B.2.7.5: Fitness Landscapes: Royal Road Functions

Melanie Mitchell Stephanie Forrest

Santa Fe Institute Dept. of Computer Science
1399 Hyde Park Road University of New Mexico
Santa Fe, NM 87501 Albuquerque, NM 87131

mm@santafe.edu forrest@cs.unm.edu

To appear in Béck, T., Fogel, D., and Michalewicz, Z. (Eds.), Handbook of Evolutionary
Computation. Oxford: Oxford University Press.

An important goal of research on genetic algorithms (GAs) is to understand the class of
problems for which GAs are most suited, and in particular, the class of problems on which
they will outperform other search algorithms such as gradient methods. We have developed
a class of fitness landscapes—the “Royal Road” functions (Mitchell, Forrest, and Holland
1992; Forrest and Mitchell 1993)—that isolate some of the features of fitness landscapes
thought to be most relevant to the performance of GAs. Our goal in constructing these
landscapes is to understand in detail how such features affect the search behavior of GAs
and to carry out systematic comparisons between GAs and other search methods.

It has been hypothesized that GA’s work by discovering, emphasizing, and recombining
high-quality building blocks of solutions in a highly parallel manner (Holland 1975; Goldberg
1989). These ideas are formalized by the “Schema Theorem” and “Building-Block Hypoth-
esis” (see section B2.5, this volume). The GA evaluates populations of strings explicitly,
and at the same time, it is argued, it implicitly estimates, reinforces, and recombines short,
high-fitness schemas—building blocks encoded as templates, such as 11****** (a template
representing all 8-bit strings beginning with two 1s).

A simple Royal Road function, Ry, is shown in Figure 1. R; consists of a list of partially
specified bit strings (schemas) s; in which ‘*” denotes a wild card (i.e., allowed to be either
0 or 1). A bit string z is said to be an instance of a schema s, x € s, if © matches s in the
defined (i.e., non-‘«’) positions. The fitness R;(z) of a bit string z is defined as follows:

Ri(z) =Y 0;(x)o(s;), where 0;(x) = 0 otherwise,

1=1

8 {1 if v € s

and where o(s;), the order of s;, is the number of defined bits in s;. For example, if x is an
instance of exactly two of the order-8 schemas, R;(x) = 16. Likewise, R;(111...1) = 64. R,
is meant to capture one landscape feature of particular relevance to GAs: the presence of fit
low-order building blocks that recombine to produce fitter, higher-order building blocks. (A
different class of functions, also called “Royal Road functions”, was developed by Holland
and is described in Jones, 1995.)

The Building-Block Hypothesis implies that such a landscape should lay out a “royal
road” for the GA to reach strings of increasingly higher fitnesses. One might also expect

1

that simple hill-climbing schemes would perform poorly because a large number of bit po-
sitions must be optimized simultaneously in order to move from an instance of a low-order
schema (e.g., 11111111**...*) to an instance of a higher-order intermediate schema (e.g.,
T111111P****ET1111111%%, .. *). However, the results of our experiments ran counter to
both these expectations (Forrest and Mitchell 1993). In these experiments, a simple GA
(using fitness-proportionate selection with sigma scaling, single-point crossover, and point
mutation—see sections C2 and C3, this volume) optimized R; quite slowly, at least in part
because of “hitchhiking”: once an instance of a higher-order schema was discovered, its high
fitness allowed the schema to spread quickly in the population, with Os in other positions
in the string hitchhiking along with the 1s in the schema’s defined positions. This slowed
down the discovery of schemas in the other positions, especially those that are close to the
highly-fit schema’s defined positions. Hitchhiking can in general be a serious bottleneck for
the GA, and we observed similar effects in several variations of our original GA.

The other hypothesis—that the GA would outperform simple hill-climbing on these functions—
was also proved wrong. We compared the GA’s performance on R; (and variants of it) with
three different hill-climbing methods: steepest ascent hill-climbing (SAHC), next-ascent hill-
climbing (NAHC), and “random mutation hill-climbing” (RMHC) (Forrest and Mitchell
1993). These work as follows (assuming that maz_evaluations is the maximum number of
fitness-function evaluations allowed):

e Steepest-ascent hill-climbing (SAHC):

1. Choose a string at random. Call this string current-hilltop.

2. If the optimum has been found, stop and return it. If maz_evaluations has been e-
qualed or exceeded, stop and return the highest hilltop that was found. Otherwise
continue to step 3.

3. Systematically mutate each bit in the string from left to right, recording the
fitnesses of the resulting strings.

4. If any of the resulting strings give a fitness increase, then set current-hilltop to
the resulting string giving the highest fitness increase, and go to step 2.

5. If there is no fitness increase, then save current-hilltop in a list of all hilltops found
and go to step 1. Otherwise, go to step 2 with the new current-hilltop.

e Next-ascent hill-climbing (NAHC):

1. Choose a string at random. Call this string current-hilltop.

2. If the optimum has been found, stop and return it. If maz_evaluations has been e-
qualed or exceeded, stop and return the highest hilltop that was found. Otherwise
continue to step 3.

3. Mutate single bits in the string from left to right, recording the fitnesses of the
resulting strings. If any increase in fitness is found, then set current-hilltop to that
increased-fitness string, without evaluating any more single-bit mutations of the
original string. Go to step 2 with the new current-hilltop, but continue mutating

the new string starting after the bit position at which the previous fitness increase
was found.

4. If no increases in fitness were found, save current-hilltop and go to step 1.

Notice that this method is similar to Davis’s (1991) “bit-climbing” scheme, in which
the bits are mutated in a random order, and current-hilltop is reset to any string having
equal or better fitness than the previous best evaluation.

e Random-mutation hill-climbing (RMHC):

1. Choose a string at random. Call this string best-evaluated.

2. If the optimum has been found, stop and return it. If maz_evaluations has been e-
qualed or exceeded, stop and return the current value of best-evaluated. Otherwise
go to step 3.

3. Choose a locus at random to mutate. If the mutation leads to an equal or higher
fitness, then set best-evaluated to the resulting string, and go to step 2.

Note that in SAHC and NAHC, the current string is replaced only if an improvement in
fitness is found, whereas in RMHC, the current string is replaced whenever a string of equal
or greater fitness is found. This difference allows RMHC to explore “plateaus”, which, as
will be seen, produces a large difference in performance.

The results of SAHC and NAHC on R; were as expected—while the GA found the opti-
mum on R; in an average of ~ 60,000 function evaluations, neither SAHC nor NAHC ever
found the optimum within the maximum of 256,000 function evaluations. However, RMHC
found the optimum in an average of ~ 6,000 function evaluations—approximately a factor
of 10 faster than the GA. This striking difference on landscapes originally designed to be
“royal roads” for the GA underscores the need for a rigorous answer to the question posed
earlier: “Under what conditions will a GA outperform other search algorithms, such as hill
climbing?”

To answer this, we first performed a mathematical analysis of RMHC, which showed that
the expected number of function evaluations to reach the optimum on an R;-like function
with N blocks of K 1sis ~ 2K N(logN +~) (where v is Euler’s constant) (Mitchell, Holland,
and Forrest 1994; our analysis is similar to that given for a similar problem in Feller, 1960,
p. 210.) We then described and analyzed an “idealized GA” (IGA), a very simple procedure
that significantly outperforms RMHC on R;. The IGA works as follows. On each iteration,
a new string is chosen at random, with each bit independently being set to 0 or 1 with equal
probability. If a string is found that contains one or more of the desired schemas, that string
is saved. When a string containing one or more not-yet-discovered schemas is found, it is
crossed over with the saved string in such a way so that the saved string contains all the
desired schemas that have been found so far. (Note that the probability of finding a given
8-bit schema in a randomly chosen string is 1/256.)

This procedure is unusable in practice, because it requires knowing precisely what the
desired schemas are. However, the idea behind the IGA is that it does explicitly what the GA

is thought to do implicitly, namely identify and sequester desired schemas via reproduction
and crossover (“exploitation”) and sample the search space via the initial random population,
random mutation, and crossover (‘“exploration”). We showed that the expected number of
function evaluations for the IGA to reach the optimum on an R;-like function with /N blocks
of K 1sis ~ 25 (logN +), a factor of N faster than RMHC (Mitchell, Holland, and Forrest
1994).

What makes the IGA so much faster than the simple GA and RMHC on R;? A primary
reason is that the IGA perfectly implements the notion of “implicit parallelism” (Holland,
1975): each new string is completely independent of the previous one, so new samples are
given independently to each schema region. In contrast, RMHC moves in the space of strings
by single-bit mutations from an original string, so each new sample has all but one of the
same bits as the previous sample. Thus each new string gives a new sample to only one
schema region. We ignore the construction time to construct new samples and compare only
the number of function evaluations to find particular fitness values. This is because in most
interesting GA applications, the time to perform a function evaluation dominates the time
required to execute the other parts of the algorithm. For this reason, we assume that the
remaining parts of the algorithm take constant time per function evaluation.

The IGA gives a lower bound on the expected number of function evaluations that the
GA will need to solve this problem. It is a lower bound because the IGA is given perfect
information about the desired schemas, which is not available to the simple GA. (If it were,
there would be no need to run the GA as the problem solution would already be known.)

Independent sampling allows for a speed-up in the IGA in two ways: it allows for the
possibility of more than one desired schema appearing simultaneously on a given sample,
and it also means that there are no wasted samples, as there are in RMHC. Although the
comparison we have made is with RMHC, the IGA will also be significantly faster on R;
(and similar landscapes) than any hill-climbing method that works by mutating single bits
(or a small number of bits) to obtain new samples.

The hitchhiking effects described earlier also result in a loss of independent samples for
the real GA. The goal is to have the real GA, as much as possible, approximate the IGA.
Of course, the IGA works because it explicitly knows what the desired schemas are; the real
GA does not have this information and can only estimate what the desired schemas are by
an implicit sampling procedure. However, it is possible for the real GA to approximate a
number of the features of the IGA:

e Independent samples: The population size has to be sufficiently large, the selection
process has to be sufficiently slow, and the mutation rate has to be sufficiently great
to ensure that no single locus is fixed at a single value in every string (or even a large
majority of strings) in the population.

o Sequestering desired schemas: Selection has to be strong enough to preserve desired
schemas that have been discovered, but it also has to be slow enough (or, equivalently,
the relative fitness of the non-overlapping desirable schemas has to be small enough)
to prevent significant hitchhiking on some highly-fit schemas, which can crowd out
desired schemas in other parts of the string.

4

11111111**.

S =

S; ::********11111111**;
S3 ::****************11111111**;
S4 ::************************11111111********************************;
S5 ::********************************11111111************************;
S ::**11111111****************;
St ::**11111111********;
Sg ::**11111111

Figure 1: Royal Road function R;.

e Instantaneous crossover: The crossover rate has to be such that the time until a
crossover combines two desired schemas is small with respect to the discovery time for
the desired schemas.

e Speed-up over RMHC: The string length (a function of N) has to be large enough to
make the N speed-up factor significant.

These mechanisms are not all mutually compatible (e.g., high mutation works against
sequestering schemas), and thus must be carefully balanced against one another. A discussion
of how such a balance might be achieved is given by Holland (1993); some experimental
results are given in Mitchell, Holland, and Forrest (1994).

In conclusion, our investigations of a simple GA, RMHC, and the IGA on R; and related
landscapes are one step towards our original goals—to design the simplest class of fitness
landscapes that will distinguish the GA from other search methods, and to characterize
rigorously the general features of a fitness landscape that make it suitable for a GA. Our
results have shown that it is not enough to invoke the Building-Block Hypothesis for this
purpose. Royal Road landscapes such as R; are not meant to be realistic examples of
problems to which one might apply a GA. Rather, they are meant to be idealized problems
in which certain features most relevant to GAs are explicit, so that the GA’s performance
can be studied in detail. Our claim is that, in order to understand how the GA works in
general and where it will be most useful, we must first understand how it works and where
it will be most useful on simple yet carefully designed landscapes such as these.

Acknowledgments

This work has been supported by the Santa Fe Institute’s Adaptive Computation Program,
the Alfred P. Sloan Foundation (grant B1992-46), and the National Science Foundation
(grants IRI-9157644 and IRI-9224912).

References

Davis, L. D. 1991. Bit-climbing, representational bias, and test suite design. In R. K. Belew
and L. B. Booker, eds., Proceedings of the Fourth International Conference on Genetic
Algorithms, 18-23. San Francisco, CA: Morgan Kaufmann.

Feller, W. 1960. An Introduction to Probability Theory and its Applications. New York:
John Wiley & Sons. (Second Edition.)

Forrest, S., and Mitchell, M. 1993. Relative building block fitness and the building block
hypothesis. In L. D. Whitley, ed., Foundations of Genetic Algorithms 2, 109-126.
San Francisco, CA: Morgan Kaufmann.

Goldberg, D. E. 1989. Genetic Algorithms in Search, Optimization, and Machine Learning.
Reading, MA: Addison-Wesley.

Holland, J. H. 1975. Adaptation in Natural and Artificial Systems. Ann Arbor, MI: Univer-
sity of Michigan Press. (Second edition: MIT Press, 1992.)

Holland, J. H. 1993. Innovation in Complex Adaptive Systems: Some Mathematical Sketch-
es. Working Paper 93-10-062, Santa Fe Institute.

Jones, T. 1995. A Description of Holland’s Royal Road Function. Fvolutionary Computation
2(4): 409-415.

Mitchell, M., Forrest, S., and Holland, J. H. 1992. The royal road for genetic algorithms: Fit-
ness landscapes and GA performance. In F. J. Varela and P. Bourgine, eds., Toward

a Practice of Autonomous Systems: Proceedings of the First European Conference on
Artificial Life, 245-254. Cambridge, MA: MIT Press.

Mitchell, M., Holland, J. H., and Forrest, S. 1994. When will a genetic algorithm outperform
hill climbing? In J. D. Cowan, G. Tesauro, and J. Alspector, eds., Advances in Neural
Information Processing Systems 6, 51-58. San Francisco, CA: Morgan Kaufmann.

