000.
Physica-Verlag.

50. S. T. Wierzchon. Deriving concise description of non-self patterns in an arti-
ficial immune system. In S. T. Wierzchon, L. C. Jain, and J. Kacprzyk, editors,
New Learning Paradigms in Soft Computing, pages 438–458, Heidelberg New York,
2001. Physica-Verlag.

51. P. D. Williams, K. P. Anchor, J. L. Bebo, G. H. Gunsch, and G. D. Lamont. CDIS:
Towards a computer immune system for detecting network intrusions. In W. Lee,
L. Me, and A. Wespi, editors, Fourth International Symposium, Recent Advances
in Intrusion Detection, pages 117–133, Berlin, 2001. Springer.

52. A. Yao. Protocols for secure computation. In IEEE, editor, 23rd annual Symposium
on Foundations of Computer Science, November 3–5, 1982, Chicago, IL, pages 160–
164, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1982. IEEE
Computer Society Press.

	Introduction
	Related Work
	Negative Databases
	Creating and Maintaining Negative Databases
	Initialization
	Updates

	Discussion

