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A genetic algorithm is a computational model of biological evolution. Genetic algorithms
are useful, both as search methods for solving problems and for modeling evolutionary sys-
tems. In genetic algorithms, binary strings are stored in a computer’s memory, and over
time, the strings are modified in much the same way that populations of individuals evolve
under natural selection. Although the computational setting is highly simplified when com-
pared with the natural world, genetic algorithms are capable of evolving surprisingly complex
and interesting structures. These structures, called individuals, can represent solutions to
problems; strategies for playing games, visual images, or computer programs.

Genetic algorithms are loosely based on ideas from population genetics. First, a popula-
tion of individuals is created randomly. In the simplest case, each individual is a bit string
and can be thought of as a candidate solution for some problem of interest, as shown in
Figure 1. Variations among individuals in the population result in some individuals being
more fit than others (e.g., better problem solutions). These differences are used to bias the
selection of a new set of candidate solutions at the next time step, referred to as selection.
During selection, a new population is created by making copies of more successful individuals
and deleting less successful ones. However, the copies are not exact. There is a probability
of mutation (random bit flips), crossover (exchange of corresponding substrings between two
individuals), or other changes to the bit string during the copy operation. By transforming
the previous set of good individuals to a new one, the mutation and crossover operations
generate a new set of individuals, or samples, that ideally have a better than average chance
of also being good. When this cycle of evaluation, selection, and genetic operations is it-
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erated for many generations, the overall fitness of the population generally improves, and
the individuals in the population represent improved “solutions” to whatever problem was
posed in the fitness function. Figure 1 shows an example of a genetic algorithm being used
to optimize a simple function.

There are many ways of implementing this idea, the most prevalent being the strategy
introduced by Holland [6, 5, 2| and illustrated in Figure 1. In recent years, “genetic al-
gorithms” have taken many forms, and in some cases bear little resemblance to Holland’s
original formulation. Researchers have experimented with different types of representations,
crossover and mutation operators, special-purpose operators, and different approaches to
reproduction and selection. However, all of these methods have a family resemblance in that
they take some inspiration from biological evolution and from Holland’s original genetic al-
gorithm. Books that describe the theory and practice of genetic algorithms in greater detail
include [6, 5, 1, 8, 7, 9].

The genetic algorithm is interesting from a computational standpoint, at least in part,
because of the claims that have been made about its effectiveness as a biased sampling algo-
rithm. The classical argument about genetic algorithm performance has three components:

e Independent sampling is provided by large populations that are initialized randomly.

e High-fitness individuals are preserved through selection, and this biases the sampling
process towards regions of high fitness.

e Crossover combines partial solutions, called “building blocks,” from different strings
onto the same string, thus exploiting the parallelism provided by maintaining a popu-
lation of candidate solutions.

A partial solution is taken to be a hyperplane in the search space of strings, and is called
a schema. A central claim about genetic algorithms is that schemas capture important
regularities in many search spaces, and that a form of “implicit parallelism” exists because
one fitness evaluation of an individual comprised of [ bits implicitly gives information about
the 2! schemas, or hyperplanes, of which it is an instance. The Schema Theorem states that
the genetic algorithm operations guarantee exponentially increasing samples of the observed
best schemas in the next time step. By analogy with the k-armed bandit problem it has
been argued that the genetic algorithm uses an optimal sampling strategy [6].

Genetic algorithms in various forms have been applied to many scientific and engineering
problems. They have been used in a wide variety of optimization tasks, including numerical
optimization and combinatorial optimization problems such as circuit design and job shop
scheduling. Genetic algorithms have also been used to evolve computer programs for specific



Populationat Tn Populationat Tp+1

0000001101 0000001101 Mutation 1000001101
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F (0000001101) = 0.000
F (0101010010) = 0.103
F (1111111000) = 0.030
F (1010100111) = - 0.277

Figure 1: Genetic algorithm overview. A population of four individuals is shown. Each
is assigned a fitness value by the function F(z,y) = yx? — z*. The fitness values for the
population at Ty are shown for each individual (underneath the arrow labeled “Differential
Reproduction”). The first five bits are a gray-coded representation of z, and the second five
bits are a gray coded representation of y (normalized over the interval [0,1). On the basis
of these fitnesses, the selection phase assigns the first individual (0000001101) one copy, the
second (0101010010) two, the third (1111111000) one copy, and the fourth (1010100111) zero
copies. After selection, the genetic operators are applied probabilistically; the first individual
has its first bit mutated from a 0 to a 1, and crossover combines the last two individuals into

two new ones. The resulting population is shown in the box labeled T(x1).



tasks and to design other computational structures, e.g., cellular automata rules and sorting
networks. In machine learning, they have been used to design neural networks, to design
rules for rule-based systems, and to design and control robots. Genetic algorithms are known
primarily as a problem-solving method, but they can also be used to study and model evolu-
tion in various settings, including biological (ecology, immunology, and population genetics),
social (such as economies and political systems), and cognitive systems.

Perhaps the most common application of genetic algorithms is multiparameter function
optimization. Many problems can be formulated as a search for an optimal value, where
the value is a complicated function of some input parameters. In some cases, the parameter
settings that lead to the exact greatest (or least) value of the function are of interest. In
other cases, the exact optimum is not required, just a near optimum, or even a value that
represents a slight improvement over the previously best known value. In these latter cases,
genetic algorithms are often an appropriate method for finding good values. The strength of
the genetic algorithm lies in its ability to manipulate many parameters simultaneously, and
it has been used for hundreds of applications, including aircraft design, tuning parameters
for algorithms that detect and track multiple signals in an image, and locating regions of
stability in systems of nonlinear difference equations.

Although there are many problems for which the genetic algorithm can evolve a good
solution in reasonable time, there are also problems for which it is inappropriate (such as
problems in which it is important to find the exact global optimum). It would be useful to
have a mathematical characterization of how the genetic algorithm works that is predictive.
Research on this aspect of genetic algorithms has not produced definitive answers. The do-
mains for which one is likely to choose an adaptive method such as the genetic algorithm are
precisely those about which we typically have little analytical knowledge—they are complex,
noisy, or dynamic (changing over time). These characteristics make it virtually impossible to
predict with certainty how well a particular algorithm will perform on a particular problem,
especially if the algorithm is stochastic, as is the case with the genetic algorithm. In spite
of this difficulty, there are fairly extensive theories about how and why genetic algorithms
work in idealized settings. These include schema analysis, which views genetic algorithms
as a biased sampling process, models developed for population genetics, algebraic models,
signal-to-noise analysis, landscape analysis, statistical mechanics models, Markov chains, and
analyses based on Probably Approximately Correct (PAC) learning. This work extends and
refines schema analysis, and in some cases challenges the claim that recombination through
crossover is an important component of genetic algorithm performance.

The idea of using evolution to solve difficult problems and to model natural phenom-
ena is promising. The genetic algorithms described here are one of the first steps in this
direction. Necessarily, they have abstracted out much of the richness of biology, and in the
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future, we can expect a wide variety of evolutionary systems based on the principles of ge-
netic algorithms but less closely tied to these specific mechanisms. More generally, biological
mechanisms of all kinds are being incorporated into computational systems, including em-
bryology, viruses, parasites, and immune systems. From an algorithmic perspective, genetic
algorithms join a broader class of stochastic methods for solving problems. An important
area of future research is to understand carefully how these algorithms relate to one another
and which algorithms are best for which problems.
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