
Int. J. Inf. Secur. (2007) 6:403–415
DOI 10.1007/s10207-007-0030-1

SPECIAL ISSUE PAPER

Protecting data privacy through hard-to-reverse negative databases

Fernando Esponda · Elena S. Ackley · Paul Helman ·
Haixia Jia · Stephanie Forrest

Published online: 24 July 2007
© Springer-Verlag 2007

Abstract A set DB of data elements can be represented in
terms of its complement set, known as a negative database.
That is, all of the elements not in DB are represented, and
DB itself is not explicitly stored. This method of represent-
ing data has certain properties that are relevant for privacy
enhancing applications. The paper reviews the negative data-
base (N DB) representation scheme for storing a negative
image compactly, and proposes using a collection of N DBs
to represent a single DB, that is, one N DB is assigned for
each record in DB. This method has the advantage of produc-
ing negative databases that are hard to reverse in practice, i.e.,
from which it is hard to obtain DB. This result is obtained
by adapting a technique for generating hard-to-solve 3-SAT
formulas. Finally we suggest potential avenues of applica-
tion.

Keywords Negative database · Boolean satisfiability ·
k-SAT · Privacy · Security

F. Esponda (B)
Department of Computer Science,
Yale University, New Haven, CT 06520-8285, USA
e-mail: fesponda@cs.yale.edu

E. S. Ackley · P. Helman · H. Jia · S. Forrest
Department of Computer Science,
University of New Mexico, Albuquerque,
NM 87131-1386, USA
e-mail: elenas@cs.unm.edu

P. Helman
e-mail: helman@cs.unm.edu

H. Jia
e-mail: hjia@cs.unm.edu

S. Forrest
e-mail: forrest@cs.unm.edu

List of symbols

s, y, v: Binary strings
l: The number of positions in a string
DB: A set of binary strings, referred to as a positive database
N DB: A set of strings over {0, 1, ∗}, referred to as a negative

database
N DB(s): A negative database for the string s. When a spe-

cific string is alluded to, its numeric decimal value is used
in its place

N DBA: A negative database belonging to agent A
Υ : A set of integers indicating bit positions in a string
m: The number of records in a negative database
r : The ratio of records to string length in a negative database
k: Number of specified positions (non “*” symbols) in a

string
c: The number of bits appended to a string. The code length

1 Introduction

Controlling access to information and restricting the types
of inferences that can be drawn from it is an increasing con-
cern. Demands for data availability and the criteria for confi-
dentiality are continually evolving, complicating the task of
protecting sensitive data. Current encryption technology (for
protecting the data itself) and query restriction (for control-
ling access to data) help ensure confidentiality, but neither
solution is appropriate for all applications. In the case of
encryption, the ability to search data records is hindered; in
the case of query restriction, individual records are vulnera-
ble to insider attacks and their security can be compromised
by tracker attacks (see Refs. [16,17]). Further, many cur-
rent solutions rely on a single set of assumptions, e.g., prime

123

404 F. Esponda et al.

Fig. 1 Different examples of a DB, its corresponding U -DB, and a
possible N DB representing U -DB

factoring, which introduces a single point of failure should
the assumptions ever be violated.

In this paper, we describe an approach to represent data
that addresses some of these concerns and provides a starting
point for the design of new applications. A motivating sce-
nario involves a database of personal records that an outside
entity might need to consult, for example, to verify an entry is
in a watch-list. It is desirable to have a database that supports
a restricted type of query, disallowing arbitrary inspections
(even from an insider), which can be updated without reveal-
ing the nature of the changes to an observer.

In our approach, the negative image of a set of data ele-
ments is represented rather than the elements themselves
(Fig. 1). Initially, we assume a universe U of finite-length
strings (or records), all of the same length l and defined over
a binary alphabet. We logically divide the space of possible
strings into two disjoint sets: DB representing a set of posi-
tive records (holding the information of interest), and U -DB
denoting the set of all strings not in DB. We assume that DB
is uncompressed (each record is represented explicitly), but
we allow U -DB to be stored in a compressed form called
N DB. We refer to DB as the positive database and N DB
as the negative database. From a logical point of view, either
will suffice to answer questions regarding DB; however, they
present different advantages. For instance, in a positive data-
base, inspection of a single string provides meaningful infor-
mation; inspection of a single “negative” string reveals little
about the contents of the original database. Given that the
positive tuples are never stored explicitly, a negative data-
base could be much more difficult to misuse. In particular,
the negative database scheme proposed herein safeguards the
privacy of a dataset by limiting the type of queries that can
be answered efficiently and by concealing its size. Moreover,
the scheme supports updating the dataset and allows a subset
of its items to be selected—enabling a negative database to
be manipulated meaningfully without explicit knowledge of
its contents.

The negative database idea was introduced in [19,22], and
the theoretical foundation was established for certain proper-
ties of the representation, especially with respect to privacy

and security. This paper addresses some practical concerns
regarding the security of negative databases and the efficiency
of updating them. We introduce a new storage design that bet-
ter supports update operations, and we adapt techniques from
other fields to create negative databases that are more secure
in practice.

The following section reviews the negative database repre-
sentation, gives some examples, and explains how to query
it. Section 3 investigates implications of the approach for
privacy and security. In particular, the general problem of
recovering the positive set from our negative representation
is NP-hard [19,22,23]. We then present a method for cre-
ating negative databases that are hard to reverse in practice.
The scheme also overcomes some of the update inefficien-
cies of previous approaches, and, in Sect. 4, we describe
a scenario that highlights the properties of the scheme and
suggests prospective areas of application. Finally, we review
related work, discuss potential consequences of the results,
and outline areas of future investigation.

2 Representation

To create a negative database (N DB) that is reasonable in
size, we must compress the information contained in U -DB
while retaining the ability to answer queries. We introduce an
additional symbol to the binary alphabet, known as a “don’t-
care” and written as ∗. The entries in N DB are strings of
length l over the alphabet {0, 1, ∗}. The don’t-care symbol
has the usual interpretation, representing both one and zero
at the string position where the ∗ appears. String positions
set to one or zero are referred to as “defined positions”. This
symbol allows large subsets of U -DB to be represented with
just a few entries in N DB (see example in Fig. 1).

A string s is taken to be in DB if and only if s fails to
match all the entries in N DB. The condition is fulfilled only
if for every string y ∈ N DB, s disagrees with y in at least
one defined position.

Queries are also expressed as strings over the same alpha-
bet; a string, Q, consisting entirely of defined positions—
only zeros and ones—is interpreted as “Is Q in DB?”, and
we refer to it as a simple membership or authentication query.
Answering such a query requires examining N DB for a
match, as described above, and can be done in time propor-
tional to |N DB|. The work in [22] demonstrates an efficient
mapping between boolean satisfiability formulas and N DBs
(see Fig. 2), and it shows that determining the reverse of
N DB—its positive image, DB—is NP-hard and that decid-
ing whether DB is empty or not is NP-complete. Conse-
quently, answering complex queries with an arbitrary number
of * symbols is also intractable.

As an example, consider a negative database with tuples of
the form < name, address, profession >. The query

123

Protecting data privacy through hard-to-reverse negative databases 405

Fig. 2 Mapping SAT to N DB: in this example the boolean formula
is written in conjunctive normal form (CNF) and is defined over five
variables {x1, x2, x3, x4, x5}. The formula is mapped to a N DB where
each clause corresponds to a negative record, and each variable in the
clause is represented as a 1 if it appears negated, as a 0 if it appears
un-negated, and as a ∗ if it does not appear in the clause at all. It is easy
to see that a satisfying assignment of the formula such as {x1= FALSE,
x2= TRUE, x3= TRUE, x4= FALSE, x5= FALSE }, corresponding to
string 01100, is not represented in N DB and is therefore a member of
DB

“Is <Tintan, 69 Pine Street, Plumber> in DB?” (written as
a binary string Q) would be easily answered, while retriev-
ing the names and addresses of all the engineers in DB
(expressed as a query string with the profession field set to the
binary encoding of “engineer” and the remaining positions
to *) would be intractable in general.

Not all N DBs, however, have the hardness properties we
seek. For example, it is possible to construct N DBs with spe-
cific structures for which complex queries can be answered
efficiently (see Refs. [19,22]). Indeed, creating negative
databases that are hard to reverse in practice is difficult; the
next section addresses this issue and presents an algorithm for
creating negative databases that only support authentication
queries efficiently.

3 Hard-to-reverse negative databases

In [19,20,22,23] several algorithms were given that either
produce N DBs that are provably easy to reverse, i.e., for
which there is an efficient method to recover DB, or that
have the flexibility to produce hard-to-reverse instances in
theory, but have yet to produce them experimentally. It was
shown in [22] that reversing a N DB is an NP-hard problem,
but this, being a worst case property, presents the challenge
of creating hard instances in practice.

This section focuses on a generation algorithm that aims
at creating hard-to-reverse negative databases in practice; in
order to create negative databases that are hard-to-reverse in
practice, we rely on the relationship between negative data-
bases and the boolean satisfiability problem (SAT) (Fig. 2),
taking advantage of the body of work devoted to creating
difficult SAT instances (e.g., [2,33,34,47]). As an example,
we focus on the model introduced in [33] and use it as a
basis for creating N DBs. This differs from the algorithms
described in [19,20,22,23] in two ways: first, it generates an
ndb for each string in DB; And second, it creates an inexact

representation of U -DB, meaning that some strings in addi-
tion to DB will not be matched by N DB.

The following subsections describe the generation algo-
rithm, outline how the problem of extra strings can be dealt
with, and show empirically that the resulting databases are
hard to reverse.

3.1 Using S AT formulas as a model for negative databases

In [33] an algorithm is given for creating SAT formulas, and
this is the basis for the negative database construction. The
algorithm’s objective is to create a formula that is known
to be satisfiable, but which SAT-solvers are unable to solve.
In our construction, we will use one SAT formula to repre-
sent each record in the positive database. The approach is
to start with an assignment s (a binary string representing
the truth values for the variables in the formula), and then
create a formula satisfied by it—much like the algorithms in
[19,20,22,23], except that the resulting formula might also
be satisfied by other unknown assignments. Given the assign-
ment s, the algorithm randomly generates clauses with t > 0
literals such that each clause is satisfied with probability pro-
portional to qt for q < 1 (q is an algorithm specific parameter
used to bias the distribution of clauses within the formula).
The purpose of the method is to balance the distribution of
literals in such a way as to make the formulas statistically
indistinguishable from one another. This process produces a
collection of clauses, each satisfied by s, which can be readily
transformed into a negative database (see Fig. 2).

Initially, we consider a database (DB) of size at most
one (Sect. 3.4 extends this case to DBs with more than one
record), containing a l-length binary string s. We create a
negative database (N DB) with the following properties:

1. Each entry in the negative database has exactly three
specified bits.

2. s is not matched by any of N DB’s entries.
3. Given an arbitrary l-bit string, it is easy to verify if the

string belongs to N DB or not (in time proportional to
the size of N DB).

4. The size of N DB is linear in the length of s. The tunable
parameter r = m/ l determines the size of the database
and its reversal difficulty—l is the size of s and m is the
number of entries in N DB.

5. The size of N DB does not depend on the contents of DB,
i.e., it has the same size for |DB| = 1 and |DB| = 0.

6. s is “almost” the “only” string not matched by N DB, i.e.,
almost the only string contained in the positive image
DB ′ of N DB. The other entries in DB ′ are close in
hamming distance to s (see Sect. 3.2).

7. The negative database N DB is very hard to reverse,
meaning no known search method can discover s in a

123

406 F. Esponda et al.

reasonable amount of time (provided that the number of
bits in s be greater than 1000, as explained below).

Properties 1–5 follow from the isomorphism of negative
databases with a 3-SAT formulae (see Fig. 2) and the char-
acteristics of the algorithm. Point six is addressed in the
next section, and completes the negative database genera-
tion scheme. Property seven is ascertained empirically in
Sect. 3.3.

3.1.1 The algorithm

We now describe the core algorithm used for generating the
negative databases of this paper in more detail. The tech-
nique was originally introduced in [33] as a means to gener-
ate boolean satisfiability (SAT) formulae and is reproduced
in Fig. 3 for convenience. Based on a well-known random
method for creating unsatisfiable formulae, Fig. 4 describes
the algorithm for generating a negative database that repre-
sents all strings of a given length (the negative representation
of DB = ∅). It is similar to that of Fig. 3 and is presented
separately in the interest of clarity. The connection between
SAT and negative databases, described in Fig. 2, is the basis
for using these algorithms.

The algorithm (Fig. 3) proceeds by randomly generating
negative database records that do not match the positive data-
base string s—note that for any particular s there are many

Fig. 3 Algorithm for generating hard-to-reverse negative databases.
The pseudocode paraphrases the algorithm presented in [33] with minor
modifications. The input variable l stands for the length of strings in the
universe of discourse; k for the number of specified bits per negative
record; q for the probability that every bit in a negative record has of
disagreeing with the corresponding bit of s; and r for the desired nega-
tive record to string length density (r determines the size of the output
N DB)

Fig. 4 Algorithm for generating a hard-to-reverse negative database
that represents the empty positive database. The meaning of the input
variables is the same as in Fig. 3

possible N DB representations, one is chosen probabilisti-
cally by the algorithm. Each negative record has exactly k
specified bits, the rest of the positions set to the don’t-care
symbol.

Step 2 determines, uniformly at random, which bit posi-
tions to specify in the current record, and step 3 initializes it
to have the same values as s in the chosen positions. Steps
4–7 set the final values for the negative record according to a
random process—notice that step 7 ensures that no negative
record matches s.

In step 6, q is used to probabilistically determine the k val-
ues that will be used to create each record; choosing q appro-
priately (q < 1) re-balances the distribution of values at each
bit position such that it is not indicative of the value of s—a
probability q = 0.5, recommended in [33], is used through-
out this paper. The interplay between q, the probability that
a bit in a negative record does not match the corresponding
bit in s, and r , the ratio of the number of strings in N DB
to the string length, determines how difficult N DB will be
to reverse and how many extra strings will go unmatched by
N DB (see Sect. 3.2). Step 8 includes the resulting record
in the negative database. There is a small chance of creat-
ing duplicate records which must be accounted for in order
to achieve n unique entries; we omit this provision for
simplicity.

Increasing the value of r reduces the number of superflu-
ous solutions (see Sect. 3.2), and, as shown in step 0, increases
the number of negative records N DB must have. Since the
length of the input string also affects the size of the data-
base, there is room for play in the value of r as the length
of the input increases. We used an r value of 5.5 as difficult
instances lie close to this value (Ref. [33]). For the purpose of
our current experiments we use a k value of three, however,
increased values of k can be used noting that the value of
r will likely vary with k in some way. Both the size and

123

Protecting data privacy through hard-to-reverse negative databases 407

difficulty of reversing databases with a larger k value is
expected to be greater.

Figure 4 displays the pseudocode for generating a nega-
tive database that represents every string in U (minus a few
superfluous strings). It proceeds in a similar manner as the
algorithm of Fig. 3 and produces N DBs of the same size for
the same parameter settings. The difference is that there is no
string s given as input, and that the values at the defined posi-
tions in each negative record (step 3) are chosen uniformly
at random.

Reference [21] discusses the possibility of inserting and
removing strings from the positive image of a negative data-
base by manipulating the negative database itself. Some pre-
liminary experiments show that there is an explosion in the
size of the negative database when a new string is included
in the positive image, and that the difficulty of finding such
a string, using SAT solvers, is greatly reduced. The original
solution, however, remains effectively hidden.

3.2 Superfluous strings

A consequence of the above method for generating negative
databases, is the potential inclusion of extra strings in the
corresponding positive database. That is, DB ′—the reverse
of N DB—could include strings that are not in the original
DB from which it was created; we refer to these strings as
superfluous.1

Figure 5 displays the expected number of strings not rep-
resented by N DB (and hence members of DB ′) as a function
of their normalized Hamming distance to s—the true mem-
ber of DB—and shows that all superfluous strings are within
0.13 distance from s (for the given parameter settings).2

Increasing the value of r reduces the number of superflu-
ous strings; however, it also increases the size of the database
and, more importantly, leads to N DBs that are potentially
easier to reverse (see [1,3,28]).

To address the incidence of superfluous strings, we intro-
duce a scheme that allows us to distinguish, with high prob-
ability, the true members of DB from the artifacts. Rather
than creating an N DB using s as input, we construct a sur-
rogate string s′—appending to s the output of some function
F of s—and use it to generate N DB. The membership of
an arbitrary string u is established by computing F(u) and
testing whether u concatenated with F(u) is represented in
N DB. 3 The purpose of the function is to divide the possi-
ble DB ′ entries into valid and invalid—valid strings having

1 Note that DB ⊆ DB ′.
2 The definition of the plotted function is: f (α) = 1

αα(1−α)1−α(
1 − (q(1−α)+α)k−αk

(1+q)k−1

)r
, for details see [33].

3 Naturally F needs to be publicly known.

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

0−1 Normalized Hamming Distance

nt
h

ro
ot

 o
f n

um
be

r
of

 s
tr

in
gs

 n
ot

 m
at

ch
ed

 b
y

N
D

B

Number of strings not matched by NDB

r=5.5
r=6
r=7
r=8
r=9
r=10

Fig. 5 Number of strings not matched by N DB (members of DB ′) as
a function of the hamming distance to s—the original DB entry. The
plot shows the expected numbers for q = 0.5 and several r values: from
top to bottom r = 5.5, 6.0, 7.0, 8.0, 9.0, 10.0. An interplay between q
and r determines how difficult the N DB will be to reverse and how
many “extra” strings will go unmatched by N DB

the correct output of F appended to them—and reduce the
probability of including any unwanted valid strings in DB ′.

Consider a simple parity function that outputs 1 if its input
string has an even number of ones and 0 otherwise. The fol-
lowing table lists the strings s of a positive database, the
output of the parity function F , and the augmented strings s′.

s F(s) s′

000 1 0001

100 0 1000

101 1 1011

A negative database for string 000 is constructed using
string 0001 instead. To assess the membership of an arbi-
trary string u, 100 for instance, F(100) = 0 is computed and
1,000 checked against N DB. The benefit of the code is that,
even though string 1,001 may be superfluously included in
the positive image of N DB, it will be discriminated by the
use of F .

The choice of function impacts both the accuracy of recov-
ery (avoidance of superfluous strings) and the performance
of the database: the more bits appended to s, the less likely
to mistake a false string for a true one (assuming a reason-
able code) and the larger the resulting N DB. There is a wide
variety of codes that can be used for this purpose: parity bits,
checksums, CRC codes, and even hash functions like SHA-
256 with upwards of a 100 bits.4

4 It is important to emphasize that the proposed scheme relies on F
solely for reducing the incidence of false entries and not, in any way,
for the secrecy of the true ones.

123

408 F. Esponda et al.

65 70 75 80 85
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Probability of including at least one unwanted valid string

P
ro

ba
bi

lit
y

Code Length

Fig. 6 Probability of including an unwanted valid string as a
function of the error correcting code, c, according to 1−(1−2−c)|DB′ |.
|DB ′| denotes the expected number of strings unmatched by N DB; it
is calculated for a string length, l, of 1,000 and r = 5.5

To provide an idea of how the function impacts accuracy
we consider a general model which assumes, for simplic-
ity, valid strings are uniformly distributed and sampling with
replacement. The chance of randomly finding a valid string
is 2−c, where c is the number of bits introduced by the func-
tion. The probability of including an unwanted valid string
is 1 − (1 − 2−c)|DB′|, where |DB ′| is the number of strings
unmatched by N DB. The model illustrates (see Fig. 6) the
dependence of accuracy on the code size—the density of
valid strings—and the number of strings introduced by the
generation algorithm. Clearly, a sophisticated code such as
the CRC, which attempts to maximize the minimum ham-
ming distance between valid strings, will greatly increase
the accuracy of the generation scheme in Sect. 3.1.

3.3 Hardness

To illustrate how hard to reverse these N DBs are, we pro-
duced instances for strings ranging from 50 to 300 bits in
length and r = 5.5. Their difficulty is assessed by the ability
of well-established SAT-solvers to find a string in DB ′. There
are two types of solvers: complete and incomplete. Complete
solvers search the space exhaustively, while incomplete solv-
ers explore only a fraction of it and can handle much larger
instances (in terms of string length l); however, unlike com-
plete solvers, their failure to find a solution does not imply
that one does not exist.

Figure 7 shows the results for the zChaff complete solver
(zChaff is often the champion of the yearly SAT competition)
and Fig. 8 shows the results for WalkSAT, a well-known
incomplete solver (see Refs. [41,45,46]). The experiments
show that both zChaff and WalkSAT find a DB ′ entry in

50 100 150 200 250 300
10

1

10
2

10
3

10
4

10
5

zChaff performance

M
ed

ia
n

nu
m

be
r

of
 b

ra
nc

he
s

String length

Fig. 7 Running time of zChaff on N DB with strings of length l,
ranging from 50 to 300

50 100 150 200 250
10

4

10
5

10
6

10
7

10
8

WalkSAT performance

String length

M
ed

ia
n

nu
m

be
r

of
 fl

ip
s

Fig. 8 Running time of WalkSAT on N DB with strings of length l,
ranging from 50 to 300

time exponential in the length of the string l. Consider that
fully reversing N DB, i.e., finding all of the strings in DB ′,
will entail running the solver |DB ′| +1 times (the extra run is
to establish that there are no more strings left). Additionally,
we tested 100 N DBs with l = 1, 000 on zChaff and Walk-
SAT, as well as on two other solvers: SATz and SP (the first
complete the second incomplete). No DB ′ entry was found
for any of them before the incomplete solvers terminated and
the complete solvers ran out of memory or timed out after
24 h (the default timeout value for zChaff).5

5 The experiments were carried out on machines with AMD Athlon 64
processors 3700+, running at 2.2 GHz with 2 GB memory under Linux
2.6.17.9.

123

Protecting data privacy through hard-to-reverse negative databases 409

Fig. 9 A sample DB with possible N DB(s) (N DB(∅) represents the
empty set). The final N DB collects all N DB(s)’s. Note that the output
of the algorithm presented in Sect. 3 generates N DB(s)’s with exactly
three specified bits per record and does not exactly represent U -DB;
the present example, however, serves to illustrate the non-monolithic
structure of the final N DB

3.4 Multi-record negative databases

The preceding section explored how to create a hard-to-
reverse negative representation of a DB with zero or one
entries; now, we briefly outline how this can be extended for
DBs of an arbitrary size—the work in [20,22] is concerned
with creating negative databases for any DB, regardless of
its size, but does not show that the instances they output are
hard to reverse in practice.

Our scheme can be used to generate the negative repre-
sentation of any set of strings DB by creating an individual
N DB(s) for each string s in DB, i.e., each record in the
resulting N DB is itself some negative database (see Fig. 9).
Under this architecture a string x is considered to be a mem-
ber of DB if and only if x is not represented in at least one
N DB(s).

It is important to point out that all N DB(s)’s are the same
size (and are thus indistinguishable by this measure) and that
some may represent the empty (positive) set.

Compare this scheme to the method described in [20,22]
and the examples in Fig. 1, where a monolithic N DB repre-
sents all of DB. First, there is additional information leak-
age,6 as the size of the underlying DB can be bounded by
the number of records (N DB(s)’s) in N DB—a bound, since
N DB may contain any number of records that represent the
empty set. Second, an N DB created in this manner is much
easier to update: removing a string s from DB is imple-
mented as finding which records in N DB represent s and
deleting them; inserting s into DB amounts to generating
its corresponding N DB(s) and appending it as a record to
N DB. The result is a database in which updates take linear
time (or better) and whose size remains linear in |DB|. More-
over, our scheme allows many operations to be parallelized,
given that the database can be safely divided into subsets of
records and the results easily integrated. This contrasts with
the databases and update operations presented in [20], where
a single “insert into DB” requires access to all of N DB, runs
in O(l4|N DB|2|) time, and may cause the database to grow
exponentially when repeatedly applied. Finally, the nature

6 Determining the size of DB from a hard-to-reverse N DB is an intrac-
table problem.

of updates remain ambiguous to an observer, given that a
record can represent the empty set and that different records
(different N DB(s)’s) can stand in for the same DB entry.

We foresee other differences between the two schemes as
more complex operations such as joins, projections, intersec-
tion, unions, etc., are investigated in the context of negative
representations of data.

4 Properties and applications

In this section we summarize the properties of our approach
and create an imaginary scenario that points to ways in which
negative databases might be used. We start with a brief
description of each property:

Hard to reverse: The results presented in this paper provide
evidence that negative databases can be used to constrain
the type of inferences drawn from a dataset DB. The only
queries that can be processed efficiently are authentica-
tion queries of the form “Is s in DB?”

Singleton negative databases: A singleton negative database
is the negative representation of a single binary string or
of no string at all. In our approach, a singleton hard-to-
reverse negative database, N DB(s), is created for every
record s in DB. The collection of all N DB(s) comprise
a multi-record negative database.

Easy to update: Adding and deleting entries from the neg-
ative database is easily done by inserting or removing
singletons from a multi-record negative database.

Obfuscated size: The size of the positive image correspond-
ing to some N DB, is obfuscated by the fact that it is hard
to distinguish singleton negative databases that represent
the empty set, from those that do not. A multi-record
N DB can be constructed that contains an arbitrary num-
ber of N DB(∅) (representing the empty DB), revealing
only an upper bound to the size of DB.

Probabilistic: A particular binary string s has many possible
negative database representations; the creation process
(see Figs. 3, 4) chooses one probabilistically. It is hard to
determine if two singleton negative databases represent
the same string.

String based: One of the more salient features of our scheme
is that it is based on string matching. This permits us
to meaningfully affect a positive image by manipulating
the entries of its negative database. Refs. [19,20] discuss
some applications of this idea. In the coming paragraphs
we present an operation that illustrates the usefulness of
this property.

The following scenarios serve to exhibit and further clarify
the properties of hard-to-reverse negative databases. In these

123

410 F. Esponda et al.

examples, each party is the owner of some positive dataset
and certain operations are to be performed on some or all of
these sets. A collection of hard-to-reverse singleton negative
databases provides the vehicle for exchanging data without
revealing the contents or size of the positive image. Both of
the situations illustrate how datasets with different attributes,
or fields, can be manipulated in their negative representations
to accomplish specific membership queries. We omit a rigor-
ous security analysis for this particular setup, as the purpose
here is to exemplify the features of negative databases and
suggest possible avenues of application.

A surveillance agency, S, wishes to track the behavior of
a group of individuals whose identifying information, name
and credit-card number, is kept in a watch-list DBS . The data
of interest is generated by assorted businesses, such as air-
lines, home improvement stores, libraries, phone companies,
etc. These agents are eager to cooperate with S but wish to
safeguard, as much as possible, consumer privacy and sen-
sitive information regarding their operations. S’s purpose is
to determine purchasing patterns of specific products dur-
ing certain time periods; it wishes to find the intersections
between its watch-list and the businesses’ databases.

Each business is to create a multi-record negative data-
base, as described in Sect. 3.4, of the tuples

<name, credit-card number, month, year>

appearing in the transactions for a particular product—the
month and year refer to when the transaction took place. S
will receive, for each product it solicits and for each business,
one such negative database.

Consider three business agents: two travel agencies and
one home improvement store. Let DBA and DBB be data-
bases of airplane ticket purchases from agencies A and B, and
N DBA and N DBB their corresponding negative databases.
Likewise, let N DBH be the negative database of acquisitions
from store H of certain garden supplies. The following three
tables give some example databases and their corresponding
negative representations—note that the negative databases
presented below were hand-crafted for clarity, and not the
product the algorithm of Fig. 3. For simplicity every field in
the tuple <name, credit-card number, month, year> occu-
pies one bit, and the error correcting code used to eliminate
superfluous strings (see Sect. 3.2) is omitted. Likewise, we
forego depicting any negative database that represents the
empty positive set—the inclusion of such databases would
help conceal the number of items in each DB (see Sect. 3.4).

DBA N DBA(0) N DBA(4)

0000 1*** 1***

0100 01** 00**

01 0*1*

*0*1 *1*1

DBB N DBB(0) N DBB(10) N DBB(15)

0000 1*** 0*** 0***

1010 0*1* 1*0* 1*0*

1111 01** 11** 10**

01 *0*1 10

DBH N DBH(0) N DBH(4) N DBH(10)

0000 ***1 ***1 ***1

0100 **10 1**0 **00

1010 1**0 *0*0 00**

*1*0 **10 *1*0

S receives N DBA = {N DBA(0), N DBA(4)} from
A; N DBB = {N DBB(0), N DBB(10), N DBB(15)} from B;
and N DBH = {N DBH(0), N DBH(4), N DBH(10)} from H .
The subscripts on the labels in each negative database are
used for exposition purposes only and would not be used to
betray their contents in a real application.

New items can be individually transmitted to S and added
to the multi-record N DB. S can also easily consolidate da-
tabases submitted by different businesses, and can readily
dispose of entries it deems no longer useful.

Note that the length of the strings in the watch-list DBS are
not of the same length as strings in the businesses’ databases,
the latter have the additional fields for the month and year
the transaction took place. For S to query a negative database
about the membership of any string from its watch-list it will
need to augment it with a specific month and year. We refer
to a set of augmented strings as DB ′

S . Let the surveillance
agency’s watch-list be DBS = {00, 10}; the augmented set
for the fixed year value of “0” and the augmented set for the
fixed month of “1” are:

DBS DB ′
S(year=‘0’) DB ′

S(month=‘1’)
00 0000 0010

10 0010 0011

1000 1010

1010 1011

Note that for a fixed year, all bit combinations representing
the month are generated for each DB’s string, and likewise
when the month is fixed.

4.1 Extracting information

We now examine how some information can be extracted
from the negative databases using S’s watch-list.

Let DB ′
S − N DB denote the set of strings represented

in the positive database DB ′
S that are not also represented—

matched by any entry—in the negative database N DB. This
is, in effect, the intersection of DB ′

S and the positive image
of N DB. For the case in which N DB is a multi-record neg-
ative database, we compute the operation as the union of the
individual differences:

DB ′
S −N DB = ⋃

(DB ′
S − N DB(i))

123

Protecting data privacy through hard-to-reverse negative databases 411

S can determine if anybody in its watch-list, DBS , has
bought an airplane ticket from A or from B during 2006 (e.g.,
year=‘0’), i.e., (DB ′

S ∩ DBA)∪ (DB ′
S ∩ DBB), by assessing

the membership of each DB ′
S string in N DBA and N DBB ,

this is, by computing (DB ′
S − N DBA) ∪ (DB ′

S − N DBB).
In our running example

DB ′
S − N DBA = (DB ′

S −N DBA(0)) ∪ (DB ′
S −N DBA(4))

= {0000}

and

DB ′
S −N DBB = (DB ′

S −N DBB(0))∪(DB ′
S −N DBB(10))

∪ (DB ′
S − N DBB(15)) = {0000, 1010},

yield {0000, 1010} as the end result of the operation.
Now suppose S wishes to find out which entries in the

watch-list have bought a ticket from A and a garden sup-
ply from H during 2006, i.e., DB ′

S ∩ DBA ∩ DBH . We can
rewrite this expression as (DB ′

S ∩ DBA) ∩ (DB ′
S ∩ DBH).

Using the corresponding negative databases, the operation is
implemented as (DB ′

S − N DBA) ∩ (DB ′
S − N DBH). In our

running example, this results in the set {0000}.
Other information such as the common elements between

DBA, DBB and DBH that are not also in the annotated
watch-list cannot be accomplished efficiently. Inspecting
N DBA, N DBB and N DBH does not reveal this informa-
tion, since the particular singleton negative database for each
<name, credit-card number,month, year > tuple is chosen
at random among the many possibilities—negative databas-
es representing the same set of elements look completely
different (see the example for, N DBA(4) and N DBH(4), for
instance). Moreover, since the databases are hard-to-reverse,
arbitrary explorations are inefficient (note that the strings in
our running example are by necessity of a short length and,
therefore, their corresponding databases not hard to reverse).
Information such as how many transactions businesses have
in common, or purchasing patterns of individuals not specif-
ically sought for, cannot be readily attained. This could be
of importance for agency A if for some reason N DBA were
to fall into its competitors hands. Further, multi-record neg-
ative databases hide the exact number of strings contained
in its positive counterpart, due to the possibility that some
singleton databases might represent the empty set—only an
upper bound to its size can be gleaned.

4.2 Modifying a negative database

One important characteristic of negative databases is that
data—the positive information—is not scrambled or trans-
formed in an unpredictable manner, as it would be if it was
encrypted or hashed. Rather, something else is kept in its
place, a representation of its complement set that retains the
same semantics for each string position. This property allows

Fig. 10 Algorithm for creating a negative database for the strings in
positive database DB that exhibit bit pattern v at positions Υ . The
output N DB ′ is defined for strings of length l − |Υ | by omitting the Υ
positions, where l is the of strings in DB

for some operations to be carried out on negative databases
without specific knowledge of their actual content.

In the following, we explore an operation, first suggested
in [19], akin to a “Select” and a “Project” on a positive data-
base, that restricts the contents of a positive database using
only its negative counterpart.

Enter agent O owner of database DBO , perhaps another
watch-list of names and credit-card numbers. S, the surveil-
lance agency, is interested to know if any of the elements in
O’s watch-list are also in a subset of A’s database. S does
not want O or A to know they are participants in the same
investigation or to reveal details such as which subsets of
A—the criteria with which they are selected—are of inter-
est. O is unwilling to relinquish DBO to S, but will return any
subset that intersects with SA. Unlike the scenario in which
S wanted to know the intersection of its own database and
someone else’s, having the negative database N DBO does
not serve this purpose. Recall that establishing the intersec-
tion between two negative databases cannot be accomplished
by comparing the two.

The strategy is for S to generate a version of A’s nega-
tive database that represents the restricted version of DBA.
This needs to be accomplished using N DBA and without
knowledge of the contents of DBA itself.

For the purpose of the current discussion we are interested
in selecting the strings in DBA that have a certain value v

at positions Υ —Υ is a string position vector and v specifies
the bit values at each position. For example, we might want
the subset of DBA of strings that have month=0; here month
specifies the string position Υ and ‘0’ the specific value that
position must have.

Selecting a subset of this form is implemented using a neg-
ative database by modifying its entries so that every string
satisfying the selection criteria is matched. Figure 10 gives
the pseudocode for this particular kind of projected select.

123

412 F. Esponda et al.

Line 1 of the algorithm selects all the strings in the nega-
tive database that match the input bit pattern. For each such
string s, line 1a creates a new string that is exactly the same
as s, but with the Υ positions removed—the new string is of
length l − |Υ |, where l is the length of s and |Υ | the number
of positions specified in the matching criterion. The removal
of string positions serves two purposes: to conceal the selec-
tion criteria and to avoid including unwanted strings in the
positive image. Consider not removing the Υ positions and
setting them to v; then not only is v revealed but the corre-
sponding positive database will also include all strings that
do not have v at their Υ positions, an unwanted side-effect.
By removing Υ we ensure that the only strings that are not
represented are those strings in the original positive database
that have v in Υ .

Back to our running example, suppose that S wishes to
determine the name and credit-card numbers of individuals
that bought a plane ticket from A during month ‘0’ that also
appear in O’s watch-list. S can accomplish this by selecting
from N DBA, according to Fig. 10 (see example below), those
records with month=‘0’ and sending O the negative databas-
es N DB ′

A(0) and N DB ′
A(4) of the tuples <name, credit-card

number, year >. O can then return to S only those entries in
DBO that are not matched by both N DB ′

A(0) and N DB ′
A(4)

for years ‘1’ and ‘0’—recall that O will need to augment its
database with a year field.

N DBA(0) N DB ′
A(0) (month =‘0’)

1*** 1**

01** 01*

∗01* *01

∗0*1

N DBA(4) N DB ′
A(4) (month =‘0’)

1*** 1**

00** 00*

0*1* *11

∗1*1

Suppose O’s database is DBO = {01, 11}. Then, by cre-
ating the annotated database DB ′

0 for both years ‘1’ and ‘0’:

DBO DB ′
O

01 010

11 011

110

111

O can determine that ‘010’ is the only entry in DB ′
O not

present in at least one negative database (N DB ′
A(4) in this

case) and can therefore return entry ‘01’ to S. Only S knows
this is the intersection of O’s data with A’s information for

transactions during month ‘0’. O knows only that customer
‘01’ is in the negative database provided by S.

Finally, we turn back to our original scheme in which
strings in DB have a code appended to them. In Sect. 3.2 we
discussed how some strings can be included in the positive
image of a negative database using the algorithm of Fig. 3,
and how appending a code to each DB string, before creating
N DB, can help alleviate this phenomenon. If a negative data-
base is going to be operated upon as suggested in this section,
then care should be taken as to how the code is generated
so that the negative database can be modified accordingly.
Recall that the code is the product a function of each positive
string s and that the code is needed for consulting N DB;
therefore, altering a negative database without adjusting the
code renders it useless. The code should be easily modified
without knowing the contents of the positive database. One
straight forward alternative is to compute a separate code
for each field in s, where a field is understood to be a sub-
set of the bit positions of s and all fields are disjoint. In this
manner, operating on a negative database using the algorithm
discussed in Fig. 10 requires including the code in v and the
code’s position in Υ .

5 Related work

Reference [22] introduced the concept of negative informa-
tion, presented negative databases (N DBs) as a means to
compactly represent negative information, and pointed to the
potential of N DBs to conceal data. Additional properties of
representing information in this way are outlined in [19]. To
date, there are three basic algorithms for creating N DBs: the
Prefix algorithm [22] is deterministic and always creates a
N DB that is easy to reverse; the Randomized algorithm [22]
is non-deterministic and can theoretically produce hard-to-
reverse N DBs, but the required settings are unknown; and
finally the On-line algorithms [20,21] designed to update
N DBs (insert and delete strings) rely on having an already
hard-to-reverse N DB for their security.

There are many other topics that relate to the ideas
discussed in this paper. Most relevant are the techniques
for protecting the contents of databases—database encryp-
tion, zero-knowledge sets, privacy-preserving data mining
and query restriction—security systems based on NP-hard
assumptions, and one-way functions.

Some approaches for protecting the contents of a database
involve the use of cryptographic methods [9,25,26,49], for
example, by encrypting each record with its own key. Zero-
knowledge sets [39,44] provide a primitive for constructing
databases that have many of the same properties as nega-
tive databases; namely, the restriction of queries to simple
membership. However, they are based on widely believed
cryptographically secure methods (to which N DBs are an

123

Protecting data privacy through hard-to-reverse negative databases 413

alternative), require a controlling entity for answering queries,
and are difficult to update.

In privacy-preserving data mining, the goal is to protect
the confidentiality of individual records while supporting
certain data-mining operations, for example, by computing
aggregate statistical properties [4,5,7,14,18,48,49]. In one
example of this approach (Ref. [7]), relevant statistical distri-
butions are preserved, but the details of individual records are
obscured. Negative databases contrast with this, in that they
support simple membership queries efficiently, but higher
level queries may be expensive.

Negative databases are also related to query restriction
[12,14,15,37,48], where the query language is designed to
support only the desired classes of queries. Although query
restriction controls access to the data by outside users, it
cannot protect from an insider with full privileges inspecting
individual records.

Cryptosystems reliant on NP-complete problems [24]
have been previously studied, e.g., the Merkle-Hellman cryp-
tosystem [38], which is based on the general knapsack prob-
lem. These systems rely on a series of tricks to conceal the
existence of a “trapdoor” that permits retrieving the hidden
information efficiently (N DBs have no trapdoors); however,
almost all knapsack cryptosystems have been broken [43].
There is a large body of work regarding the issues and tech-
niques involved in generating hard-to-solve NP-complete
problems [31,32,38,43] and in particular of SAT instances
[13,40]. Much of this work is focused on the case where for-
mulas are generated without knowledge of their specific solu-
tions. Efforts concerned with the generation of hard instances
possessing some specific solution, or solutions with some
specific property include [2,27,33].

One-way functions [29,42] and one-way accumulators [8,
11] take a string or set of strings and produce a digest from
which it is difficult to obtain the original input. One distinc-
tion between these methods and negative databases is that
the output of a one-way function is usually compact, and
the message it encodes typically has a unique representation
(making it easy to verify if a string corresponds to a certain
digest). Probabilistic encryption studies how a message can
be encrypted in several different ways [10,30].

In Sect. 4 we provide a scenario whereby, among other
things, an agent can privately learn what items from its data-
base are also present in someone else’s data set. This
problem is formally known as private matching and sev-
eral traditional cryptographic techniques have been used to
address it, see for example [6,35,36]. One interesting feature
of our approach, however, is that it allows altering a nega-
tive database to restrict the contents of its positive image,
which opens the door to more flexible schemes, as discussed
in Sect. 4.

As the availability of data, the means to access it, and its
uses increase, so do our requirements for its security and our

privacy. There is no single solution for all of our demands,
as evidenced by the many methods reviewed in this section;
hard-to-reverse N DBs, with their unique characteristics, are
an addition to this toolbox.

6 Discussion and conclusions

In this paper we took the work presented in [19,20,22] and
addressed some of its practical concerns. In particular, the
previous work outlines algorithms that are expected to gen-
erate hard-to-reverse N DBs once their parameters are appro-
priately set; however, no hints on what their values should
be or evidence of them generating any hard instances is pro-
vided. The present paper introduced a novel and efficient
way to generate negative databases that are extremely hard
to reverse—for which it is hard to find the values of their
positive image. The scheme takes advantage of the relation-
ship the negative data representation has with SAT formu-
lae and borrows from that field a technique for generating
the database and the means to test its reversal difficulty. The
method we adopted creates an inexact negative image of DB,
in that the resulting N DB negatively represents DB along
with a few additional strings. We addressed this issue with
the inclusion of error detecting codes that help distinguish
between DB and the extra, superfluous strings.

In addition, our design departs significantly from the pre-
vious work’s construction of negative databases by securing
the contents of the database on a per record basis, i.e., we
create a hard-to-reverse N DB(s) for each entry s in DB, the
collection of which constitutes our N DB. The present work
sketched this setup and outlined some of its characteristics;
our current efforts include exploring these database construc-
tions and its applications in more detail.

We showed how negative databases can be manipulated to
meaningfully restrict the contents of its positive image, with-
out explicit knowledge of what the content of this image actu-
ally is. An imaginary scenario was presented that highlights
all the properties of our approach and suggests applications
for which it might be appropriately suited.

We have also demonstrated how knowledge from the well-
established field of SAT can be successfully adapted for
the creation and evaluation of negative databases, albeit not
always straightforwardly—witness our need to introduce
error detecting codes. We expect that more tools and tech-
niques will be transfered in the future, and that better tech-
nologies for SAT, e.g., harder formulas to solve, will lead
to improved techniques for negative databases and vice
versa.

Finally, we are optimistic that some of the problems pre-
sented by sensitive data can be addressed by tailoring a neg-
ative representation to its particular requirements.

123

414 F. Esponda et al.

Acknowledgments The authors gratefully acknowledge the support
of the National Science Foundation (grants CCR-0331580 and CCR-
0311686, and DBI-0309147), Motorola University Research Program,
and the Santa Fe Institute. We additionally want to thank our review-
ers for their helpful comments. F.E. dedicates this paper to his father,
Tachis.

References

1. Achlioptas, D., Beame, M.: A sharp threshold in proof complexity.
In: STOC: ACM Symposium on Theory of Computing (STOC)
(2001)

2. Achlioptas, D., Gomes, C., Kautz, H., Selman, B.: Generating
satisfiable problem instances. In: Proceedings of AAAI-00 and
IAAI-00, pp. 256–261. AAAI Press, Menlo Park (2000)

3. Achlioptas, D., Peres, Y.: The threshold for random k-SAT is 2k

log 2−O(k). JAMS: J. Am. Math. Soc. 17 (2004)
4. Adam, N.R., Wortman, J.C.: Security-control methods for statisti-

cal databases. ACM Comput. Surv. 21(4), 515–556 (1989)
5. Agrawal, D., Aggarwal, C.C.: On the design and quantification

of privacy preserving data mining algorithms. In: Symposium on
Principles of Database Systems, pp. 247–255 (2001)

6. Agrawal, R., Evfimievski, A., Srikant, R.: Information sharing aoss
private databases. In: SIGMODIC: ACM SIGMOD Interantional
Conference on Management of Data (2003)

7. Agrawal, R., Srikant, R.: Privacy-preserving data mining. In: Pro-
ceedings of the ACM SIGMOD Conference on Management of
Data, pp. 439–450. ACM Press, New York (2000)

8. Benaloh, J.C., de Mare, M.: One-way accumulators: a decentral-
ized alternative to digital signatures. In: Advances in cryptology—
EUROYPT ’93, pp. 274–285 (1994)

9. Blakley, G.R., Meadows, C.: A database enyption scheme which
allows the computation of statistics using enypted data. In: Proceed-
ings of the IEEE Symposium on Research in Security and Privacy,
pp. 116–122. IEEE CS Press (1985)

10. Blum, M., Goldwasser, S.: An efficient probabilistic public-
key enyption scheme which hides all partial information. In:
Blakely, G.R., Chaum, D. (eds.) Advances in cryptology:
proceedings of CRYPTO 84, Lecture Notes in Computer Science,
vol. 196, pp. 289–302. Springer, Berlin, Germany/Heidelberg,
Germany/London, UK/etc. (1985)

11. Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and appli-
cation to efficient revocation of anonymous edentials. In: Yung, M.
(ed.) Advances in cryptology—CRYPTO’ 2002, Lecture Notes in
Computer Science, vol. 2442, pp. 61–76. International Association
for cryptologic Research, Springer, Berlin (2002)

12. Chin, F.: Security problems on inference control for sum, max, and
min queries. J. ACM 33(3), 451–464 (1986)

13. Cook, S.A., Mitchell, D.G.: Finding hard instances of the satisfi-
ability problem: a survey. In: Du, D., Gu, J., Pardalos, P.M. (eds.)
Satisfiability Problem: Theory and Applications, Dimacs Series in
Disete Mathematics and Theoretical Computer Science, vol. 35,
pp. 1–17. American Mathematical Society (1997)

14. Denning, D.: Cryptography and Data Security. Addison-Wesley,
Reading (1982)

15. Denning, D., Schlorer, J.: Inference controls for statistical databas-
es. Computer 16(7), 69–82 (1983)

16. Denning, D.E., Denning, P.J., Schwartz, M.D.: The tracker: a
threat to statistical database security. ACM Trans. Database
Syst. 4(1), 76–96 (1979)

17. Denning, D.E., Schlorer, J.: A fast procedure for finding a tracker
in a statistical database. ACM Trans. Database Syst. 5(1), 88–
102 (1980)

18. Dobkin, D., Jones, A., Lipton, R.: Secure databases: Protection
against user influence. ACM Trans. Database Syst. 4(1), 97–
106 (1979)

19. Esponda, F.: Negative representations of information. Ph.D. thesis,
University of New Mexico (2005)

20. Esponda, F., Ackley, E.S., Forrest, S., Helman, P.: On-line negative
databases. In: Proceedings of ICARIS (2004)

21. Esponda, F., Ackley, E.S., Forrest, S., Helman, P.: On-line neg-
ative databases (with experimental results). Int. J. Unconv. Com-
put. 1(3), 201–220 (2005)

22. Esponda, F., Forrest, S., Helman, P.: Enhancing privacy through
negative representations of data. University of New Mexico, Tech-
nical report (2004)

23. Esponda, F., Forrest, S., Helman, P.: Negative representations of
information. Int. J. Inform. Secur. (2004) (Submitted)

24. Even, S., Yacobi, Y.: Cryptography and np-completeness. In: Pro-
ceedings 7th Colloq. Automata, Languages, and Programming.
Lecture Notes in Computer Science, vol. 85, pp. 195–207. Springer-
Verlag (1980)

25. Feigenbaum, J., Grosse, E., Reeds, J.A.: Cryptographic protection
of membership lists 9(1), 16–20 (1992)

26. Feigenbaum, J., Liberman, M.Y., Wright, R.N.: Cryptographic
protection of databases and software. In: Distributed Comput-
ing and cryptography, pp. 161–172. American Mathematical Soci-
ety (1991)

27. Fiorini, C., Martinelli, E., Massacci, F.: How to fake an RSA sig-
nature by encoding modular root finding as a SAT problem. Disete
Appl. Math. 130(2), 101–127 (2003)

28. Gent, I.P., Walsh, T.: The SAT phase transition. In: Proceedings
of the Eleventh European Conference on Artificial Intelligence
(ECAI’94), pp. 105–109 (1994)

29. Goldreich, O.: Foundations of cryptography: Basic Tools. Cam-
bridge University Press, Cambridge (2000)

30. Goldwasser, S., Micali, S.: Probabilistic enyption. J. Comput. Syst.
Sci. 28(2), 270–299 (1984)

31. Impagliazzo, R., Levin, L.A., Luby, M.: Pseudo-random generation
from one-way functions. In: Proceedings of the twenty-first annual
ACM symposium on Theory of computing, pp. 12–24. ACM,
New York (1989)

32. Impagliazzo, R., Naor, M.: Efficient cryptographic schemes prov-
ably as secure as subset sum. In: IEEE (ed.) 30th annual Sympo-
sium on Foundations of Computer Science, October 30–November
1, 1989, Research Triangle Park, NC, pp. 236–241. IEEE Com-
puter Society Press, 1109 Spring Street, Suite 300, Silver Spring,
MD 20910, USA (1989)

33. Jia, H., Moore, C., Strain, D.: Generating hard satisfiable formulas
by hiding solutions deceptively. In: AAAI (2005)

34. Kautz, H.A., Ruan, Y., Achlioptas, D., Gomes, C., Selman, B.,
Stickel, M.E.: Balance and filtering in structured satisfiable prob-
lems. In: IJCAI, pp. 351–358 (2001)

35. Li, Y., Tygar, J., Hellerstein, J.: Private matching. In: Lee, D., Shieh,
S., Tygar, J. (eds.) Computer Security in the 21st Century, pp. 25–
50. Springer, Berlin (2005)

36. Freedman, M., Nissim, K., Pinkas, B.: Efficient private matching
and set intersection. In: Advances in cryptology — Euroypt ’2004
Proceedings, LNCS 3027, pp. 1–19. Springer (2004)

37. Matloff, N.S.: Inference control via query restriction vs. data mod-
ification: a perspective. In: on Database Security: Status and Pros-
pects, pp. 159–166. North-Holland, Amsterdam (1988)

38. Merkle, R.C., Hellman, M.E.: Hiding information and signatures
in trapdoor knapsacks. vol. IT-24, pp. 525–530 (1978)

39. Micali, S., Rabin, M., Kilian, J.: Zero-knowledge sets. In: Proceed-
ings FOCS 2003, p. 80 (2003)

40. Mitchell, D., Selman, B., Levesque, H.: Problem solving: hard-
ness and easiness—hard and easy distributions of SAT problems.

123

Protecting data privacy through hard-to-reverse negative databases 415

In: Proceeding of (AAAI-92), pp. 459–465. AAAI Press, Menlo
Park (1992)

41. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.:
Chaff: engineering an efficient SAT solver. In: Proceedings of the
38th Design Automation Conference (DAC’01) (2001)

42. Naor, M., Yung, M.: Universal one-way hash functions and their
cryptographic applications. In: Proceedings of the Twenty First
Annual ACM Symposium on Theory of Computing: Seattle, Wash-
ington, May 15–17, 1989, pp. 33–43. ACM, New York (1989)

43. Odlyzko, A.M.: The rise and fall of knapsack cryptosystems.
In: Pomerance, C., Goldwasser, S. (eds.) cryptology and Com-
putational Number Theory, Proceedings of symposia in applied
mathematics. AMS short course lecture notes, vol. 42, pp. 75–88.
pub-AMS (1990)

44. Ostrovsky, R., Rackoff, C., Smith, A.: Efficient consistency proofs
for generalized queries on a committed database. In: ICALP:
Annual International Colloquium on Automata, Languages and
Programming, pp. 1041—1053 (2004)

45. Princeton: zChaff. http://ee.princeton.edu/˜chaff/zchaff.php (2004)
46. Selman, B., Kautz, H.A., Cohen, B.: Local search strategies for

satisfiability testing. In: Trick, M., Johnson, D.S. (eds.) Proceed-
ings of the Second DIMACS Challange on Cliques, Coloring, and
Satisfiability. Providence (1993)

47. Shaw, P., Stergiou, K., Walsh, T.: Arc consistency and quasigroup
completion. In: Proceedings of ECAI98 Workshop on Non-binary
Constraints (1998)

48. Tendick, P., Matloff, N.: A modified random perturbation method
for database security. ACM Trans. Database Syst. 19(1), 47–63
(1994). DOI http://doi.acm.org/10.1145/174638.174641

49. Wayner, P.: Translucent databases. Flyzone Press (2002)

Authors Biography

Fernando Esponda received his
degree in computer engineering
from the Instituto Tecnológico
Autónomo de México (ITAM),
Mexico City, 1995, and his Ph.D.
in Computer Science from the
University of New Mexico in
2005. His research interests are
in biologically inspired com-
puting, computer security and
machine learning.

Elena Settanni Ackley received
her MS in Computer Science
from the University of New Mex-
ico. She has been working on the
Negative Database project since
2003 as a Research Scientist.

Haixia Jia is a Ph.D. student
in the Computer Science Depart-
ment of the University of New
Mexico. She is an NSF Graduate
Research Fellow (2004–2007).

Paul Helman was born in
Brooklyn, NY, in 1954. He
received the BA from Dickinson
College in 1976, the MS from
Stanford University in 1977, and
the Ph.D. from the University of
Michigan in 1982. Currently, he
is Professor of Computer Science
at the University of New Mexico.
Dr. Helman’s research interest
include bioinformatics, machine
learning, data mining, database
theory, and combinatorial opti-
mization. He also has authored

two computer science text books, Walls and Mirrors, and The Science
of Database Management.

Stephanie Forrest is Profes-
sor of Computer Science at the
University of New Mexico in
Albuquerque. Professor Forrest
received her Ph.D. in Computer
and Communication Sciences
from the University of Michigan.
Before joining UNM she worked
for Teknowledge Inc. and was a
Director’s Fellow at the Center
for Nonlinear Studies, Los Ala-
mos National Laboratory. She is
currently a member of the Santa
Fe Institute science board and

external faculty, and served as SFI’s Interim Vice President 1999–2000.
Her research interests are in adaptive systems, including genetic algo-
rithms, computational immunology, biological modeling, and computer
security.

123

