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Metabolic rate in animals and power consumption in computers are analo-
gous quantities that scale similarly with size. We analyse vascular systems
of mammals and on-chip networks of microprocessors, where natural selec-
tion and human engineering, respectively, have produced systems that
minimize both energy dissipation and delivery times. Using a simple net-
work model that simultaneously minimizes energy and time, our analysis
explains empirically observed trends in the scaling of metabolic rate in mam-
mals and power consumption and performance in microprocessors across
several orders of magnitude in size. Just as the evolutionary transitions
from unicellular to multicellular animals in biology are associated with
shifts in metabolic scaling, our model suggests that the scaling of power
and performance will change as computer designs transition to decentra-
lized multi-core and distributed cyber-physical systems. More generally, a
single energy–time minimization principle may govern the design of
many complex systems that process energy, materials and information.

This article is part of the themed issue ‘The major synthetic evolutionary
transitions’.

1. Introduction
Both organisms and computers have evolved from relatively simple beginnings
into complex systems that vary by orders of magnitude in size and number of
components. Evolution, by natural selection in organisms and by human engin-
eering in computers, required critical features of architecture and function to be
scaled up as size and complexity increased. In biology, Kleiber’s Law describes
empirically how metabolic rate and many other traits, such as lifespan, heart
rate and number of offspring, scale with body size [1]. Similarly, computer
architecture has Moore’s Law to describe scaling of transistor density and
performance [2], Koomey’s Law for the energy cost per computation [3], and
Rent’s rule for the external communication per logic block [4].

We posit that these empirical patterns originate from a common principle:
networks that deliver resources are optimized to reduce energy dissipation
and increase flow rates, expressed here as minimizing the energy–time product.
That is, both living systems and computer chips are designed to maximize the
rate at which resources are delivered to terminal nodes of a network and to
minimize the energy dissipated as it is delivered and processed. For example,
in biology the vascular network of mammals supplies oxygen and nutrients
to every cell, fuelling metabolism for maintenance, growth and reproduction.
Since energy is a limited resource, we assume that mammals are selected to
minimize the time spent and energy dissipated as oxygen is delivered through
the network [5] and processed to produce ATP in the mitochondria. Similarly,
computation in microprocessors relies on a network of microscopic wires that
transmits bits of information between transistors on a chip. This network is
designed to deliver the maximum information flow at the lowest possible
energy cost.
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Here, we model mammals as composed of nodes (regions
of tissue) that process oxygen delivered via a hierarchical vas-
cular network, and we model microprocessors as composed
of nodes (transistors that perform computation) that commu-
nicate bits over a network of wires. As each system scales up
in size, our model identifies network designs that minimize
(i) the time for resources to be delivered by the network
and processed in the nodes, and (ii) the energy dissipated
during these processes. Despite the obvious differences
between animals and chips, we present a general model and
derive energy and time-scaling relations from physical prin-
ciples applicable to each system. Using these relations, we
express the optimal network design as a trade-off between
energy cost and processing speed. This energy–time minimiz-
ation model is consistent with shifts across the major
evolutionary transitions, such as the transition from protists to
multicellular animals and the transition from single- to multi-
core computer chips. It also points to likely future trajectories
of the evolution of computer architecture and to possible
extensions of metabolic scaling theory to account for sociality.

Previous biological scaling models have sought either to
minimize energy dissipation, e.g. [5], or to maximize resource
delivery rate [6], but they have not formalized the trade-offs
between these goals. By simultaneously considering energy
and time minimization, our analysis helps to explain how
nature and engineering are able to produce designs that
approach pareto-optimality along the energy–time trade-off,
a question investigated extensively in computer architecture
(e.g. [7,8]). Thus, biological evolution has produced mammals
ranging in size from mice to elephants, rather than converging
on a single optimal size, and computer engineers have
designed processors with thousands to billions of transistors,
each of which fills a specific computational niche.

In the rest of the paper, we present the unified energy–
time minimization model (§2) and its assumptions (§2a).
We then use the model to derive a series of predictions
about how time and energy scale with system size, first
for mammals (§3a,b) and then for microprocessors (§3c).
We discuss new insights into previously analysed scaling

relationships in biology that we gain from the time–energy
minimization framework, and we test our scaling predictions
with empirical power and performance data on computer
chips. Finally, in §4, we discuss the implications of these
results for evolutionary transitions in nature and engineering.

2. Unified model of network scaling
Vascular systems are hierarchical branching networks where
blood vessels (pipes) become thicker and longer through the
hierarchy from the capillaries to the aorta. Similarly, micro-
processor chips are organized hierarchically into a nested
structure of modules and submodules, where wires become
longer and thicker as the hierarchical level of a module
increases (figure 1). These wires are organized into metal
layers, where short, thin wires are routed on the lowest
layers, and long, thick wires are placed on the top layers.
We model the scaling of length (l ) and thickness (r) of both
pipes and wires as

li ¼ l0li=Dl ð2:1Þ

and

ri ¼ r0l
i=Dr , ð2:2Þ

where i is the hierarchical level of a branch or module, l is the
branching factor and Dl and Dr are the length and thickness
dimensions, respectively. This model resembles the hierarch-
ical pipe model of vascular systems proposed in [5], where
l1=Dr and l1=Dl correspond to b and g, respectively, in [5]
(note that in [5], the aorta or top of the network is labelled
as level 0, while here the smallest branches, the capillaries,
are labelled as level 0).

In vascular networks, r represents the radius of cylindri-
cal pipes, and in computer interconnect, r represents the
width of wires with aspect ratio 1. Dr describes the relative
radius of pipes between successive hierarchical levels. The
smallest edges occur at i ¼ 0, and have constant radius, r0,
but length, l0, that scales with system size [6].

ri + 1

ri

ℓ i
ℓ i

+
1

(b)(a) (c)

Figure 1. Idealized branching models in biology (a) and computers (c). (a) A cardiovascular tree with branching factor l ¼ 2, H ¼ 5 hierarchical branchings and
N ¼ 32 terminal branches at level 0 that represent capillaries. (b) The radius and length of successive branches: Dr defines the relative radius and Dl defines the
relative length of pipe or wire between successive hierarchical levels (i and i þ 1) in both biology (a) and computers (c). (c) The semi-hierarchical branching of logic
wires on a computer chip. Each module within a hierarchical level is shaded the same colour. The purple, red, green and blue (thinnest to thickest) wires cross 0, 1, 2
and 3 modules, respectively. The wire lengths and widths increase as they cross more levels according to Dl and Dr. Dw defines the number of wires, determined by
the ratio of internal (intra-module) communication per node to external (inter-module) communication per node. Here Dw ¼ 2 so that a node is connected to all
nodes within a module (in this case only 1) by a purple wire, 1/2 of the nodes in the next hierarchical level by red wires, 1/4 of the nodes in the next level by green
wires, and 1/8 of the nodes in the next level by blue wires. (Online version in colour.)
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The length parameter Dl is determined by the spatial
dimension occupied by the nodes of the network [9]. For
chips, Dl ¼ 2, since transistors are placed on a single two-
dimensional layer [10]; for three-dimensional organisms,
Dl ¼ 3. Because the length of a vessel defines the radius of
a three-dimensional volume of tissue supplied by that
vessel, each successive vessel in the hierarchy also scales
according to equation (2.1) with Dl ¼ 3 [5,6]. Similarly, the
length of each successive wire on a two-dimensional chip
defines the area to which that wire delivers signals [11].
Thus, in the simplest networks that efficiently deliver
resources homogeneously throughout a volume or area, Dl

describes both the relative length of pipe between successive
hierarchical levels and the physical dimension of the system.
For example in figure 1c, where l ¼ 2 and Dl ¼ 2, wires are
21/2 ¼ 1.41 times longer when they connect to successively
higher modules in the hierarchy.

Digital circuits scale in a third way beyond length and
radius, which has no direct analogue in mammalian cardio-
vascular networks. Digital circuits are partially decentralized,
with networks that connect multiple sources and desti-
nations, while vascular networks are centralized, with
blood flowing from a single heart. In vascular networks,
each pipe branches at each hierarchical level forming a tree
structure (in the simplest case with l ¼ 2 forming a binary
tree). Chips, however, have many connections within each
level of the network, and the number of these connections
varies systematically with the hierarchical level. To account
for this difference, we introduce a new equation, in which
the communication (or number of wires) per module
increases with the hierarchical level as

wi ¼ w0l
i=Dw , ð2:3Þ

where Dw is the communication dimension and w0 is the
average number of wires per node. This hierarchical scaling
of communication is a well-known pattern in circuit design
called Rent’s rule [4], where p ¼ 1/Dw is Rent’s exponent.1

This pattern is not unique to circuits and has been shown
to occur in many biological networks [12–15]. Vascular
systems correspond to a special case, where wi ¼ 1 for all i.

(a) Assumptions of the unified model
Before presenting the model and deriving scaling predictions,
we state the model’s assumptions and how they relate to
earlier models, both in computation and biology:

(1) Time and energy are equally important constraints. System
designs seek to deliver the maximum quantity of
resource per unit time for the minimum quantity of
energy expended. In computer architecture, this relation-
ship is expressed as the ‘energy-delay product’, which
formalizes the insight that a chip that is 10 times faster
or 10 times more energy efficient is 10 times better [16].
In synchronous systems, clock speed (delay between
clock ticks) determines the maximum rate at which the
system can compute.

(2) Steady state. Resource supply matches processing demand
[6,17]. That is, the network supplies resources continually
to the nodes and is always filled to capacity. This avoids
network delays and the need to store resources in the
system. Specifically,

(a) System designs balance network delivery rates with
node-processing speeds, so that resources are deliv-
ered at exactly the same rate that they are processed.

(b) Pipelining: a concept from computer architecture in
which resources, e.g. computer instructions, leave
the source at the same rate that they are delivered
to the terminal nodes and the network is always
full. Consequently, resources (oxygen molecules or
bits) flow through the network continually without
bottlenecks, and they do not accumulate at the
source, sink or intermediate locations.

(3) Terminal units and service volumes. We follow previous
scaling models of biology, which posit that the service
volume (the volume of tissue that is supplied by a
single terminal unit of the network) increases with
system size and has a fixed metabolic rate [5,6]. In con-
trast to [5], we do not assume that terminal branches of
the vascular network have fixed size. Following [6], we
assume that the length (l0) of the terminal branches of
the network (e.g. capillaries) is proportional to the
radius of the service volume. We also follow the assump-
tions in [6] that the capillaries have fixed radius, and that
the speed of flow (u0) through the service volume is pro-
portional to its length, so that the rate of arrival of oxygen
molecules to mitochondria in the service volume is con-
stant across mammals. In chips, transistor size has
shrunk over many orders of magnitude over the past
50 years. Similar to the length scaling of the service
volume in mammals, the radius of the isochronic region
(the service area) for chips scales proportionally with
decreasing transistor size [11]. Thus, service regions are
smaller in more powerful chips (which have more transis-
tors), but they are larger in larger animals. We refer to the
service volumes in mammals and the service regions on
chips as nodes.

In addition to these general assumptions, we make the
following refinements to accommodate salient differences
between biology and computer architecture.

(a) In biology, the energy processed by a node (Enode) is
invariant with system size. That is, as the size of a service
volume increases with body size, the total amount of
energy it processes remains constant. We do not make
this assumption for chips.

(b) Component packing: in chips, we assume that total chip
area is constant, and the number of transistors (N ) is
the square of the process size, i.e. the length of one side
of a transistor.

In biology, it is known that blood flow slows by several
orders of magnitude as it travels from the aorta to the
capillaries [5]. Earlier scaling models have generally not
characterized this slowing [5,6], but our equations include
velocity as an explicit term to highlight where it affects
time and energy scaling. Here, we model Dr as constant
within an organism so that blood slows continuously from
the heart to the capillaries. We also model Dw and Dl as
constant. Because rates of blood flow, oxygen delivery and
ATP synthesis can be converted one to another by a simple
conversion constant, we treat them interchangeably in our
scaling model.

rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

371:20150446
3



3. Model predictions for mammals and
microprocessors

We define Enet and Tnet, respectively, to be the energy dissi-
pated and the time taken by the network to deliver a
fundamental unit of resource to each node. For mammals,
the resource is oxygen (in mammals, carried by a unit
volume of blood), and for computers, the resource is a bit
of information. Similarly, we define Enode and Tnode as the
energy dissipated and the time taken by the nodes to process
that resource. For mammals, the node is the service volume
corresponding to a region of tissue supplied by a single capil-
lary [6], which corresponds to a volume of tissue containing a
constant number of mitochondria [18], the organelles that
process oxygen molecules to generate biologically useful
energy in the form of ATP. A node is defined as having a con-
stant rate of delivery of oxygen and processing of oxygen, but
the volume of a node varies with organism size.

Enet is the energy required to deliver oxygen to the cells
(as analysed in [5]), and Enode is the energy dissipated by
cells processing incoming oxygen. Tnet is the time delay
between delivering each oxygen molecule to the cell, and
Tnode is the time taken for the cell to process each oxygen
molecule. From the steady-state assumption, Tnet ¼ Tnode,
i.e. supply matches demand as in [6].

In microprocessors, the nodes are transistors, and Enet

and Enode represent the energy dissipated as bits are deliv-
ered to transistors and the energy required to process the
bits at the node. Tnet and Tnode are the times required to
deliver and process a bit at the node (i.e. network and tran-
sistor switching delay). In computers, the time taken to
deliver and process bits is bounded by max(Tnet, Tnode),
i.e. a node cannot process another bit until the bit is deliv-
ered, and a node cannot process a new bit until the node
has finished processing the previous bit. For both mammals
and microprocessors, we define the total energy as the
sum of energy dissipated in the network plus the energy
dissipated in the nodes: Esys ¼ Enet þ Enode.2

In the following, we derive general scaling relationships
between Enet, Tnet, Enode and Tnode, and the number of
nodes N, under the assumption that the energy–time product
is minimized. N is our measure of system size (number of
capillaries or number of transistors). In mammals, larger N
implies larger organism volume and mass. For computer
chips, N increases by shrinking components, and so increas-
ing N does not imply increasing chip area, which we
assume to be constant.

The hypothesis that mammals and computers minimize
the energy–time product predicts that optimized system
designs will achieve the highest performance per cost, where
performance is given by flow and cost by energy expended.
To show this mathematically, we express the optimal network
design as a constraint optimization problem in which the
whole system’s energy–time product is minimized as

min
Dr,Dw,Dl

ðEsys % TsysÞ: ð3:1Þ

We derive expressions for Esys and Tsys for mammals (§3a)
and microprocessors (§3c) in terms of the dimensions Dr,
Dw and Dl, where Dl is fixed by the external dimensions
of the system.

(a) Mammallian cardiovascular network
In this section, we derive general-energy and time-scaling
relations for the cardiovascular network and nodes, and
then use them to minimize equation (3.1). We first define
scaling relationships for the four key quantities: (i) Enet,
(ii) Enode, (iii) Tnet, and (iv) Tnode, and then show how
they scale with N when equation (3.1) is minimized. In con-
trast to computer scaling, several theoretical scaling models
have been proposed for animals over the last century (e.g.
[5,6,19–21]). The influential West et al. [5] model predicted
scaling relationships by minimizing energy dissipation,
whereas an alternative model [6] maximized metabolic
rate by minimizing the time to deliver oxygen. Not surpris-
ingly, scaling models that assume different optimization
principles make different predictions [22]. Our model com-
bines both energy and time constraints into a single
framework.

(i) Enet. From basic principles of hydraulics, the energy
dissipated to transport a constant volume of blood through
the network is given by the loss in pressure from the
aorta to the capillaries multiplied by the volume being
transported. The loss in pressure is the product between
hydraulic resistance (R) and flow (Q), so DP ¼ RQ. Thus,
Enet / DP ¼ RQ:

(ii) Enode. Following [5,11], we assume that the quantity of
energy dissipated to metabolize a fixed quantity of oxygen in
each node is constant. Therefore, the energy summed over all
nodes is Enode /N:

(iii) Tnet. The time to deliver a fixed number of oxygen
molecules to the nodes is given by the volume of blood
being transported divided by the flow (Q). Since a constant
volume is delivered to each node in parallel, we consider
the volume being distributed per unit time to all nodes,
giving Tnet /N=Q:

There is no distance term in the Tnet equation. This is
because Tnet is defined as the time to deliver the ‘next’
oxygen molecule from a capillary, consistent with the
steady-state assumption. It is not the time it takes a single
molecule to traverse the network (i.e. it is not t in [6]), but
rather the inverse of the rate at which oxygen molecules are
delivered to the nodes, analogous to the inverse of clock
speed in computer chips.

(iv) Tnode. From the steady-state assumption,
Tnode / Tnet /N=Q:

Substituting these relationships into equation (3.1) (where
Esys ¼ RQ þ N, and Tsys /N=Q) gives

minðEsys % TsysÞ ¼ min
Dr,Dw,Dl

RN þN2

Q

! "
: ð3:2Þ

We now show how R and Q scale with N. The resistance
of a pipe is given by the well-known Hagen–Poiseuille’s
equation, where R at hierarchical level i is Ri ¼ 8mli=pr4

i
and m is the viscosity constant. The total network resistance
R is given by [5]

R ¼
XH

i¼0

8mli
pr4

i

1
ni
¼ 8ml0

pr4
0
l&H

XH

i¼0
li(1=Dl&4=Drþ1), ð3:3Þ

where there are H þ 1 hierarchical levels, and ni ¼ lH 2 i is the
total number of pipes at hierarchical level i.

Next, we consider upper and lower bounds for Dr given
the objective of minimizing the energy–time product
(equation (3.2)). Recalling that l2H ¼ N21, in the case
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where Dr ' 4Dl/(1 þ Dl), the summation in equation (3.3)
converges to a constant (log(N ) in the case of equality), and

R/ l0N&1: ð3:4Þ

As Dr increases above 4Dl/(1 þ Dl), R increases from/ l0N&1

to / l0N1=Dl&4=Dr: See §6 for details of the calculation.
Flow through a pipe is defined as Q ¼ upr2, where u is the

fluid velocity. Therefore, flow through the aorta equals
Q ¼ uHpr2

H , and substituting from equation (2.2), Q ¼
u0pr2

0l
2H=Dr ¼ u0pr2

0N2=Dr: Since we do not assume that uH is
independent of N, u0 appears in the equations. If Q is equal
at all levels of the network (steady-state assumption) then:

Q/ u0N2=Dr : ð3:5Þ

With R and Q in hand, we now substitute these relationships
into the equations for Enet, Enode, Tnet and Tnode, obtaining the
scaling predictions shown in the first column of table 1. It is
evident that the scaling behaviour of Enet depends on the
value of Dr:

Case 1: Dr ' 4Dl=ð1þDlÞ: Enet / l0u0N2=Dr&1

Case 2: Dr . 4Dl=ð1þDlÞ: Enet / l0u0N1=Dl&2=Dr:

Given that Dl ¼ 3 for three-dimensional animals, and that
Dr must be greater than 2 to accommodate the necessary
slowing of blood as it flows towards the capillaries (5), then
Case 1 applies for 2 ' Dr ' 3, and Case 2 applies for Dr . 3.

Section 6 gives the derivations for Enet for all values of Dr.
Here we show the case (Dr ' 3) that minimizes the scaling of
the energy–time product (equation (3.2)):

min
Dr

RN þN2

Q

! "
/ l0 þ u&1

0 N2&2=Dr : ð3:6Þ

The energy–time product is dominated by the second
term in equation (3.6), which is minimized by setting Dr to

its minimum possible value. Thus, minimizing the energy–
time product requires Dr ¼ 2 (Case 1), and

Enet / l0u0N2=Dr&1 / l0u0: ð3:7Þ

(b) Biological scaling predictions from the energy –
time minimization model

Earlier scaling models showed that area-preserving branch-
ing (Dr ¼ 2) leads to the 3/4 power scaling of metabolic
rate with body size known as Kleiber’s Law (e.g. [5,6]). How-
ever, in animal circulatory networks blood must slow before
reaching capillaries in order to reduce pressure on the walls
of small vessels and to allow oxygen to be dissociated from
haemoglobin in the capillaries. Under this circumstance,
perfect area-preserving branching is not feasible, and Dr

must be greater than 2.
We make a specific prediction for the value of Dr that

minimizes the energy–time product while both slowing the
flow of blood to the capillaries and matching the supply
and demand for oxygen in the nodes. By our definition of
a node as the volume of tissue that processes oxygen at a
fixed rate, Tnode must be invariant. Table 1 shows the
model prediction Tnode / u&1

0 N1&2=Dr:

Following [6], in the optimal case u0 increases with organ-
ism mass, and therefore with N. See §6a for the derivation
that u0 / l0 /N2=3Dr&2=9: Substituting this equation for u0

into the equation for Tnode in table 1, we find that Tnode is
invariant with respect to N when Dr ¼ 24/11 ¼ 2.18. The
last column of table 1 lists the scaling predictions given this
value of Dr.

We test the prediction that Dr ¼ 24/11 using data from
[23]. This influential Kolokotrones et al. paper showed that
metabolic rate is elevated in both small and very large
mammals, indicating systematic deviations from a simple
power-law relationship between metabolism and mass.
Although the deviation appears only as a slight curvature
in the canonical log–log plots, as shown in figure 2, it is
important because it calls into question prior scaling
models that purport to explain a universal scaling exponent.

Table 1. Predicted scaling relationships for mammals and computer chips.
The first column shows the general scaling equation for dimensional
parameters in plausible ranges, Dr ' 4Dl/(1 þ Dl) for mammals and Dw (
Dl/(Dl 2 1) for chips. The second column shows how each quantity scales
with N given the values of the dimensional parameters that minimize
the energy – time product, Dr ¼ 24/11 and Dl ¼ 3 for mammals and
Dr ¼ Dl ¼ Dw ¼ 2 for chips.

general
energy – time
minimization

mammals

Enet l0u0N2=Dr&1 N1/12

Enode N N

Tnet u&1
0 N1&2=Dr N0

Tnode u&1
0 N1&2=Dr N0

Esys % Tsys l0 þ u&1
0 N2&2=Dr N1/12 þ N

computers

Enet N1&1=Dl N1/2

Enode N1&1=Dl N1/2

Tnet N0 N0

Tnode N&1=Dl N21/2

Esys % Tsys N1&1=Dl þ N1&1=Dl N1/2 þ N1/2

105

104

103

102

10

1

1 10 102 103

mass (g)
104 105 106 107

10–1

10–2

energy–time minimization theory: Dr = 24/11

metabolic scaling theory: B µ M3/4

best fit: Dr = 2.50

B
M

R
(k

Jh
–1

)

Figure 2. The energy – time minimization model predicts metabolic scaling
in mammals. Data from [23] show slight, but theoretically important, curva-
ture in the scaling of metabolic rate versus mass of mammals. The theoretical
optimum predicted by equation (3.8) with Dr ¼ 24/11 is shown as a solid
line. The West et al. 3/4 scaling prediction [5] is shown as a dotted line,
and the best empirical fit of equation (3.8) to the data is shown as a
dashed line (Dr ¼ 2.50). (Online version in colour.)
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We derive the equation relating metabolism (B) to mass
(M ), following the approach used in [6], but we relax the
assumption that Dr ¼ 2 giving3 M/N2=Drþ1=3 and

B/Mð18&8DrÞ=ð6þDrÞ þMð24&2DrÞ=ð18&3DrÞ: ð3:8Þ

See §6a for details of the calculations.

Although this prediction for B is not as simple as the 3/4
scaling predicted by West et al. [5] or the alternative models
proposed by Kolokotrones et al. [23], the exponents in
equation (3.8) arise naturally by combining two scaling
relationships: that of the metabolic rate of the nodes and
the metabolic power required to drive the network.

By considering blood slowing through the network due to
Dr . 2 and by including energy dissipated in both the net-
work and the nodes, each with different scaling exponents,
the model naturally generates the curvature observed in the
data. Intuitively, in smaller animals a greater fraction of
energy is consumed by Enode, a term that is linear in the
number of nodes.

We tested the predicted value of Dr ¼ 24/11, which mini-
mizes the energy–time product, and find a marginally better
fit (solid line in figure 2), than alternative models in [23]. The
m.s.e. for our model is 0.0271 versus 0.0287 for the extended
West et al. model (red dotted line in figure 2). The alternative
models in [23] that were specifically designed to account for
curvature have m.s.e. 0.274 and 0.0277. We also calculated a
value of Dr that is the best statistical fit to the data. Following
[23], we use least-squares regression, eliminate the orca that is
an outlier, and choose scaling constants to best fit the data.
We find that Dr ¼ 2.50 gives the best statistical fit (dashed
line in figure 2). Alternative fitting methods and inclusion
of the outlier have negligible effect on the best-fit value of Dr.

The energy–time minimization model is the only model
proposed thus far that naturally generates curvature account-
ing for the elevated metabolic rate of the largest mammals as
well as the smallest. The predicted value of Dr between 2 and
3 is also consistent with the idea that the upper region of the
network is area preserving with Dr ¼ 2, while Dr ¼ 3 in the
lower region as proposed by West et al. [5], and it is consistent
with the empirical radius scaling reported in [22].

(c) Microprocessor model
We now apply the same reasoning to computer chips. In com-
puters, unlike biology, nodes (transistors) are not constant
size but have shrunk by many orders of magnitude over
40 years of microarchitecture evolution. During this time,
total chip area has grown much more slowly, and we
assume it to be constant for our calculations. In addition,
the total area of all transistors on the chip is a fixed fraction
of the area of the chip [11]. Putting these two constraints
together, the linear dimensions of transistors decrease with
transistor count as N21/2 (more generally, N&1=Dl ). The
width of the smallest wires is r0 /N&1=Dl because minimum
transistor size and wire width are both determined by the
process size. Similarly, l0 /N&1=Dl because transistor linear
density increases as N1/2. Intuitively, this means that the
number of nodes increases as smaller transistors are placed
closer together and connected with smaller and shorter
wires. In the following, we assume that all wires carry the
same flow and that information is transferred synchronously.

We now calculate how Enet, Tnet, Tnode and Tnode scale
with the number of transistors, N, and the three scaling
dimensions, Dl, Dr and Dw.

Enet can be calculated from basic principles of electronics as
the energy dissipated to transmit a bit over a wire: CV2/2,
where C is capacitance and V is voltage. Because V has
remained approximately constant over the last four decades
(decreasing only by a factor of five while transistor count
increased by six orders of magnitude [24]), we estimate that
the total energy to transmit all bits over the network scales
as C [25]. Ignoring fringe effects and for an aspect ratio of 1,
wire capacitance is proportional to wire length, C ¼ el [26],
where e is the dielectric constant. Thus, the network capaci-
tance is the sum of the capacitances of all wires, which is
proportional to the total wire length of the network [27]:

Enet / C/
XH

i¼0
liwini / l0w0l

H
XH

i¼0
li(1=Dlþ1=Dw&1), ð3:9Þ

where at all levels i, li is the length of wire, wi is the number of
wires per module, and ni is the number of modules. Recalling
that l0 /N&1=Dl and lH /N gives

Enet /N1&1=Dl
XH

i¼0
li(1=DlþDw&1): ð3:10Þ

Note that the scaling of Enet with N depends on Dl and Dw, but
not on Dr. Similar to energy scaling in mammals, how Enet

scales depends on whether the exponent 1/Dl þ 1/Dw21 in
equation (3.10) is positive or negative. If Dw ( Dl/(Dl2 1)
the exponent is negative and the summand converges to a
constant (log(N) in the case of exact equality), leaving
Enet /N1&1=Dl : When Dw , Dl/(Dl2 1), C/N1=Dw: Given
Dl ¼ 2 for two-dimensional chips, Enet is minimized when
Dw ( 2. See §7 for details.

We now calculate the scaling of Enode ignoring leakage
power.4 For a single node, computation energy is given by
the transistor’s (dynamic) energy dissipation as CV2/2.
Again assuming constant V and the capacitance of a transis-
tor proportional to its length (l0), Enode is obtained by
summing the capacitance across all N nodes giving
Enode /Nl0 /N1&1=Dl :

We calculate Tnet as the time to transmit a bit over the last
wire in the network that connects to each transistor. This
assumes perfect pipelining so there is no delay in signal arriv-
ing at the last wire (electronic supplementary material, §7
shows that perfect pipelining requires Dr ¼ 2). Thus, Tnet is
equivalent to the wire latency that equals resistance multi-
plied by the capacitance of the wire (RC). For wires with
aspect ratio 1, Ri ¼ rli=r2

i , where r is the resistivity of the
material, and Ci / li as above. Thus,

Tnet / R0C0 /
l20
r2

0
/N0, ð3:11Þ

where l20=r2
0 is constant, because in chips l0 / r0 and both are

determined by process size.
Computation time for each node, Tnode, is calculated as

the transistor delay, CV/I [28], where again V is constant
and C is proportional to transistor length: Tnode/
C0ðV=IÞ/ l0 /N&1=Dl :

Before calculating the energy–time product, we observe
that Tnet is the only term that depends on Dr, so we set
Dr ¼ 2 to minimize Tnet. Similarly, Enet is the only term that
depends on Dw, and we set Dw to minimize Enet. In
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summary, given Dl ¼ 2, the terms of the energy–time pro-
duct are minimized when Dr ¼ 2 and Dw ( 2. Although the
energy–time product is minimized for values of Dw greater
than 2, this would entail greater communication locality,
which is challenging to engineer and doesn’t improve the
energy–time product. Thus, the model predicts that Dw ¼
2, which is consistent with observed Rent’s exponents that
approach 1/2 [15,29]. The scaling relations for various
quantities are summarized in table 1.

(d) Predictions for microprocessors
Summarizing the results from the previous section, the
energy–time product for chips is minimized when Dl ¼
Dr ¼ 2 ¼ Dw. This result corresponds to ideal scaling, as
suggested by Dennard [30], where the linear dimensions of
transistors and wires scale at the same rate, wire delay is
constant, and Rent’s exponent is 1/2.

The final energy–time product scales as N1/2 (table 1),
showing that, unlike mammals, as size increases, the
energy-delay product per node decreases systematically.
Thus, chips have become faster and they consume less
energy per transistor as more transistors are packed onto a
chip. Of course, this trend arises from the remarkable minia-
turization of transistors and wires described by Moore’s Law.
It is not surprising that transistors are faster (Tnode) and
require less energy (Enode) as they become smaller. It also
makes sense that Enet grows sublinearly with the number of
transistors, because as N increases the distance between
nodes is reduced. Additionally, Dw ¼ 2, means that most
bits move locally, so the distance between nearest nodes
affects the average distance that bits are transmitted. The
only term in the energy–time product that does not decrease
with increased N and decreased process size is Tnet, which
remains constant under Dennard scaling where wire radius
and length scale proportionally to each other.

These scaling models make two testable predictions. First,
power consumption (P) in chips (total energy dissipated per
unit of time) scales as

P ¼
Esys

Tsys
/N1=2: ð3:12Þ

Second, performance, measured as computations executed
per unit of time, or throughput (Tp), is predicted to scale
linearly with N, i.e.

Tp/ N
Tsys
/N: ð3:13Þ

We compared our theoretical predictions for active power
consumption (ignoring leakage power) with data obtained for
523 different microprocessors over a range of approximately 6
orders of magnitude in transistor count (see the electronic sup-
plementary material, §7.3 for details of the data collection).
The data are shown in figure 3, where the measured exponent
was 0.495 (95% confidence interval¼ 0.46–0.53), which agrees
closely with our prediction of 0.5. Consistent data on perform-
ance across many technology generations is difficult to obtain
because reporting standards have changed over the years and
their adoption by different vendors is not uniform. We obtained
normalized performance data for 100 different Intel chips,
measured with Dhrystone Millions of Instructions per Second
(DMIPS), from a variety of sources (see the electronic sup-
plementary material, §7.3). These sources included a variety of

published third-party performance comparisons from different
generations over a range of 6 orders of magnitude in transistor
count. The best-fit exponent for these data is 1.11 (95% confi-
dence interval ¼ 1.07–1.15), as shown in figure 4. This is close
to our predicted exponent of 1, suggesting that engineered
designs slightly outperform the theoretical optimum defined
by the model. Performance and throughput were fitted using
least-squares regression, assuming that there are no significant
errors in the reported count of the number of transistors [31].

It is somewhat counterintuitive that performance increases
only linearly with the number of transistors. Given that transis-
tor switching times have decreased dramatically as size has
decreased, one might expect performance to increase as the
product of clock speed and transistor number (N). However,
this is not the case, and we show the expected performance
if time were actually the inverse of clock speed in the dotted
line in figure 4. Some performance increases are achieved by
increasing clock speed for a given manufacturing process,
which may account for the higher-than-predicted scaling expo-
nent.5 This analysis confirms that the network is indeed the
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bottleneck. The network delivers bits to transistors at a
constant rate per transistor (equation (3.11)), so performance
has increased only linearly with transistor number even
though, in principle, smaller transistors could process infor-
mation more quickly. As in biology, performance cannot
be understood without considering the constraints of the
network.

Our model provides a simple theoretical explanation for the
scaling of power and performance in computers over 40 years
of microprocessor technology improvements. The excellent
agreement between the theoretical optimum and experimental
data suggests that through successive generations of trial and
error, innovation and optimization, engineered designs are
highly successful, approaching and sometimes exceeding the
theoretical optimum predicted by the model.

4. Discussion
(a) Summary of scaling predictions
Scaling analyses provide a framework for understanding
critical parameters and constraints on the design of both
biological and computational systems spanning an enor-
mous range of sizes. We have presented a unified model
which predicts scaling relationships for both mammals and
microprocessors by simultaneously minimizing energy dissi-
pation and delivery time. The energy–time minimization
model highlights the similarities and differences between bio-
logical networks that deliver oxygen and computational
networks that deliver information. Earlier scaling models
focus either on minimizing energy dissipation or on minimiz-
ing delivery time (e.g. [5,6]). Here we extend that work by
considering minimization of energy and time simultaneously,
and investigating the trade-offs between them.

This theoretical model makes testable scaling predictions
for biological metabolism and for the power and performance
of computers. In biology, the energy–time model explains the
observed curvature in metabolic scaling of mammals
(figure 2). Other studies have interpreted the deviation
from linear scaling as indicating that there is no single unified
metabolic scaling theory, for example, as imperfect matching
of supply and demand [17]. The framework presented here
accounts for curvature in the optimization model by includ-
ing time and energy minimization in both the network and
the nodes. In computation, the unified model accurately pre-
dicts Rent’s exponents, active power consumption and chip
performance in over 40 years of chip design. Thus, the
model provides evidence of strong convergence between
natural and engineered designs due to physical constraints
despite the obvious differences between them.

The model presented here is, of course, a simplification of
the more complex reality. For example, our analysis assumes
that Dl, Dr and Dw are fixed constants throughout the net-
work both within and across systems. In reality, each of
these may vary. For example, Newberry et al. [22] did not
find evidence for a constant Dl ¼ 3 in mouse vasculature,
suggesting that the network does not deliver resources uni-
formly throughout the body volume. This is not surprising
given that different tissues and organs have different meta-
bolic requirements. Dr may vary within the vascular
network with area-preserving branching closer to the heart
and area-increasing branching slowing blood velocity in
smaller vessels, but Newberry et al. [22] find values for Dr

consistent with our predictions. Similarly, there is evidence
that Dw varies across hierarchical levels in computer chips
[32]. Including these factors in the model would allow more
accurate predictions, but they are unlikely to substantively
change the order-of-magnitude predictions of our simple
unified model.

Our model makes novel predictions both for mammals
and microprocessors. For mammals, we give the first quanti-
tative prediction for Dr that accounts both for blood slowing
through the network and for the empirically observed curva-
ture in scaling relations that cause small and very large
mammals to deviate from 3/4 scaling predictions. Addition-
ally, this prediction (Dr ¼ 24/11) gives an energy–time
product that is approximately linear with N (Esys/
N1=12 þN1, table 1). Highlighting the inherent trade-off
between energy dissipation and delivery times has important
implications for understanding the energetic basis of fitness.
Some have proposed that biological fitness maximizes meta-
bolic power (energy/time) [33,34], whereas others have
proposed that it minimizes biological times (e.g. generation
times, which is equivalent to maximizing vital rates)
[35,36]. The invariance of the energy–time product on a
per-node basis is consistent with the idea that organism fit-
ness is largely independent of body mass. Mammals of all
sizes, from small, fast mice to large, slow elephants, coexist
and, therefore, are probably nearly equally fit. This implies
a direct trade-off between maximizing metabolic power and
minimizing generation times, which holds over the many
orders-of-magnitude variation in body mass. The energy–
time product reflects powerful geometric, physical and
biological constraints on the evolution of organism designs.

In computation, the model accurately predicts power con-
sumption and performance of computer chips as simple
functions of the number of transistors. These order-of-
magnitude performance predictions highlight that delivery
of bits through the network, rather than processing bits at
the transistors, is the rate-limiting step that constrains per-
formance. More precise predictions may be obtained by
incorporating additional factors, for example, leakage
power, which comprises an increasing fraction of the power
budget of computer chips [7].

(b) Implications for evolutionary transitions
The similarities between biological and computational scal-
ing suggest future trajectories in computing based on how
the fundamental structural and functional properties of
organisms from bacteria to mammals have changed over
evolutionary time. Work by Delong et al. [37] demonstrated
that the slopes and intercepts of metabolic scaling relations
change at the evolutionary transitions: prokaryote (bacteria)
metabolic rate varies superlinearly with size, unicellular
protist rate varies linearly, and whole-organism metabolic
rate of multicellular animals scales sublinearly, converging
to the canonical 3/4 exponent that approximates the mam-
malian scaling described above. The authors hypothesize
that these discontinuous scaling shifts arise from body
plans overcoming pre-existing constraints, and then accom-
modating to new constraints, as body size and complexity
increase.

Delong et al. hypothesize the following: larger bacteria
have higher metabolic rates because their larger genomes
allow increased use of metabolic substrates, but eventually
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cell surface area limits metabolic processing. Unicellular pro-
tists overcome this constraint by internalizing the metabolic
machinery into respiratory organelles (i.e. mitochondria that
convert oxygen into ATP). The number of mitochondria
increases linearly with cell size until intracellular transport
constraints begin to limit the rate of metabolic processing.
Next, multicellular animals have effectively invariant cell
size and intracellular transport, but as body size and
number of cells increased, vascular networks evolved to
rapidly and efficiently deliver metabolites. However, vascu-
lar networks introduce the sublinear network scaling
constraints characterized above.

Delong et al. highlight the importance of both time and
energy constraints, and these change at each evolutionary
transition, with the consequence that the absolute time and
quantity of energy required to deliver each molecule of
oxygen increase across the major evolutionary transitions.
This suggests that the energy–time minimization framework
that we have used to predict the curvature in metabolic scal-
ing in mammals may apply across the range of living
organisms, with different constraints on time and energy
emerging at each evolutionary transition. The explanations
that the authors hypothesize are also directly relevant to
understanding of how energy–time minimization affects
the ongoing evolution of computer hardware.

(i) Innovations in chip design mimic innovation in the evolution
of bacteria

The chip scaling described above shows how time and energy
dissipation have decreased while performance increased as
larger numbers of smaller transistors have been packed onto
each chip. During this era, technological innovations in chips
have emerged that optimize against physical constraints. Just
as bacteria have evolved larger genomes and used the new
genes to exploit new metabolic niches, new materials, switch-
ing methods, etching processes and cooling technologies
have pushed physical boundaries, allowing transistors to
shrink and more of them to be packed onto each chip. Like
bacteria, however, there are limits to this process. There are
no elephant-sized bacteria, and there will be no silicon-based
single-core chips with quadrillions of transistors.

(ii) Single-core chip scaling mimics unicellular protists
Historical chip scaling mimics the linear relationship between
performance and size (figure 4) seen in protists. Unicellular
protists show linear increases in metabolic rate with size
(fig. 1 of [37]) as more energy-processing nodes (mitochon-
dria) are packed into larger cells. As size continues to
increase, however, this design strategy also reaches physical
limits. Our analysis suggests that the internal transport net-
work already constrains processing speeds (Tnet constrains
Tsys). Further, the requirement to dissipate heat over a fixed
surface area constrains both cells and chips.

(iii) Multi-core chips echo the transition to multicellularity
Computer chips are currently undergoing the evolutionary
transition to multi-core, resembling the biological transition
to multicellularity. Our unified scaling framework suggests
some future scenarios. As the era of transistor minimization
wanes, additional transistors will require increased physical
area and, therefore, networks that span greater distances.
Similar to multicellular organisms, we expect that as the

number of cores grows, an increasing fraction of chip
power will be devoted to these ever-larger ‘networks on
chip’ (NoC) connecting more cores. Larger networks will con-
sume more power and take more time to traverse, and
ultimately the energy–time minimization will be increasingly
difficult to sustain as chips increase in size. Clock speeds have
already levelled off as power, footprint and cooling require-
ments dominate chip-design considerations [38]. If chips
follow biology, we can expect that the most important
future advances in chip design will increase network effi-
ciency, for example, by using optical networks.

(iv) Computer scaling deviates from biological scaling in
important ways

There are also important differences between scaling of
oxygen delivery in biology and information delivery in com-
putation, which play an important role in evolutionary
transitions. In particular, on-chip computer networks have
two advantages not available to cardiovascular networks.
First, the shrinking of ‘process’ size (smaller transistors and
wires) reduces both energy and delay in the nodes as the
number of nodes increases. This reduction in process size
will ultimately end as physical limits are reached [38].
Second, the locality of network traffic, characterized by
Rent’s exponent and Dw, reduces long-distance communi-
cation over computer networks. As shown above, this effect
reduces Enet and leads to a smaller wire footprint as N
increases on single-core chips. This advantage will probably
continue for multi-core chips, where communication and,
therefore, network bandwidth, footprint and energy con-
sumption of NOCs can be reduced by keeping
communication primarily local [39,40]. Communication
locality has the potential to produce more favourable scaling
in multi-core computation than is achievable in multicellular
biology.

(v) Decentralized designs in the transition to sociality
We now consider how the lessons learned from computer
architecture may lend insights into an important biological
evolutionary transition, the transition to social-animal
societies. Understanding and improving the flow of energy,
materials and information through human societies is one of
the greatest challenges facing science and engineering, and
scaling analyses lend an important perspective on this pro-
blem [41]. Sociality is an important evolutionary transition,
reflected in the ecological dominance of humans and ants,
whose networked systems transport both energy and infor-
mation. These social species have experienced great success,
dispersing over vast territories across the globe and capturing
a large fraction of available energy [42,43]. Recent evidence
suggests that ant colonies and human societies follow similar
scaling relationships as individual organisms [44–48].

In social-animal systems and networked computer sys-
tems, networks are at least partially decentralized, e.g.
traffic flow within cities [49] and among ant nests [50].
Tainter et al. [51] argue that complex human and ant societies
are able to exploit ‘low-gain’ energy systems—those that pro-
vide low concentrations of dispersed energy, but that are
ubiquitous and therefore can be exploited by complex sys-
tems capable of processing and storing vast quantities of
energy. Understanding the forces that have driven the tre-
mendous power and performance scaling in computing
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may lend insights into how other technologies exploit similar
scaling relationships [52]. In particular, communication
locality in computation suggests an important strategy in
the transition to sociality: animal societies can escape the con-
straints of the centralized distribution network by evolving
systems for decentralized transportation and modular com-
munication. Indeed, the transition to solar energy is
capitalizing on the same kind of dramatic technological per-
formance improvements that computer technology
experienced as Moore’s Law [53]. The history of computing
suggests large gains in the efficiency of energy delivery if
increasingly powerful solar cells use dispersed solar energy
locally to escape the centralized distribution overhead of
the fossil fuel-based economy.

Moreover, power laws as a function of size are not unique
to organisms and computers but are observed across a wide
variety of complex systems in nature, society and technology.
The scaling of white and grey matter [54] and communication
modularity [14] in the brain, of flow through river networks
that minimize transportation costs [55], of energy use and
GDP in countries [56], and the pace of life and population
in cities [45] are all additional examples that a unifying
scaling theory might explain. Because cost and performance,
i.e. energy and time, impose universal constraints, we suggest
that a common design principle may govern the scaling of
many evolved and engineered complex systems that process
energy, materials and information.

5. Conclusion
Our analysis provides a unifying explanation for the origin of
scaling laws in biology and computing. Despite obvious differ-
ences in form and function, the scaling of organisms and
computers is governed by the same simple principle: minimiz-
ing the energy and time to deliver and process resources. Both
natural selection and human engineering have evolved
designs that manage the trade-off between cost and perform-
ance to minimize energy dissipation and time to deliver
resources, resulting in general scaling laws that predict meta-
bolic rate, and microprocessor power and performance over
several orders-of-magnitude variation in system size.

Engineering ingenuity and economic pressures have cre-
ated increasingly fast and powerful computers through a
series of innovations, including integrated circuits, inno-
vations in materials and other technological tricks,
synchronizing clock trees, multi-core chips and networked
and distributed computation. Today, technology is under-
going another major evolutionary transition as distributed

computing changes the metabolic landscape of technology
that is becoming more tightly coupled with the environment.
As computers are embedded in more physical devices, phys-
ical proximity and energy concerns for low-power devices
may drive computational scaling to more closely resemble
biological scaling. In computation, dramatic changes have
emerged over the last 35 years, but to a surprising extent,
their trajectories mimic the biological transitions that took bil-
lions of years to evolve simple unicellular bacteria into the
largest and most powerful animals and societies on the Earth.
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Endnotes
1Rent’s rule is typically expressed as C(n) ¼ knp, where Cn is the exter-
nal communication of a module, n is the size of the module (number
of nodes), k is the average external communication of a module with
size 1, and p is Rent’s exponent. For a hierarchy with branching factor
of l, the size of a module is given as n ¼ li, where i is the hierarchi-
cal level. Therefore, we can rewrite Rent’s rule as ci ¼ c0 % lip, where
c0 ¼ w0 and p ¼ 1/Dw.
2For computers, it is intuitive that these quantities can be treated
independently. In biology, this is less obvious because the heart
that powers the vascular network is itself composed of cells (nodes)
that require oxygen delivery, an apparent circularity. However, the
metabolic power of the heart (Enet) is supplied by oxygen delivered
directly to the heart by the coronary artery, bypassing the rest of
the vascular network. Thus, we treat Enet independently from Enode.
3These expressions are consistent with those in [6], specifically when
Dr ¼ 2, N /M3=4 and l0 /M1=12 /N1=9 and when Dr ¼ 3, N /M
and l0 /M0 /N0:
4Transistors and other devices conduct a small amount of current
even when they are not being used. This energy loss is referred to
as ‘leakage power’ and is a significant issue in modern microproces-
sor design not explicitly addressed by our model.
5Additionally, higher-end chips are more likely to be benchmarked,
potentially leading to a bias in the data towards higher-performing
chips.
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