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Abstract

In this paper, we use both mathematical modeling and simulation to explore home-
ostasis of peripheral immune system effector cells, particularly alveolar macro-
phages. Our interest is in the distributed control mechanisms that allow such a
population to maintain itself. We introduce a multi-purpose simulator designed to
study individual cell responses to local molecular signals and their effects on popula-
tion dynamics. We use the simulator to develop a model of growth factor regulation
of macrophage proliferation and survival. We examine the effects of this form of
regulation in the context of two competing hypotheses regarding the source of new
alveolar macrophages. In one model, local cells divide to replenish the population;
in the other, only cells migrating from circulation divide. We find that either sce-
nario is plausible, although the influx-driven system is inherently more stable. The
proliferation-driven system requires lower cell death and efflux rates than the influx-
driven system.

1 Introduction

The number of immune system effector cells in peripheral tissues remains
fairly constant in the absence of disease, despite a large amount of turnover.
Populations change through proliferation, death, and migration of individual
cells. These functions are regulated by various molecular mediators known as
cytokines, but we are just beginning to understand how cells interpret and
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respond to the information in the local molecular environment. The goal of
this work is to investigate what kinds of cell ‘programming’ can cause appro-
priate population-level behavior. Rather than simply plugging the observed
growth rates in to population models, we would like to understand how such
population-level rates are related to individual cell responses to local molecu-
lar signals. What are the regulatory mechanisms that maintain an appropriate
balance between individual cell actions?

The regulatory signals that allow maintenance of a steady-state population
are of interest in their own right, and also have an impact on the changes
to that population when foreign organisms are encountered. Maintenance of
an appropriate ‘sentinel’ population enables rapid initiation of an immune re-
sponse in case of infection, and homeostatic regulation plays a role in restoring
normal tissue function once the infection has been resolved.

This paper explores simple models of peripheral effector population homeosta-
sis, focusing on alveolar macrophages for concreteness. Alveolar macrophages
provide the first line of defense against microorganisms entering through the
lungs. They are more easily studied than other macrophages because they are
easily retrieved from the lungs. We also assume that alveolar macrophages
are—to some degree—representative of bone-marrow-derived peripheral effec-
tors in general, in that similar regulatory mechanisms are likely to be used in
many peripheral effector populations.

We first develop a model of growth factor effects on individual cell survival
and proliferation. We then use this model to investigate two alternatives for
population maintenance in vivo: one in which proliferation of resident cells
replenishes the macrophage population, and the other in which cells migrating
from circulation are the only cells that divide.

Evaluating the dynamics produced by these models requires a simulator de-
signed to handle events on both the molecular and cellular scale, with a mix
of deterministic and stochastic processes. We introduce such a simulator, de-
signed to accommodate the current model and also future models describing
more complex aspects of intercellular signalling.

The next section presents background information on population dynamics of
alveolar macrophages. Section 3 describes the simulator design. Section 4 de-
velops the model of macrophage interactions with growth factor, and sections 5
and 6 explore two alternative models of macrophage homeostasis. Implications
of autocrine regulation are discussed in section 7. Related work is reviewed in
section 8, and a general discussion appears in section 9.
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Fig. 1. Interstitial macrophages reside within pulmonary tissue; alveolar macro-
phages are found ‘outside’ the alveolar epithelium. Cells may be recruited to the
alveoli from the interstitium, across the alveolar epithelium, or from circulation,
across both the vascular endothelium and the alveolar epithelium.

2 Alveolar Macrophage Dynamics

Pulmonary macrophages are classified according to where they are found.
Interstitial macrophages reside within lung tissue; alveolar and airway macro-
phages are found along the epithelium of the alveoli and branching airways,
respectively. Figure 1 is a sketch of macrophages in and around alveoli. Macro-
phages in different locations, and even within a single location, show great mor-
phological and functional heterogeneity (Laskin et al., 2001), making the exact
relationship between these various subpopulations unclear. Also, macrophages
are highly mobile, capable of moving both within and between compartments.
As a result, there are several factors affecting the size of local populations:
differentiation, migration, proliferation, and death. All of these cell behaviors
are somehow kept in balance during normal conditions, but rapidly expand
the population in response to infection or injury.

The origin of alveolar macrophages has not been completely resolved. Van
Furth (1992) proposed that all macrophages in peripheral tissues, including the
lung, are part of a mononuclear phagocyte system (MPS). This system consists
of cells that derive from bone marrow precursors, which differentiate into blood
monocytes that randomly leave the circulation to enter various tissues and
become macrophages. The tissue macrophages were thought to be terminally
differentiated and incapable of proliferating. Others, however, have argued
that local proliferation is important and may even be primarily responsible
for maintaining alveolar macrophage populations (Coggle and Tarling, 1984;
Shellito et al., 1987). Alveolar macrophages are capable of proliferating in vitro
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in the presence of the appropriate molecular growth factors (Lin et al., 1989;
Akagawa et al., 1988), in contrast to expectations for terminally differentiated
cells. Also, in vivo labelling studies have shown that roughly 3% of alveolar
macrophages are synthesizing DNA in preparation for cell division at any given
time (Blusse van Oud Alblas et al., 1983; Coggle and Tarling, 1984; Fritsch
and Masse, 1992), but the authors disagree about which cells are dividing.
Several theories for the origin of alveolar macrophages have been proposed
and investigated:

(1) Alveolar macrophages derive from migrating blood monocytes, and are
normally incapable of dividing (Blusse van Oud Alblas and van Furth,
1979);

(2) Monocytes mature in lung capillaries and undergo a final maturation
division in the alveoli (Fritsch and Masse, 1992);

(3) Alveolar macrophages derive from interstitial macrophages through local
division and maturation (Bowden, 1984);

(4) Alveolar macrophages divide in situ (Coggle and Tarling, 1984; Shellito
et al., 1987).

There are also multiple ways in which macrophages may leave the alveoli. The
most common route out of the alveoli is up the bronchi to where they can
be expelled or swallowed (Perez-Arellano et al., 1990). Trafficking of alveolar
macrophages to the lymph nodes has also been reported (Corry et al., 1984;
Harmsen et al., 1985), and some other routes have a minor role (Perez-Arellano
et al., 1990). Cell death is also a significant factor. It is often difficult to
determine whether cell loss is due to migration or death; quantitative studies
often measure a simple loss rate that does not distinguish between the various
migration routes and cell death (Fritsch and Masse, 1992).

The studies referenced above attempted to quantify the rates of local prolifera-
tion, influx, death, and/or efflux, but did not address the mechanisms involved.
Each of these activities depends on interactions between macrophages and the
appropriate molecular signals in the environment or on other cells. In this pa-
per, we focus on the effects of macrophage colony stimulating factor (M-CSF)
on macrophage proliferation and survival.

There are a number of molecular mechanisms that regulate a cell’s transition
from the resting state to the proliferating state and its progression through the
cell cycle. In particular, the proper growth factor(s) must be present before
a cell can pass a restriction point and begin DNA synthesis (Pardee, 1989)
The time required between the beginning of DNA synthesis and cell division
is fairly constant, but the time between one division and beginning of DNA
synthesis for the next is highly variable. Increasing concentrations of growth
factor can shorten this time and therefore the total cell cycle time (Metcalf,
1991). Pardee (1989) proposed that growth factor binding drives accumulation
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of a rapidly decaying internal substance which must reach a critical level for
the cell to begin synthesizing DNA, and Smith (1989) found that a critical
number of such bindings must be reached for T cells to divide.

Macrophage-Colony Stimulating Factor (M-CSF) and Granulocyte-Macrophage-
Colony Stimulating Factor (GM-CSF) have both been shown to stimulate di-
vision of murine alveolar macrophages in vitro in a dose-dependent fashion
(Chen et al., 1988; Akagawa et al., 1988; Lin et al., 1989). Injection of M-CSF
has also been shown to increase alveolar macrophage numbers in vivo (Held
et al., 1996).

In addition to promoting cell proliferation, growth factors are believed to pro-
mote cell survival by preventing apoptosis (Williams et al., 1990), although
dose dependence has not been studied as extensively as it has been for pro-
liferation. Tushinski et al. (1982) showed that macrophages cultured without
M-CSF died, and that a low dose could maintain macrophage populations in
vitro with little proliferation.

3 The CyCells Simulator

In order to study the cellular responses to molecular signals described above,
we have developed a discrete-time simulator, CyCells, in which individual cells
are represented explicitly and molecules are represented by their concentra-
tion. The behavior of different types of cells and molecules is specified at run
time, as described below. There is significant flexibility in the way cell types
can be defined, and a number of different cell and molecule types can be
combined in any given model. CyCells was written in C++ and is publicly
available at http://www.cs.unm.edu/∼christy/simcode.

3.1 Model Definition

A model definition file like the one shown in Figure 2 specifies the behavior
of each molecule and cell type used in a simulation. The file consists of a list
of cell type names, followed by a block for each molecule type and a block for
each cell type.

Molecule types are defined by giving them a name and specifying the appropri-
ate decay and/or diffusion rates. Note that cells can also change the molecular
concentration by secreting or binding molecules. Although there is only one
molecule type in the example, multiple molecule types are allowed.

A cell type definition specifies the attributes all cells of that type have, how
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cell_names { macrophage cycling tissue }

molecule_type CSF {

decay_rate 1e-4

}

cell_type macrophage {

attribute cmax lognormal 3.58 0.4 lognormal 3.58 0.4

attribute b fixed 0 fixed 0

attribute S fixed 0 uniform 0 700000

attribute sr gaussian 700000 50000 gaussian 700000 50000

attribute time fixed 0 fixed 0

attribute tc gaussian 43200 1800 gaussian 43200 1800

sense b consume-indiv CSF cmax 1.3E-13

process S update linear b 1 0

action change cycling gte_var S sr

action die calc_prob inhibiting b 1e-5 0.37

}

cell_type cycling {

attribute cmax lognormal 3.58 0.4 lognormal 3.58 0.4

attribute b fixed 0 fixed 0

attribute S fixed 0 uniform 0 700000

attribute sr gaussian 700000 50000 gaussian 700000 50000

attribute time fixed 0 uniform 0 43200

attribute tc gaussian 43200 1800 gaussian 43200 1800

sense b consume-indiv CSF cmax 1.3E-13

process time update fixed 1

action divide macrophage gte_var age tc

}

cell_type tissue {

action secrete CSF fixed 2 always

}

Fig. 2. Sample model definition file.

geometry

1000x1000x1000 microns; mol_res: 0 cell_res: 0

molecule_uniform: CSF 6E-15 0

cell_count: tissue 1000

cell_count: cycling 30

cell_count: macrophage 970

Fig. 3. Sample model initialization file.

those attributes should be initialized, and how they should be updated or used
to make decisions during each time step. The actual values of those attributes
are stored for each individual cell. In the example shown in Figure 2, macro-
phages have six attributes. Some of these are initialized at specific values,
while others are chosen from uniform, gaussian, or lognormal distributions.
There are two initialization specifications because cells may be initialized ei-
ther as new daughter cells or as cells entering the simulation in the middle
of the life cycle; the macrophage attribute S is initialized differently for these
two different situations.

The simulator treats sensing, intracellular signalling and actions as different
kinds of cell functions that use or update cell attributes. Cells may die, di-
vide, differentiate, migrate, or secrete molecules. Some of these actions are
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constitutive, others depend on cell state. For the latter, intracellular process-
ing functions determine how a cell’s current state and its perception of the
local environment are combined to update the cell state. They are an abstrac-
tion of the complex signalling that goes on inside real cells. Sensing functions
update cell variables in accordance with the current molecular concentration
and may remove molecules from the environment in the process (as explained
in section 4.1).

The model definition includes a line for each such function used by each cell
type, with the relevant parameter values. The example shown in Figure 2
corresponds to the model described in section 4. The cell definitions used in
this simulation are quite simple; more functions of each type may be added
for more complex models.

3.2 Model Initialization

An initialization file, like the one shown in Figure 3, specifies the simulation
geometry, initial molecular concentration(s), and initial numbers of each cell
type. The simulation works with a three-dimensional volume which may di-
vided into regular cubes, or grids, where the grid size determines the spatial
resolution. However, it is also possible to treat the entire volume as one cube,
in which case the simulation represents a homogeneous molecular environ-
ment. We use the latter approach in the current simulations. Cell positions
can be specified if desired; in this example, cells are positioned randomly.

3.3 Simulation Execution and Order Effects

One time step of the simulation consists of the following sequence of activities:

(1) Molecular diffusion and decay
(2) Update of each cell according to sense, process, and act functions
(3) Cell movement (if applicable)

In real biological systems, molecular interactions, cellular actions and inter-
actions between cells and molecules all happen in parallel. Imposing an order
on these activities for computer execution can introduce artifacts that do not
represent behaviors seen in the real system. In step (2), each cell may mod-
ify the molecular environment and thus indirectly affect cells visited later.
To minimize cumulative effects of this serialization of an inherently parallel
process, the cell visitation order is randomized each time step.
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Order effects can also be reduced by using small time steps. However, execution
time is inversely proportional to time step size, so there are practical limits on
how small a time step can really be. The choice of an appropriate time step
must also reflect the characteristic rates of the modeled system. The time step
size is chosen by the user at run time. For the simulations in this paper, the
time step was set to 10 seconds.

Simulation run time is directly proportional to the number of time steps T .
For each time step, the molecular concentrations are updated in a time that is
proportional to the number of grids M , and cells are updated in a time that is
proportional to the number of cells N . The exact time for the cell updates will
depend on the number of sensing, processing, and action functions required
for each cell. Overall run time is of the form T (aM + bN), where a represents
the time it takes to update each grid, and b represents the average time to
update each cell. Note that the number of cells is not constant, but for the
simulations presented here, it does not vary significantly.

4 Macrophage Proliferation and Survival Model

This section develops our model of macrophage proliferation and survival. We
rely on literature describing macrophage dependence on macrophage colony
stimulating factor (M-CSF), first reviewing how macrophages sense M-CSF,
and then the cellular response to sensed M-CSF.

4.1 Receptor-Ligand Binding

Molecular mediators such as growth factors affect cells by binding to cell
surface receptors. Free receptors on the cell surface bind to extracellular ligand
to form receptor-ligand complexes. Using Rs for free receptors (#/cell), Cs

for bound complexes (#/cell), and L for ligand concentration (moles/liter),
the following equations describe this process (Lauffenburger and Linderman,
1993):

dRs

dt
= −kfLRs + krCs − keRRs + Vs (1)

dCs

dt
= kfLRs − krCs − keCCs (2)

where kf and kr are the association and dissociation rate constants. Free and
bound receptors may be internalized at rates keR and keC , respectively. New
receptors are synthesized at rate Vs. Intracellular signal transduction is initi-
ated when receptors become bound on the cell surface. We do not model these
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effects in any detail; instead we assume that the signal affecting cell behavior
is proportional to kfLRs.

In the presence of slowly varying ligand concentration, the system comes to
a quasi-steady state (dCs/dt ≈ 0, dRs/dt ≈ 0) in which the numbers of cell-
surface receptors and cell-surface complexes depend on L as follows (Lauffen-
burger and Linderman, 1993):

Rs =
(kr + keC)Cs

kfL
(3)

Cs =
KssVsL

keC(1 + KssL)
(4)

Kss is a dimensionless parameter known as the apparent cellular affinity con-
stant.

The change in ligand concentration is given by:

dL

dt
= (−kfLRs + krCs)n (5)

where n is the cell density. The rate at which a single cell ‘consumes’ ligand is

c(L) = keCCs =
VsKssL

1 + KssL
=

VsL

1/Kss + L
(6)

For growth factors, a significant amount of internalization of bound receptors
always occurs (Lanza et al., 2000). M-CSF in particular is rapidly internalized
and degraded by macrophages (Chen et al., 1984; Guilbert and Stanley, 1986).
In this case, ligand binding by cells may have a significant effect on the local
concentration. It also means that the rate at which ligand is internalized is
roughly equal to the rate of cell signalling, since the second term of equation
(5) is negligible.

Equation (6) has the general saturating form

c(L) =
cmaxL

chalf + L
(7)

in which cmax represents the maximum rate at which a cell can bind and
internalize ligand (in molecules/cell sec), and chalf represents the ligand con-
centration at which the consumption rate is half of the maximum. Tushinski
et al. (1982) measured the rate at which macrophages remove extracellular
ligand at various different concentrations, which gives us estimates of cmax

and chalf .

This description represents binding in the average case. However, macrophages
demonstrate significant heterogeneity in the numbers of surface molecules they
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express (Laskin et al., 2001). As demonstrated above, the rate at which cells
consume growth factor is directly proportional to the receptor synthesis rate,
so variation in receptor expression should be directly correlated with variation
in the maximum consumption rate cmax. We represent cell heterogeneity by
giving each cell a different value of cmax, using a log-normal distribution as
was used in Burke et al. (1997) for T cells.

4.2 Proliferative Response

Following other modelers (Zandstra et al., 2000; Burke et al., 1997) and ev-
idence in the experimental literature (Chen et al., 1987; Smith, 1989), our
model assumes that some threshold amount of bound growth factor is re-
quired for a cell to pass the restriction point. Equation (7) represents the rate
at which growth factor is bound. Each simulated cell has an internal variable
S which tracks the cumulative signal received. If S reaches a positive threshold
value sr, the cell passes the restriction point and divides a fixed amount of
time tc later.

S does not represent any real molecular species inside cells; it is instead an
abstract measure of the progress a cell has made towards the restriction point.
In real cells, progress towards the restriction point is the result of competition
between production and degradation of intracellular molecules that regulate
the cell cycle. We are assuming that the net result of these competing pro-
cesses is proportional to the number of receptor-ligand binding events. Because
Tushinski et al. (1982) report some proliferation even at low growth factor con-
centrations, we assume that this net effect is always nonnegative. This model
does not account for cell behavior in the complete absence of growth factor;
cells become quiescent when growth factor is removed, and require a lag period
of several hours after re-introduction of growth factor to reenter the cell cycle
(Tushinski and Stanley, 1985). This would require a decrease in S during the
starvation period. However, it’s not clear that this implies the need for decay
in S in the presence of growth factor. For simplicity, and because all of our
simulations use nonzero growth factor concentrations, we omit a mechanism
for decreasing S.

To summarize:

∆S = c(L)∆t (8)

S > sr : cell will divide after time tc (9)
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4.3 Cell Survival

In the absence of growth factor, macrophage populations in vitro exhibit ex-
ponential decay (Tushinski et al., 1982) at a rate dmax. However, the rate at
which the population decays decreases as the growth factor concentration is
increased. We assume that resting cells have some probability of dying that
depends on the current growth factor concentration, or more properly, on the
cell’s perception of the growth factor concentration. Based on an analysis of
the data in Tushinski et al. (1982), we choose the following form for a cell’s
probability of dying in a small time δt:

p(d) =
dmaxdhalf

c(L) + dhalf

δt (10)

which drops off rapidly at first and then gradually approaches 0; the proba-
bility is half its maximal value when c(L) = dhalf . We assume that the death
rate for cells past the restriction point is negligible.

At the population level, the internalization and destruction of growth factor
by macrophages could be important, as it indicates that regulation of cell pop-
ulations might be at least partly controlled by competition for growth factor.
Consumption of ligand completes a negative feedback loop in which increas-
ing numbers of cells decrease the ligand concentration, which then causes a
reduction in cell numbers.

4.4 Model Summary and Validation

We used CyCells with the model described above to reproduce the results
reported in table 1 of Tushinski et al. (1982). In this experiment, 300,000
bone-marrow-derived macrophages were kept in culture with varying amounts
of M-CSF for three days, with the culture medium replaced each day. At
the end of that time Tushinski et al. measured the total cell population and
percentage of cells in S phase. The cells had been cultured for several days in
M-CSF before the beginning of the experiment; a control experiment showed
that one-third of the initial cell population was in S phase at the beginning of
the experiment.

To simulate this experiment, we define two cell types to represent resting and
cycling cells. This is a modeling convenience; both ‘types’ represent macro-
phages, and individual cells may change type during the simulation. All cells
consume growth factor as described in section 4.1. Resting cells use the amount
of growth factor bound to increment their internal S value as described in sec-
tion 4.2. Cells with an S value greater than or equal to sr becoming cycling
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Fig. 4. Total cell population and number of cycling cells for simulation of Tushinski’s
experiment at high growth factor concentration (set to 4.4 × 10−10 M at the start
of each day). Parameter values shown in table 1.

cells. These cells track how long they have been in the cell cycle, and divide—
producing two resting cells—after time tc. Resting cells die with a probability
calculated as in section 4.3; dividing cells do not.

We initialized the simulations with 100,000 cycling cells and 200,000 resting
cells. Different simulations used different initial growth factor concentrations,
in accordance with (Tushinski et al., 1982), and the growth factor concentra-
tion was reset to the initial value at the beginning of each simulated day. We
found reasonable agreement with the final population sizes in (Tushinski et al.,
1982) using the parameter values shown in table 1. These values are used in
the following sections. Small variations in tc and sr also give reasonable re-
sults; variations in these parameters are much less significant than variations
in the death rate.

However, the simulations show significant variation in the percentage of cy-
cling cells, as shown in figure 4. Tushinski et al. (1982) naturally report only
the initial and final percentages of S-phase cells. In simulation, we have the
opportunity to observe more detailed dynamics than can be observed in cul-
ture experiments. First, since roughly a third of the cell population is already
committed to divide at the start of the experiment, there is always an initial
increase in the cell population regardless of ligand concentration. This initial
burst is amplified in the runs with higher ligand concentration as more cells
enter the cell cycle, and is followed by a period when large numbers of cells
divide and few are left in the cell cycle. Second, there is significant ligand de-
pletion for most of the experiments in between the daily replenishments. Since
Tushinski et al. (1982) measured M-CSF removal, this is not really surprising,

12



Meaning Mean value

cmax maximum consumption rate 36 molecules/sec

chalf concentration for half-maximal consumption 1.3 × 10−10 M

sr restriction point threshold 700,000

tc cell cycle time 12 hours

dmax maximum death rate 1 × 10−5 /sec

dhalf consumption rate for half-maximal death .37 molecules/sec

Table 1
Parameters affecting macrophage proliferation and survival. Note that individual
cells each have different values of cmax, sr and tc; the value shown is the population
mean.

but we found that it causes a temporary decline in cell counts at the end
of each day in otherwise-growing cell populations. These two effects produce
oscillations in the ratio of cycling to resting cells. It would be interesting to
see whether this kind of oscillation could be seen in culture if measurements
were made more frequently.

5 Proliferation-Driven Homeostasis

We take the model developed in the previous section as a plausible model of
macrophage proliferation and survival in response to M-CSF and now turn
to the consequences for macrophage homeostasis in vivo. In this section, the
population is replenished exclusively through local proliferation; in the next
section, we will add influx of monocytes from the bloodstream.

5.1 Differential Equation Model

Before presenting the individual-based model and simulation results, it is help-
ful to start with a mathematical description of the population as a whole. We
have two subpopulations of macrophages: resting cells, represented by their
concentration A, and those that have passed the restriction point, represented
by their concentration B. They change according to:

dA

dt
= 2rB − k(L)A − l(L)A (11)

dB

dt
= −rB + k(L)A (12)
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where r is the fixed rate at which proliferating cells divide, k is the rate at
which resting cells pass the restriction point, and l is the loss rate. In addition
to the variable death rate used in the last section, the loss term includes efflux.

We assume that there is some source p of ligand (where p is in molecules/sec).
In addition to removal by macrophages, we allow for other mechanisms of
growth factor decrease with a net rate of n. M-CSF is particularly resistant to
degradation by proteases (Stanley and Metcalf, 1971), but molecules can be
lost to the surrounding environment. The change in ligand concentration is

dL

dt
=

p

V NAv

−

c(L)

NAv

(A + B) − nL (13)

(NAv is Avogadro’s number.) Note that although cells that have passed the
restriction point no longer require growth factor, we assume that they would
continue to bind and internalize growth factor.

From equations (11) and (12), we note that a steady-state system requires
k = l. Since both of these depend on L, this determines the steady-state ligand
concentration. Then, from (13), the steady-state cell density is determined by
the fact that growth factor production must balance consumption and loss.
In other words, the cell proliferation and survival parameters alone determine
the steady-state ligand concentration, and then the growth factor production
and loss rates determine the population that can be supported.

We also note that in order to have a certain fraction f of the cells dividing
at any given time, as observed in vivo, there is another constraint on k. With
B = f(A + B), equation (12) implies k = rf/(1 − f). Because of the steady-
state requirement just mentioned, the loss rate l would need to have the same
value. Since r ∼ 1/tc, we estimate k and l to be on the order of 2%/day in
order to have approximately 3% of the cells in S phase.

However, for the individual-based model, we do not choose k; although the
loss rate l has a direct relation to individual cells’ probabilities of dying and
migrating out of the compartment, k is somewhat more complicated. The
probability that an individual cell will pass the restriction point depends on its
rate of binding growth factor (c(L) from section 4) and on the threshold point
sr. It also depends on the loss rate, because cells must survive long enough
to reach the restriction point. Some of these parameters in turn depend on
the growth factor concentration, which may vary over the lifetime of the cell.
Finally, there is no straightforward way to relate this individual cell probability
to the instantaneous population rate k.
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5.2 Simulations

To implement this model in CyCells, we start with the model used in section 4
but add constitutive production of growth factor, growth factor decay, and
probability of macrophage loss due to efflux. For the moment we assume that
growth factor is produced by a different cell type; we will address autocrine
regulation in section 7. Our simulated compartment represents a volume of
0.001 ml, which should hold approximately 1000 macrophages at normal lung
densities based on estimates in (Fisher et al., 1988).

Estimates for loss rates of alveolar macrophages vary widely. Fritsch and Masse
(1992) reported death rates of 5–6%/day and efflux rates of 2–3%/day in rats.
Other researchers do not distinguish between death and efflux, but report loss
rates ranging from 1 to 18%/day (Blusse van Oud Alblas et al., 1983; Coggle
and Tarling, 1984; Shellito et al., 1987) We ran simulations with efflux rates
of 0, 5, and 10 %/day.

We first initialized the ligand concentration to 2×10−11 M, approximately the
concentration at which cell counts changed least in Tushinski et al. (1982).
Since we have no good estimates for growth factor production or loss rates,
we chose these parameters to suit our purposes. We arbitrarily chose a growth
factor loss rate of 0.006/min, and then estimated the production rate which
should maintain the cell population at the chosen concentration. As mentioned
earlier, the primary effect of these two parameters is on the steady-state cell
density.

This simulation experiment was not entirely successful, as shown in Figure 5
for the no-efflux case. Table 2 shows the final ligand concentrations and cell
numbers for all simulations. Although the system does reach a steady state,
cell densities are much higher and ligand concentrations much lower than ex-
pected. By contrast, although the cell density did not change significantly for
the same concentration in Tushinski’s experiments, our simulation of the same
experiment showed that the system was not really at steady state. Also, be-
cause ligand depletion effects were significant, the average ligand concentration
actually would have been lower than 2 × 10−11 M.

Because of the feedback between growth factor concentration and cell popula-
tion, the system settles at a ligand concentration at which entry into the cell
cycle balances cell loss. When we choose a growth factor production rate more
appropriate for this concentration, we can bring the number of cells closer
to the desired value of 1000, as shown in table 3. Note that the steady-state
ligand concentrations corresponding to different efflux rates are the same as
seen in table 2; changing the growth factor production rate does not affect the
steady-state concentration, as expected. We started these simulations with
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Fig. 5. Cell population (left) and ligand concentration (right) for initial simula-
tion of proliferation-dependent homeostasis. Growth factor loss rate n: 0.006/min;
production rate p: 6000 molecules/sec; no efflux. All other parameters as shown in
table 1.

Efflux rate Concentration # cells % cycling cells

0%/day 6.9 × 10−12 (1.1 × 10−13) 3022 (38) 7.2% (0.4%)

5%/day 8.3 × 10−12 (1.4 × 10−13) 2489 (25) 8.6% (0.5%)

10%/day 1.0 × 10−11 (9.6 × 10−14) 2021 (16) 10% (0.4%)

Table 2
Steady-state concentration and cell values for initial proliferation-driven homeosta-
sis simulations, given as simulation mean (standard deviation). Growth factor loss
rate n: 0.006/min; production rate p: 6000 molecules/sec; all other parameters as
in table 1.

Efflux rate Concentration # cells % cycling cells

0%/day 6.9 × 10−12 (1.5 × 10−13) 857 (20) 7.6% (0.9%)

5%/day 8.3 × 10−12 (2.3 × 10−13) 683 (20) 8.9% (1.0%)

10%/day 1.0 × 10−11 (2.7 × 10−13) 527 (16) 10% (1.5%)

Table 3
Steady-state concentration and cell values for proliferation-driven homeostasis sim-
ulations, given as simulation mean (standard deviation). Growth factor loss rate n:
0.006/min; production rate p: 2000 molecules/sec; all other parameters as in table 1.

1000 cells; it still took several days to reach the steady-state shown in table 3.

The fraction of the cell population that is dividing is about twice that ob-
served in vivo. Lowering this fraction would require changing the steady-state
point of the system by changing model parameters affecting cell survival and
proliferation. As noted above, the loss rate would also have to be very low; the
total loss rates in these runs are about 15–20%/day. A lower ligand concentra-
tion would decrease the rate at which cells commit, but would also drastically
raise the death rate, so the system cannot stabilize at such a concentration.
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There are a number of possible reasons for the discrepancy. It is possible that
a better model of cell death would account for both the culture data and
the data from alveolar macrophages in vivo. On the other hand, there may be
significant differences between bone-marrow-derived macrophages and alveolar
macrophages that the model does not address at all. Also, we take into account
the effects of only a single growth factor on the macrophage population; it is
likely that other mechanisms would lower the loss rate and the fraction of
cycling cells in vivo.

6 Influx-Driven Homeostasis

We now look at a system driven primarily by influx of cells from circulation.
There is still local division in this system, as observed in vivo, but only newly
arrived cells divide.

6.1 Differential Equation Model

In this version, we still have resting and dividing macrophages (A and B,
respectively), but we add monocytes (C) entering from the circulation at rate
i. When the monocytes pass the restriction point, they become dividing cells,
which produce resting effectors when they divide:

dA

dt
= 2rB − l(L)A (14)

dB

dt
= k(L)C − rB (15)

dC

dt
= i − k(L)C − l(L)C (16)

Note that, unlike the other terms, the influx rate does not depend on the local
cell population. The number of cells migrating into the alveoli depends on the
circulating precursor population; we assume here that this population is large
enough to ignore possible effects of depletion. Migration of cells across the
epithelial barrier into the alveolar compartment is a complex process in vivo,
but also a relatively quick one. While division can take on the order of hours,
migration generally occurs within a few minutes. We assume that influx is a
random process occurring at a fixed rate.

All three cell types consume ligand:

dL

dt
=

p

V NAv

−

c(L)

NAv

(A + B + C) − nL (17)

17



Efflux rate Concentration # cells % cycling cells

0%/day 5.5 × 10−12 (1.2 × 10−13) 986 (26) 2.4% (0.4%)

5%/day 6.5 × 10−12 (1.3 × 10−13) 838 (26) 2.7% (0.4%)

10%/day 7.6 × 10−12 (2.1 × 10−13) 706 (20) 3.1% (0.7%)

Table 4
Steady-state concentration and cell values for influx-driven homeostasis simulations,
given as simulation mean (standard deviation). Growth factor loss rate n: 0.006/min;
production rate p: 2000 molecules/sec; influx rate: 1.4 cells/ml/second; all other
parameters as in table 1.

In this system, there is always a steady state, although the parameters will
determine whether it is biologically feasible. In particular, we note that k and
l are no longer required to be equal.

6.2 Simulations

The simulation model includes one cell type for each of the equations above.
The only new parameter value is the influx rate i; we use a value of 1.4
cells/ml/second, based on estimates of monocyte migration into the lungs
(Blusse van Oud Alblas et al., 1983).

Results are shown in table 4. In these runs, the percentage of cycling cells is
closer to that observed in vivo. One reason for this may be that the continual
influx of new cells reduces the need for local proliferation to balance loss.

The steady-state ligand concentrations are fairly low, leading to higher death
rates; even without efflux, the loss rate is around 18%/day. Death rates were
unusually high in the proliferation-driven model as well, which may be an
artifact of our macrophage model. However, comparing the two homeostasis
models still shows higher loss rates in the influx model than the prolifera-
tion model. It seems reasonable that a constant influx of new cells would be
balanced by higher loss rates; this system has greater cell turnover. This in-
creased turnover also allows the system to recover from perturbation more
quickly than the proliferation-driven model (data not shown).

7 Autocrine Regulation

Equations (13) and (17) assumed constant-rate production of ligand by some
source other than the effectors, representing a strictly paracrine control sys-
tem. But mature macrophages are capable of producing M-CSF (Becker et al.,
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1989). To explore the possible effects of autocrine regulation, we ran some sim-
ulations in which all of the cells produce their own growth factor. The secretion
rate was chosen so that a population of 1000 cells would produce the same
amount of growth factor used in the earlier simulations. Since we are inter-
ested only in a general assessment of autocrine effects, we did not vary the
secretion rate based on cell maturity.

In the proliferation-driven system, autocrine growth factor production made
the steady state unstable; simulations with cell counts below the steady-state
point died out, while those with cell counts above the steady-state grew with-
out bound. In contrast, simulations with monocyte influx were still stable, but
the final cell counts were slightly lower in the high-efflux runs.

In the paracrine system, cells reduced ligand concentration through consump-
tion. In the autocrine system, the net effect is to increase ligand concentration.
The negative feedback described in section 4.3 has been changed to a positive
feedback. In the proliferation-driven system, this works to drive the system
away from the ligand concentration at which k = l. However, the influx-driven
system is stable even without this negative feedback; autocrine rather than
paracrine production may change the location of the steady state, but not its
stability.

8 Related Work

There are numerous models of cell division which do not depend on extra-
cellular signals, although the idea of dividing the cell cycle into variable- and
fixed-length periods has been around for some time. Smith and Martin (1973)
proposed that the switch from the variable-length ‘A-state’ to the fixed-length
‘B-state’—apparently comparable to the restriction point notion mentioned in
section 4—is random. Many more recent models ((e.g., Tyrcha, 2001)) treat
the probability as dependent on cell age or cell mass; Tyrcha points out that
‘mass’ may represent cumulative mitogen signalling. In other cases, there is
no distinction between the different parts of the cell cycle, but the population
growth rate depends on the growth factor concentration (Lauffenburger and
Linderman, 1993). These models represent cells growing in high concentrations
of growth factor, so ligand depletion is often ignored.

A model described in Morel et al. (1996) and Burke et al. (1997) of T cell
growth in response to IL-2 and IL-4 has some similarities to our models. They
use a distribution of receptor synthesis values to capture heterogeneity in
the cellular responses to ligand. They also divide the cell cycle into variable
and fixed portions, where the former depends on cells accumulating a certain
number of binding events. However, their focus is on synergy between two
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growth factors in conditions of fairly high growth factor concentration, and
they do not include cell death.

SIMMUNE is another multi-purpose simulator for individual cell interactions
and responses to molecular signals. Meier-Schellersheim (2001) developed it
to study intercellular interactions in the immune system. SIMMUNE connects
discrete behaviors of individual cells to receptor-mediated interactions with
other cells and the (continuous) molecular environment.

9 Discussion

In this paper, we used both mathematical modeling and simulation to explore
growth factor regulation of macrophage populations and its effect on periph-
eral effector homeostasis. Our modeling suggests that certain experimental
measurements would help clarify macrophage behavior. More detailed infor-
mation on death rates in normal cell cultures or the kinetics of death in indi-
vidual cells would help refine the basic model of cell behavior. The homeostasis
model predicts a correlation between monocyte influx and higher macrophage
loss rates; it might be possible to confirm this correlation either directly or by
testing for expression of adhesion molecules involved in monocyte trafficking.

Our model includes growth factor regulation of both cell proliferation and
cell survival. The proliferative response takes into account the time required
both for a cell to prepare to divide and for completion of the cell cycle. We
use a very simple scheme for the effect of growth factor on a cell’s progres-
sion towards the restriction point; it may become necessary in the future to
more explicitly represent the interaction between positive and negative reg-
ulation of cell responses to cytokine signals rather than just considering the
net effect. By contrast with the proliferative response, we assume cell death
is essentially a random process, although a cell’s probability of dying depends
on the growth factor concentration. This model gave good agreement with
available culture data relating macrophage population size to growth factor
concentration. However, the simulation death rates seemed to be uncharac-
teristically high under some circumstances, which may indicate that we have
oversimplified the role of cell state in the death process.

We studied two alternative hypotheses regarding maintenance of the alveolar
macrophage pool: one in which cells are replenished solely through local pro-
liferation, and one in which migration from circulation is a primary source of
new cells. We found that proliferation-driven homeostasis should be associated
with lower cell loss rates, while influx-driven homeostasis is associated with
higher loss rates. It is very likely that both mechanisms are used, but each
might dominate under different circumstances.
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In our model, cell consumption of growth factor was significant, and the result-
ing negative feedback was essential for stability of the population replenished
only through local proliferation. Whether or not ligand depletion is relevant
for a particular molecular mediator depends on the binding properties of that
ligand and its receptor, but we cannot always assume that cellular responses
depend simply on the molecular concentration; the cell density may also affect
the signal each cell actually sees. Autocrine regulation is another mechanism
for which the effects depend on the context of the entire system. We found
that purely autocrine regulation is potentially destabilizing but can work in
combination with other regulatory mechanisms.

Connecting extracellular signals to individual cell actions is difficult because
intracellular signalling is very complex and incompletely understood. Many
of the individual processes involved between receptor-ligand binding and the
final observable event occur on different timescales and stochastic effects may
be important. Our approach abstracts much of the intracellular signalling
complexity, while capturing the aspects most likely to affect intercellular dy-
namics.

We expect spatial effects to be important in many multicellular models. For
the homeostasis models presented here, the primary source of spatial hetero-
geneity would be the number and location of cells secreting growth factor. In
the autocrine system, or a paracrine system in which many cells contribute to
the growth factor concentration, the results of spatially explicit simulations
are similar to those presented here for homogeneous molecular concentration.
Results are significantly different if growth factor is supplied by a small num-
ber of sparsely distributed tissue cells, in which case the rate of molecular
diffusion and manner of cell movement are also important. However, very lit-
tle is currently known about actual secretion rates or spatial distribution of
cytokines and macrophages in vivo, so we leave the important issue of spatial
effects for future work.

Our simulator introduces a general framework for cell responses to molecular
signals that can be applied to other models. As more data become available on
individual cell characteristics, we will be able to relate those observations to
intercellular interactions. This sort of approach will be useful in studying the
dynamics of localized tissue microenvironments. We plan to use our models
of homeostatic regulation as a baseline for future studies of more complex
regulatory networks; we are particularly interested in granuloma formation in
tuberculosis (Warrender et al., 2003). Models such as those presented here
can improve our understanding of the relative importance of different kinds of
regulation in immunological systems.
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