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Abstract

In this paper we introduce the Partition Task problem class along with a complexity measure to
evaluate its instances and a performance measure to quantify the ability of a system to solve them.
We explore, via simulations, some potential applications of these concepts and present some results as
examples that highlight their usefulness in policy design scenarios, where the optimal number of elements
in a partition or the optimal size of the elements in a partition must be determined.

1 Introduction

Groups of agents are often faced with situations that require them to divide—specialize—into subgroups.
For example, a colony of ants must divide its members into foragers, lookouts, and workers in different
proportions at different times; Mexican citizens must vote, every six years, for one of three political parties;
and the denizens of Santa Fe, N.M. must decide every Friday night whether or not to attend the El Farol
restaurant. The outcome of these tasks can depend, among other things, on factors like the availability and
accuracy of information, the agent’s internal decision-making models, and the interactions with other agents.

Consider the El Farol [3] problem in which the experience at the restaurant is deemed pleasurable if its
at most 60% full. A possible variant of this problem is to include the owner’s requirement of having the
restaurant at no less than 60% of its maximum capacity, in this way both customers and owners are gratified
when total attendance is exactly 60%. Suppose we want to model this situation and study the factors that
influence the outcome; for instance, the amount of memory agents have, their decision strategies, and the
effects of embedding agents in a social network. What is the influence of each variable? How will a given
design do with a more difficult or with an easier problem? What is a more difficult or easier problem?

In this paper we provide the first step necessary towards answering these kinds of questions by character-
izing problems in a way that is independent of the strategies available for solving them. We precisely define
the types of problems we are interested in, establish a measure for their complexity, and give a measure of
how well a particular group of agents addresses a given problem over time. These tools allow us to study
problems in terms of their complexity and strategies in terms of their ability to solve them.

In Sect. 2 we define the class of tasks we are interested in and in Sect. 3 give a measure for their
complexity. Section 4 discusses how to quantify the error of trying to solve a given task and Sect. 5 presents
some potential applications as well as the results of an agent-based simulation that illustrate the uses of our
proposed measures and definitions. In particular, we investigate a version of the El Farol restaurant problem
and point out some of the variables that affect its complexity. In addition, we show how embedding agents in
a social network affects their task-solving capabilities and how our tools can help design policies that enable
agents to face less complex tasks.
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1.1 Related Work

Partition tasks (PT s) are related to combinatorial optimization [22, 31] problems which are characterized
by the task of finding an unknown solution out of combinatorially many. In contrast, a PT is specified by
the set of all its possible solutions (its criterion), and therefore solving a PT consists of reaching any of
these (known) solutions. Hence, the criterion to a given PT could be the set of solutions to a combinatorial
optimization problem induced by a certain objective function. PT s are also related to complexity. According
to [19], common definitions of complexity are associated with: how difficult it is to describe an object; how
difficult it is to construct an object; and how organized an object is. Our work relates the most to the second
point.

Significant work regarding complexity has been carried out in different fields such as physics [24, 27, 2],
biology [8, 25], computer science [12, 16, 23] and social sciences [9, 11, 7, 4]. In many of these cases, the
framework presented in this paper can be useful since the PT problem class is very general. For example, in
[3] customers have a positive experience if they attend El Farol restaurant and it is no more than 60% full.
Alternatively, in the Minority Game [10], agents decide among two choices to attend and the players who end
up among the minority win and in the Standing Ovation problem [20] agents decide whether to stand up and
clap or remain seated. Similarly, in [6, 13, 1] agents must make decisions or adopt characteristics that can
also be modeled as a group of agents dividing itself into categories. However, all these papers focus on the
system dealing with the PT and its characteristics. In the present work we concentrate on the construction
of PT s independent of the systems that are trying to solve them and present a measure that can be used as
a point of reference for the study of such systems.

Another relation with the present work can be found in theoretical computer science which defines
problem complexity in terms of the most efficient algorithm that solves the problem [12, 16, 23]. PT s are
fundamentally computational tasks and as such can be assigned a complexity in this sense. The distinction
between this measure and the ones introduced in the current work is that the latter are not concerned with
the time and space required to arrive at a solution and instead focus on the characteristics of the problem
itself; namely, on the relative size of the solution set. The complexity class #P (sharp P) is the class of
function problems whose image is the number of accepting paths of an NP problem [32]. Problems in this
class are concerned with finding how many solutions a given problem has; for instance, computing the number
of Hamiltonian cycles of some cost in a given graph. Our definition of PT s requires enumerating the valid
arrangements of agents into bins; thus, defining a PT is in fact a #P problem.

Other complexity definitions, such as Description Length, Algorithmic Information Content, Thermody-
namic Depth, and Effective Complexity, amongst others, aim to characterize the nature of objects and the
behavior of systems (see [26, 21] for a review). The main distinction with our work is that these definitions
would characterize a task with respect to the structure of its valid configurations, whereas the definition
provided here is concerned only with the a priori likelihood of arriving at one of them, regardless of the
complexity assigned to the configuration itself by other measures.

2 Partition Tasks

Throughout this paper we consider an agent-set to be any collection of individual entities, such as a bag of
rocks, a collection of ants, or a group of voters and tasks to be certain arrangements or configurations that
agents must achieve. For example, agents can collectively set market prices, learn complicated functions, or
elect a public official. In particular we are interested in tasks that require a system to configure an agent-set
into a specific arrangement, such as a bag of rocks sorted into igneus, sedimentary and metamorphic; 40% of
ants in an ant-hill foraging; or voters decisions splitting in favor of a political party. We refer to these sort
of tasks as Partition Tasks (PT ). Intuitively, PT are defined by the agent-set and a specification of how
it should be partitioned. In what follows we give a precise definition for PT and explicitly construct their
problem space.
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2.1 Problem Space

Let Ak = {1, . . . , k} be a set of agents with |Ak| = k, and Bn = {1, . . . , n} a set of bins with |Bn| = n. For
the purpose of this construction we are only concerned with the number of agents in Ak, the number of bins
in Bn, and their identities, which we represent as consecutive integers. Given Ak and Bn a PT must specify
how the agent-set can be partitioned in order to satisfy the task. We call the set of satisfying arrangements
the criterion.

2.1.1 Criterion Space

A partition of Ak into Bn is an exhaustive and mutually exclusive assignment of the k agents into the n bins.
The criterion space consists of all the possible partitions induced by Ak and is constructed in two steps.
First, we present the set of possible partitions according to their cardinality (eqn. 1) and then assign agents
to each bin (eqn. 2).

∆n
k =

(δ1, . . . , δn) : δj ∈ Z+,

n∑
j=1

δj = k

 . (1)

Consider a specific δ ∈ ∆n
k , each entry δj indicates the number of agents that are to be placed in bin j;

notice that some δj ’s could be equal to zero, e.g., n = 2 and all agents in the first component, zero in the
second.

Now we specify the identity of agents in each of the n bins. First, let 2Ak denote the power set of Ak.
The set of all subsets of Ak of size i ∈ {1, . . . , k} is written as

Pi =
{
p : p ∈ 2Ak , |p| = i

}
.

Let δ = (δ1, . . . , δn) ∈ ∆n
k . The set of all possible assignments of δj agents into bin j, for all j ∈ {1, . . . , n},

is given by

Pδ =

(p1, . . . , pn) : pj ∈ Pδj ,

n⋂
j=1

pj = ∅

 . (2)

The union over all δ ∈ ∆n
k yields all possible assignments of k agents into n bins

Pnk =
⋃

δ∈∆n
k

Pδ. (3)

The set of possible criteria—the criterion space—is

C =
⋃

n,k∈N
Pnk . (4)

Definition 1. Partition Task
Given a set of agents Ak, a set of bins Bn, and a criterion Cn,k ⊆ Pnk , the partition task specified by
〈Ak,Bn, Cn,k〉 is to construct an assignment x of Ak into Bn such that x ∈ Cn,k. A Partition Task
〈Ak,Bn, Cn,k〉 is solved by x ∈ Pnk if and only if x ∈ Cn,k. 1

For example, a marketing company looking to segment the customer pool such that 50% buy product X,
25% buy product Y , and the remaining get the competition’s alternative can be described as a PT with an
agent-set A1000, with 1000 customers in the customer base; a set of bins B3: one for product X, one for

1Although we define the criterion as the enumeration of all valid agent-to-bin arrangements, using a concise description of
this set is also an acceptable way to formulate it as long as it can be mapped back to our criterion space. For example, instead
of enumerating the

`100
50

´
ways in which 50 out of 100 agents can be arranged into two bins, one can simply say we require 50%

of the agents in each bin.
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product Y , and a third for the alternative; and a criterion C3,1000 in which all possible arrangements of 500
customers into bin X, 250 customers into bin Y , and the rest into the alternative are enumerated.

Finally, the problem space P is given by

P = {Ak × Bn × Pnk : n, k ∈ Z+} , (5)

the set of all possible combinations of agent-sets, bins, and criteria. Therefore, any element of P specifies a
PT .

It is important to differentiate the means to solve a task from the task itself. A PT is a static problem in
the sense that the only thing that matters is whether a partition satisfies the criterion or not, independent
of the process undergone in reaching it. In the following section we present a measure for the complexity of
partition tasks.

3 Task Complexity

A partition task requires a system arranging an agent-set according to some criterion and its outcome
depends on the details of the system’s underlying mechanisms. However, it appears generally harder to get
every voter to choose the same party than for only a majority to do so and easier to divide a pile of rocks
in two than to separate them according to type. In this section we formalize this intuition and present a
measure for the complexity of a PT independent of the details of the system trying to solve it. Our purpose
is to provide a base line to study and evaluate the performance of different architectures and to allow the
comparison of PT s. Formally, we seek to construct a total order2 over our problem space P.

We refer to a system as a mechanism that induces a probability distribution S over Pnk , for a given PT ,
conditional on the information available to that system I(S), i.e., pS(c|I(S)) is the probability that system
S assigns to partition c given the available information I(S). This information could include, for example,
the initial conditions and the environmental feedback to the system.

We say that a system is un-intelligent if it does not have the capacity to take into account I(S) in its
probability assignments; that is, pS(c) = pS(c|I(S)) for all c ∈ Pnk . We also say that a system is unbiased3

if it assigns equal probability to each c ∈ Pnk .
Our complexity measure reflects how likely it is for a system that is non-intelligent and unbiased to solve

a given PT . This is formally stated in the following definition.

Definition 2. Partition Task Complexity Measure
The PT complexity measure is a function M : P −→ R+ given by

M(〈Ak,Bn, Cn,k〉) = − ln
(
|Cn,k|
|Pnk |

)
. (6)

Recall that |Cn,k| is the number of arrangements satisfying the task—all the different ways in which the agent-
set can be partitioned so as to accomplish the task—and |Pnk | is the number of all the possible arrangements
of the agent-set. Note that M(〈Ak,Bn, Cn,k〉) −→ ∞ as |Cn,k| −→ 0 , which is consistent with the idea of a
non satisfiable task being the most complex (when |Pnk | = 0 our measure is set to zero). Notice the relation
between M and the probability of selecting a valid arrangement uniformly at random (|Cn,k|/|Pnk |).4

This quantity is an adequate a priori measure of complexity, since it relies only on the definition of the
task and takes as reference the most impartial (unbiased) among all possible un-intelligent systems. By
being unbiased it is the one with maximum entropy 5 and therefore best represents the available knowledge
according to the Principle of Maximum Entropy [17].

2A total, antisymmetric, and transitive relation.
3Note that an intelligent system could be unbiased.
4We take the logarithm for practical reasons since probabilities alone could yield numbers too small to distinguish.
5The entropy of system S is defined as −

P
c∈Pn

k
pS(c) ln pS(c). The maximum occurs when pS(c) = pS(c′) for all c and

c′. In this particular case, the entropy of the system is the Boltzmann entropy with its constant set to one, where a satisfied
PT corresponds to the macrostate and the elements of the criterion to the microstates of the system (see [5] for a discussion of
Boltzmann entropy in agent systems).
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A given PT might be readily solved by some systems and impossible for others. In order for our measure
to be particular to the PT itself rather than to the system that will attempt to solve it, we have taken a
neutral system as reference. In particular, this system has no path dependence in the sense that it assigns
equal probability to all partitions independent of any initial conditions. Therefore, this measure of complexity
does not consider path dependency, which is consistent with it being a measure of complexity of PT s alone.
The complexity of a PT for a specific system could also be of interest, however, such a complexity measure
should be path dependent. Although considerations of this sort are beyond the scope of this paper, they
could be addressed by changing the reference system to the one of interest.

We define the complexity relation -M over P by

Definition 3. Complexity Relation
Let PTa, PTb ∈ P,

PTa -M PTb ⇐⇒ M(PTa) ≤M(PTb)

which reads “PTb is at least as complex as PTa”.

To see that M is a total order over P it suffices to note that it is defined for every PT (|Pnk | ≥ 0 and
|Cn,k| ≥ 0) and that it is a real-valued function (M : P→ [0,∞)).

For example, the task of having exactly 60% occupancy in a restaurant that has 100 potential cus-
tomers PTrest60 = 〈A100,B2, C2,100〉 has a criterion C2,100 that enumerates all the possible arrangements
of exactly 60 customers at the restaurant with the remaining 40 elsewhere. The complexity of PTrest60

is M(PTrest60) = − ln
(

(100
60 )

2100

)
. An occupancy requirement of exactly 80% PTrest80 yields M(PTrest80) =

− ln
(

(100
80 )

2100

)
, and allowing a range between 55% and 65% of its capacity (PTrest[55,65]) has a complex-

ity of M(PTrest[55,65]) = − ln
(P65

i=55 (100
i )

2100

)
. Therefore, PTrest[55,65] -M PTrest60 -M PTrest80 since

M(PTrest[55,65]) ≤M(PTrest60) ≤M(PTrest80).
Knowing the complexity of a PT is much like knowing the expected outcome of a coin flip, it helps

to identify special behaviors. Furthermore, having a complexity measure is useful for characterizing the
performance and plasticity of different architectures and in guiding their design. In section 5 we provide a
series of examples that illustrate the value of having PT s thus classified, but first we consider how well a
given system addresses some task.

4 Task Completion

In this section we propose a generalized way to calculate the discrepancy between a PT and any given
partition—a distance metric between a partition and a PT . First we specify a distance metric between
elements of Pnk (partitions) and then between a partition and a set of partitions (between a partition and a
criterion).

Let x, y ∈ Pnk and let d : Pnk × Pnk → R, the distance between x and y is given by

d(x, y) =
n∑
j=1

| xj 	 yj |,

where xj 	 yj is the symmetric difference between sets xj and yj—the set of elements that are in xj or yj
but not both6. Since d(x, y) is a metric, Pnk is a metric space.

The distance between a partition x ∈ Pnk and a set of partitions Y ⊆ Pnk is the minimum of all distances
from each point in Y to x, i.e.

d(x, Y ) = min
y∈Y

d(x, y).

6xj 	 yj = (xj − yj) ∪ (yj − xj) = (xj ∪ yj)− (xj ∩ yj)
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Finally, the discrepancy between a PT p = 〈Ak,Bn, Cn,k〉 and a partition x ∈ Pnk is given by

D(x, p) = d(x, Cn,k). (7)

The ability to quantify the distance between agent-set configurations (partitions) and PT s will be useful
for quantifying the error of a system’s attempt at addressing it. In the following section we define one such
error using this notion of distance and present a series of examples that illustrate the usefulness of this
definition along with those of PT s and their complexity.

5 Applications

In this section we provide some examples as evidence of the usefulness of our definitions and measures. For
this purpose we created an agent-based simulation to assess their value empirically. We first summarily
describe the details of the simulation and then present some interesting results.

5.1 An Agent-based model

Agent-based models are a useful resource for studying phenomena resulting from the interactions of agents
and have been widely used to illustrate concepts regarding agent-sets and their mechanisms [28, 3, 20, 30].
In this paper we present a model in which agents take discrete decisions regarding which bin to occupy.
These decisions are influenced by the (social) network in which the agents are embedded. We perform
simulations that are divided into events within which agents receive input from their neighbors and the
environment, update their internal state, and choose a bin. The following list explains the main components
of the simulation.

Environment The environment evaluates agents decisions and keeps track of the distribution of agents in
bins. This distribution is represented by a vector of numerical values indicating how many agents are
in each bin—e.g., the number of agents inside El Farol thus far. Both the criterion and the distribution
of agents in bins are kept from the agents. An event starts with all bins empty and ends after all
agents have chosen a bin, that is, once a partition is achieved. At the end of an event the environment
provides each agent with a binary signal depending on the bin they chose, agents with the same choice
receive the same signal, given by

signal(k) =
{

1, if the number of agents in bin k is short of the number established by the task
−1, otherwise

Agent Agents are the principal actors of our simulation and have the following characteristics:

• At the beginning of the simulation each agent is assigned, uniformly at random, a default bin,
which we refer to as its predisposition.

• Each agent has a fixed set of neighbors and a weight assigned to each of them. The neighbor
relationship is symmetrical while the weights assigned between neighbors may differ. Agents keep
an additional weight for their predisposition. Weights are initialized at a random value between
-1 an 1.

• Each agent makes a single discrete decision per event—a bin number. An agent chooses a bin by
querying its neighbors and weighing their decisions (along with its predisposition). The decision
of agent i is computed as:

D(i) = argmax
k

Bi(k),
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–Repeat
–Set the task vector to zero
–Randomly select an agent (Agent)
–Repeat

–Query Agent’s neighbors and compute its decision
–Report Agent’s decision to the environment and update the partition vector
–Select another unqueried agent (Agent) according to the breath-first order

–Until all agents have had their turn
–Update each agent’s weights according the environment’s signal. Increment the number of events by 1

–Until the target number of events has been reached

Figure 1: Simulation steps

where Bi(k) is the aggregate weight of agent i’s neighbors whose decision is bin k: Bi(k) =
∑
wi,j

such that D(j) = k. Ties are settled by randomly choosing between the competing options. See
Sect. 5.2.3 for an example of the consequences of resolving ties differently.

• At the end of each event agents update their weights using the signal provided by the environment:

wi,j =
{
wi,j , if D(i) 6= D(j)
sgn(wi,j) ·min{|wi,j |+ η · signal(D(i)), 1}, if D(i) = D(j),

where wi,j denotes the weight assigned by agent i to agent j and η is a learning parameter (set
to 0.01 throughout).

• Each agent reports its most recent decision when queried, i.e., its decision for the current event if
it has already made a choice or its decision for the previous event (or its predisposition during the
first event) if it has not. Agents make their decisions sequentially following a breath-first order
starting from a randomly chosen agent. If the network is not connected the procedure is repeated
until all agents have made a choice.

Network For any given run, an agent has a fixed set of neighbors to which it is connected. In this paper we
experiment with the Erdös Rényi (ER) model of network topology [14]. ER networks are characterized
by a single parameter that indicates the probability of including any given link in the graph.

The agent-set, the agent’s characteristics and the network make up the system that will address the given
PT s. The simulations go through the steps listed in Fig. 1.

Each simulation event (iteration) concludes with a specific partition of the agent-set. At the end of the
simulation there are I data points—one for each event—from which we compute the average error (at each
event) in addressing task 〈Ak,Bn, Cn,k〉, given by

Error(〈Ak,Bn, Cn,k〉) =
1
I

I∑
t=1

d(xt, Cn,k) (8)

where xt ∈ Pnk is the specific partition corresponding to the tth event (iteration).
The examples presented in Sect. 5.2 report the results of running our simulation on different tasks. Each

data point represents the average of eqn. 8 over 30 simulations—each of the 30 simulations varies only in
the random values of the parameters used to run it.
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5.2 Experiments

In this section we provide four simulated scenarios using the agent-based model presented above. The
intention here is not to assess the adequateness of the model—agent’s decision models, network topology,
etc., but rather to highlight the potential value and usefulness of our definitions and measures. Notice that
changing the model may change the data but not the approach to interpret it.

5.2.1 Measures as a tool to evaluate a model’s performance

Consider the restaurant occupancy problem once again. In Sect. 3 we discussed how different requirements
on the occupancy of the restaurant yield different complexities according to our measure; in particular, that
the further away a problem is from requiring exactly 50% occupancy, the harder it gets. Figure 2 shows the
results of our simulation for population sizes of 100. The plots show how the error in satisfying the given
partition task is consistent with the task’s complexity measure, irrespective of the network connectivity
parameters. Having the ability to measure problem complexity enables us to evaluate, for instance, the
effect of different network connectivities in achieving a particular task.

 0
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 25

 0  10  20  30  40  50  60  70  80  90  100

69 39 22 11 5 3 5 11 22 39 69

Er
ro

r

Partition

Complexity

ER=0.1
ER=0.5
ER=0.9

Figure 2: Average error (see eqn. 8) for different Erdös Rényi networks across several task complexities.
The bottom x-axis indicates the size of the partition and top x-axis the complexity of the task according to
eqn. 6.

5.2.2 Measures as a tool of policy design: Choosing the number of partitions

Imagine an industrial city with many car factories that need to choose a warehouse in which to store their
vehicles. Cars are temporarily kept in warehouses before being shipped to their selling agencies. The factories
produce a total of 100 cars per day and each car is stored for one day in a warehouse.

A profit maximizing agent wants to invest in the warehouse business and faces three options that have
the same cost: to rent a warehouse with a capacity for 87 cars (PTWH87), to rent two warehouses with
capacities for 50 and 37 cars (PTWH50,37), or to rent three warehouses with capacities for 50, 25 and 12 cars
each (PTWH50,25,12). Suppose that companies pay per car stored and that having to turn away a costumer,
because of insufficient room, represents some cost—they may not come back to that particular warehouse.
Given limited knowledge about how companies decide, which option is the wisest investment?

The complexity measures (see eqn. 6) for the three scenarios are presented in the following table:
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M(PTWH87) − ln
(

(100
87 )

2100

)
32.8

M(PTWH50,37) − ln
(

(100
50 )(50

37)
3100

)
16.5

M(PTWH50,25,12) − ln
(

(100
50 )(50

25)(25
12)

4100

)
23.9

The value of M for PTWH50,37 is the lowest and therefore PTWH50,37 -M PTWH87 and PTWH50,37 -M

PTWH50,25,12. It is wisest to invest in the two warehouse option. Figure 3 shows the results of a simulation
for different connectivities of the agent network. The task with the lowest average error is indeed PTWH50,37

followed by PTWH50,25,12 and PTWH87. Notice, however, that there is an exception when agents are not
connected at all (an ER connectivity of zero). We address this in the following example.

 0
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 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1
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87/13
50/37/13

50/25/12/13

Figure 3: Average error (see eqn. 8) for three distinct tasks across different network connectivities.

5.2.3 Measures as a tool to notice unexpected behaviors

The complexity measure introduced in Sect. 3 is meant to provide a reference point against which a particular
agent-set’s performance can be evaluated and which can help identify interesting or unusual behavior—much
like knowledge of the expected behavior of a fair coin helps to identify a biased one.

In the previous example we presented three partition problems that had a particular ordering with regards
to their complexity. The experiments reported in Fig. 3 show that the simulation results are consistent with
this ordering except in the case where agents have no connections with each other where they do not consult
any other agents to make a choice. This inconsistency is an indication of noteworthy behavior, not necessarily
wrong but worth explaining.

A close inspection of the model’s implementation revealed that agents by themselves do not have complete
knowledge of all their options—the existence of all available warehouses (as ties where not initially settled
randomly)—and that this information percolates throughout the network once agents are connected. This
fact explains the departure from expected behavior (once knowledge of all options is provided to each isolated
agent the curves cease to cross) and would have been difficult to notice without the baseline provided by the
complexity measure.

5.2.4 Measures as a tool of policy design: Choosing the size of the partition

The local government of a small town of 1,000 people is planning on building a public swimming pool.
Suppose that the cost of constructing the pool is the same irrespective of the capacity and that the government
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must incur in a cost that depends on the number of workers it hires to service the pool, which does depend
on its size—workers are hired on a per year basis.

The townspeople’s preferences are such that:

• They enjoy the pool if it is at most 50% full

• They dislike the government spending their taxes on unnecessary expenses; that is, seeing that the
government hired more workers than the ones needed to service the pool on a particular day

• They dislike receiving a bad service at the pool that is caused by a lack of workers in relation to the
attendees on that day

The government wishes to select a pool capacity such that the number of expected attendees is maximized
subject to not wasting resources—hiring more workers than the ones needed. Given the pool capacity (Cap),
this problem can be formulated as a partition problem PTpool = 〈A1000,B2, C2,1000〉 where A1000 represents
the town’s inhabitants, B2 represents the two options of attending the pool and not attending the pool, and
C2,1000 all the possible agent arrangements in which 0.5∗Cap of the people attend the pool and the remaining
1000 − 0.5 ∗ Cap go elsewhere. Each value of Cap defines a distinct partition problem. The government’s
job is thus to find the right partition problem for its constituency.

Assuming that our agent-based model captures correctly how agents behave and that the social network
in which they are embedded can be modeled by an ER network whose parameter we ignore, we can run a
simulation to determine the right size for the pool.

Figure 4 presents the dispersion of the average error for different attendance objectives (partition sizes of
the agent-set) and for several parameters of the ER network—notice that setting a pool capacity implicitly
fixes the attendance objective due to the townspeople’s preferences.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0  100  200  300  400  500  600  700  800  900  1000

693 371 196 86 24 4 24 86 196 371 693
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Figure 4: Dispersion of the average error (see eqn. 8) across network connectivities. The bottom x-axis
indicates the size of the partition and top x-axis the complexity of the task according to eqn. 6.

Turnouts between 300 and 700 have an error that is close to zero across all connectivity parameters,
whilst the rest have errors that reach magnitudes as high as 400, i.e., the expected outcome can vary in up
to 400 attendantes. Selecting a pool capacity such that less than 300 or more than 700 people visit the pool
will result in drastic fluctuations in attendance and, therefore, in many days with too many workers and
many days with too few. On the other hand, having the objective number of townspeople be between 300
and 700 will minimize unnecessary expenditures and uneasiness due to bad service. Given that government’s
objective is to maximize the number of people it pleases, it should build a pool that can hold 1,400 of its
constituents, since this translates into 700 happy townspeople per day with little overspending.
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6 Conclusions

The present work was motivated by a particular kind of task that a group of agents often encounteres, one
in which the group ends up partitioned into a set of discrete subgroups; for instance, agents chosing where
to park, where to have dinner, or a geologist choosing how to sort his findings. In this paper we defined a
class of problems, named Partition Tasks, which encompass these kinds of actitivities, and a measure that
allows for the comparison of problems in terms of their a priori complexity. Moreover, having problems
thus defined made it possible to quantify the distance between a problem and a specific partition and to
establish the error of an agent-set’s attempt at solving a PT .

The construction of the problem space P here presented not only provided the framework under which
we were able to properly define a PT along with a measure for its complexity, but also sets the context
under which a series of interesting questions can be formally addressed. For example, given a definition of
equivalency between PT s, can a PT always be transformed in such a way that the resulting PT is equivalent
to the first? If so, can a PT always be transformed in such a way that the resulting PT is not only equivalent
but also at most as complex as the original? It is possible that these questions will not have an affirmative
response when considering P as a whole. Nonetheless, one could use the equivalence relation ∼c to partition
P (into equivalence classes or problem classes) and pose the same questions considering only certain cells of
the partition.

The aim of the measures and definitions here introduced is to provide researchers with useful tools for
analyzing the properties and mechanisms of agents engaged in a Partition Task, and as a first step into the
study of the tasks themselves.

In the second half of the paper we presented a series of examples that illustrate how having a precise
definition, a complexity measure, and a performance error, are useful in studying how agents behave and in
designing PT s. For example, we showed how these measures and definitions, together with a computational
model, help to analyze the effect of a social network’s topology on the resolution of a task and how this
knowledge can be used, in turn, to design the proper task for a group of agents so as to fullfill some given
(exogenous) objective.
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[8] M. Barthélemy, A. Barrat, R. Pastor-Satorras, and A. Vespignani. Dynamical patterns of epidemic
outbreaks in complex heterogeneous networks. J. Th. Bio., 235:275, 2005.

[9] Scott A. Boorman. A combinatorial optimization model for transmission of job information through
contact networks. Bell Journal of Economics, 6(1):216–249, Spring 1975.

[10] Damien Challet and Yi-Cheng Zhang. Emergence of cooperation and organization in an evolutionary
game. Physica A, 246(407), 1997.

[11] Michael Suk-Young Chwe. Communication and coordination in social networks. Review of Economic
Studies, 67(1):1–16, January 2000.

[12] Stephen A. Cook. The complexity of theorem proving procedures. In 3rd Annual ACM Symposium on
Theory of Computing, pages 151–158, New York, 1971.

[13] Glenn Ellison and Drew Fudenberg. Rules of thumb for social learning. IDEI Working Papers 17,
Institut d’?conomie Industrielle (IDEI), Toulouse, 1992.
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