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Abstract—When wireless sensor networks accumulate sensitive
or confidential data, privacy becomes an important concern.
Sensors are often resource-limited and power-constrained, and
data aggregation is commonly used to address these issues.
However, providing privacy without disrupting in-network data
aggregation is challenging. Although privacy-preserving data
aggregation for additive and multiplicative aggregation func-
tions has been studied, nonlinear aggregation functions such
as maximum and minimum have not been well addressed. We
present KIPDA, a privacy-preserving aggregation method, which
we specialize for maximum and minimum aggregation functions.
KIPDA obfuscates sensitive measurements by hiding them among
a set of camouflage values, enabling k-indistinguishability for data
aggregation. In principle, KIPDA can be used to hide a wide
range of aggregation functions, although this paper considers
only maximum and minimum. Because the sensitive data are not
encrypted, it is easily and efficiently aggregated with minimal in-
network processing delay. We quantify the efficiency of KIPDA
in terms of power consumption and time delay, studying trade-
offs between the protocol’s effectiveness and its resilience against
collusion.

I. INTRODUCTION

Wireless sensor networks (WSNs), collecting measurements
of our daily activities [1], [2], combine, massage or filter data
before they reach a final destination, a process known as data
aggregation. This paper addresses the problem of maintaining
privacy during data aggregation.

While data passes through a network, the limited computa-
tional power inside the network can be exploited to aggregate
data along its path. Instead of each data value traveling to
the base station, information is combined along the way to
conserve bandwidth. Data aggregation is more challenging
when privacy and security are a concern, as information can
potentially be disclosed either to outside observers or neigh-
boring nodes in the network. Due to limited resources such as
memory, power, and computation, mainstream solutions such
as public key asymmetric encryption are problematic in this
domain.

Privacy-preserving data aggregation (PDA) for additive ag-
gregation based on the algebraic properties of polynomials
and addition [3], homomorphic encryption [4], [5], and per-
turbation techniques [6], [7] have been well addressed in
WSNs. However, research efforts on PDA for more general
nonlinear aggregation functions, such as maximum (MAX)
and minimum (MIN), have been limited. This paper presents

KIPDA, a light weight k-indistinguishable solution to PDA
for general aggregation functions, which we present in the
specialized case of MAX and MIN functions.

Current encryption based schemes, either end-to-end or hop-
by-hop, are not well-suited for the general data aggregation
problem. End-to-end encryption establishes a secure channel
between a sensor node and the base station, preventing in-
network aggregation altogether. With hop-by-hop encryption,
a node receives encrypted data, decrypts it, aggregates it, re-
encrypts the aggregate and then sends the data to the next hop,
incurring excess overhead and not guaranteeing privacy at the
aggregators.

We propose a non-cryptographic method which obfuscates
data by adding a set of camouflage values. In our method,
the aggregates, referred to as real values, are in plain text so
the aggregation computation is efficient. Privacy arises from
hiding these real values among camouflage values in a message
set1. We define a message set for MIN/MAX aggregation as
the union of the single real value with the camouflage values
that a node transmits to its parent in the data aggregation tree,
usually in one packet.

This is a form of k-indistinguishability, where a single value
is indistinguishable from k − 1 other values. We show that
this method consumes considerably less power than end-to-end
encryption, and is more power and time efficient than hop-by-
hop encryption. Our method is similar to a global symmetric
key solution [8], except that each node possesses a random
part of the global key. Only when enough nodes collude or
are captured by adversaries will privacy be broken.

Several applications could benefit from KIPDA for
MAX/MIN aggregation. Intelligent or smart meters for electric
utilities are an example where individual usage data are sent
to the utility company, which then sends real-time data back to
the end user, to encourage energy conservation. Information
from the meter is usually sent over an existing cell phone
infrastructure, radio transmission, or other unsecured network.
These public third-party networks need protection [1]. Infor-
mation such as the MAX or MIN of certain appliances or users
in a neighborhood can be compromised. Another potential
application class arises in medicine, where a medical worker

1While we refer to a message set as a set, it is technically a vector or a
one dimensional array of values.



does not have the time or resources to monitor a large group
of patients individually. Determining the MAX or MIN value
of an indicator could show that the entire group is within
the normal range, or that further investigation is warranted.
A similar idea could be used to triage patients at a disaster
site [2] or to monitor hazardous substances.

The remainder of the paper is organized as follows: Section
II gives the background and model assumptions of our re-
search. Section III provides an overview of the protocol, and
Section IV presents it in detail. Section V analyzes the power
consumption of KIPDA and compares it to similar techniques.
Section VI discusses related work, and Section VII outlines
ideas for future work and concludes the paper.

II. MODEL AND ASSUMPTIONS

A. Data Aggregation in WSNs

We model a sensor network as a connected graph G(V, E),
where sensor nodes are represented as vertices V , and wireless
links as edges E . The number of sensor nodes is defined as
N = |V|. A data aggregation function is defined as y(t) ,
f(d1(t), d2(t), · · · ,dN (t)), where di(t) is the individual sensor
reading at time t for node i. Aggregation from the individual
nodes to the base station is assumed to follow a common tree
structured route [9]. We focus in this paper on f as the MAX
or MIN function, but the method could be applied to more
general aggregation functions as well.

B. Honest But Curious Threat Model

We use the honest but curious [10] threat model, where ev-
ery user or sensor node attempts to break privacy but faithfully
follows the protocol specification during data aggregation.
This threat model is appropriate because sensors deployed by
a common authority can collaborate to fulfill a certain task
and be trusted to follow the protocol.

There are three levels of privacy preservation in PDA. The
first level ensures that data are not revealed to nodes out-
side of the network. Hop-by-hop encryption with symmetric
keys [11], [12] is able to achieve this goal. Another PDA
solution called Order Preserving Encryption Scheme (OPES)
[13] allows comparison operations directly on encrypted data.
Such a scheme preserves the first level of privacy, yet, if in-
network sensor nodes use the same set of mapping functions,
they can discover each others’ measurements. Hence, the sec-
ond level of privacy ensures that individual private information
is not disclosed to in-network nodes. This is more stringent
but likely closer to real world situations. Our method aims to
preserve privacy under the honest but curious attack model
so that even in-network nodes cannot easily determine other
nodes’ sensitive data. The third level of privacy ensures that
data are not revealed to anybody, including the final recipient
or base station [14]; KIPDA does not address this level.

C. Requirements and Trade-offs of PDA

The following criteria summarize the desired characteristics
and trade-offs of a PDA scheme. Different applications make
different trade-offs among these performance metrics.

1) Privacy: To preserve data privacy, actual data, di of
node i, should not be revealed to an outside observer
listening to the radio communication, or another node j
in the network. Sometimes privacy requires that di not
be known to the basestation [14]. PDA schemes should
also be robust to collusion among several nodes.

2) Efficiency: Data aggregation reduces the number of
messages transmitted within a sensor network, thus re-
ducing bandwidth and power usage. However, additional
overhead is required to protect privacy. If the energy
cost of a PDA scheme if greater than the benefit of
data aggregation, then it is not useful. Bandwidth, power
consumption, and delay are three important metrics of
protocol efficiency.

3) Accuracy: The accuracy of the aggregated data affects
decisions made from the data. In perturbation-based
techniques [6], [7], accuracy is sacrificed to achieve
privacy and efficiency.

III. OVERVIEW OF SOLUTION

As mentioned earlier, KIPDA hides sensor data among a set
of camouflage values. First, we introduce the notation used in
the paper, which is summarized in Table I.

Let U i be the set of n values in the message set for node i
where (|U i| = n,∀i). The message set is composed of the
real or actual data, di, and the restricted and unrestricted
camouflage values. The message set is an array of values,
where the real data and camouflage values are assigned to
specific positions in the array according to predefined policies
that guarantee 100% accuracy of the aggregation together with
indistinguishability. Restricted camouflage values are required
to be less than or equal to di if MAX aggregation is used,
or greater than or equal to di if MIN aggregation is used.
Unrestricted camouflage values can be either greater than,
or less than, or equal to di. Let I = {1, 2, ..., n} be the
index set of U i,∀i. The global secret set (GSS), a subset of
I , denotes the secret index values kept at the base station
to determine the final aggregated results. GSS contains the
global secret information, which is partially shared among the
network nodes. The node’s secret set (NSSi) is the secret
information about GSS shared with node i. The base station
specifies NSSi for each i to include all elements from GSS
and a subset of elements from GSS, i.e. GSS ∩NSSi 6= ∅.
NSSi

T denotes the index set of the true (real) values in U i

for node i. NSSi
T is always a subset of GSS and for the

MAX/MIN, |NSSi
T | = 1. NSSi

T is also a subset of NSSi;
hence NSSi is the union of the index set of the restricted
camouflage values and the real values.

For MAX/MIN aggregation, a sensor node i hides its single
real value, di, in message set, U i = {vi1, vi2, ..., vin}, among
restricted and unrestricted camouflage values such that:

vil = di, if l ∈ NSSi
T , (MAX/MIN)

vil ≤ di, if l ∈ NSSi, (MAX)
vil ≥ di, if l ∈ NSSi, (MIN)
vil ≤ di or vil > di, if l ∈ NSSi, (MAX/MIN). (1)



This scheme ensures several important properties. Property 1
guarantees that the base station can correctly determine the
final aggregated value. Property 2 ensures that NSSi−NSSi

T

draws from both sets GSS, and GSS, where “−” denotes
set difference. This guarantees that node i cannot determine
the entirety of GSS and NSSj , ∀i, j, i 6= j. Property 3
guarantees that the true maximum value is not filtered out by
the aggregation process.

Property 1: The indices of the real values are drawn from
GSS:

NSSi
T ⊂ GSS,∀i. (2)

Property 2: NSSi contains elements from both GSS and
GSS. This is required to hide the real or actual value in U i:

GSS ∩ (NSSi −NSSi
T ) 6= ∅,∀i. (3)

Property 3 NSSi is a proper superset of GSS:

NSSi
T ⊂ GSS ⊂ NSSi,∀i. (4)

We use an example to illustrate the method. Consider
a three-node case of MAX aggregation, shown in Figure
1, where nodes 1, 2, and 3 have sensor readings 23, 34,
and 12 respectively. Assume GSS equals {1, 3, 5}, and
NSS1

T = {1}, NSS2
T = {5}, and NSS3

T = {3}, are
drawn from GSS. Based on Properties 1, 2, and 3, we have
NSS1 = {1, 2, 3, 5, 7} and NSS1 = {4, 6} for node 1;
NSS2 = {1, 3, 4, 5, 7} and NSS2 = {2, 6} for node 2,

TABLE I
KIPDA NOTATIONS

message Vector of camouflage and actual values sent to
set the next aggregator, indexed by I.
restricted Values in the message set that are greater than
camouflage the real value for MIN aggregation and less for
values MAX aggregation.
unrestricted Values in a message set that are either more or
camouflage less than the real value in the message set
values

U i Notation for the message set of node i.
U i = {vi1, vi2, ..., vin}.

UΩ Last message set sent from the last node Ω

to the base station.

di
Actual value of node i. It is hidden in plain
sight among U i where vil = di, if l ∈ IiT .

vil Values of U i for node i where l = 1, 2, ..., n.
I Index set of U i,∀i, I = {1, 2, ..., n}
n Number of values in a message set, n = |U i|, ∀i

GSS

The global secret set kept at the base station that
contains possible locations for the final network
aggregated value.

NSSi

The node’s secret set for node i. Consists of the
union of the index set of the restricted camouflage
values and the index of the real value.

NSSi
Index set of unrestricted camouflage values
values of node i.

NSSi
T Index set of the real values of node i.

Fig. 1. An example KIPDA aggregation scheme of three nodes.

and NSS3 = {1, 2, 3, 5, 6} and NSS3 = {4, 7} for node
3. NSS1, NSS2, and NSS3 choose three values from GSS,
and two values from GSS.

After sets NSSi
T and NSSi for all i have been determined,

the base station sends them to each node in the pre-distribution
phase. During the reporting phase, node 2 places its true value,
34, in the 5th slot in U2. Then it determines the rest of U2

according to (1). In this way, U1 = {23, 18, 22, 25, 15, 27,
19}, U2 = {18, 47, 27, 30, 34, 9, 4}, and U3 = {6, 11,
12, 15, 1, 5, 10}. During the data aggregation phase, when
node 1 receives message sets U2 and U3 from its children,
it determines the aggregated value where v1

l = max{vil} for
each l = 1, 2, ..., 7 and i = 1, 2, 3. Hence, the aggregated
message set, U1, is {23, 47, 27, 30, 34, 27, 19}, and replaces
the original U1. U1 becomes the final message set, UΩ, which
node 1 sends to the base station. The base station determines
the final network aggregate among the maximum elements
indexed by GSS. In our example, elements at positions 1,
3, 5 of the aggregated set UΩ are 23, 27 and 34. Hence, 34
is the network MAX aggregate.

As described, this method could be prone to statistical
analysis attacks. For example, an adversary could examine
the packets for statistical correlations and use this information
to guess NSSi and NSSi for certain i, ultimately guessing
GSS and GSS of the base station. There are several methods
to avoid this problem. In the network, if the theoretical
maximum and minimum values are known, then the values
in the message set other than di could be chosen so the
entire message resembles a uniform distribution. If the size
of NSSi prevents this, it can be increased. Alternatively, the
sets could be changed or shuffled either after each network
wide aggregation, or after a fixed number of aggregations. The



base station would choose new sets GSS and GSS, and end
to end encryption could be used to distribute the keys (sets
NSSi and NSSi

T to each i). These methods would also help
if values of neighboring nodes are similar or correlated, or if
an adversary manipulated the environment so that some sensor
values were known.

A. Accuracy of the Aggregation

Proposition 1: From any one node’s viewpoint, KIPDA
provides k-indistinguishability where:

k = |NSSi|+ 1. (5)

For MAX aggregation, since ∀i, j : |NSSi| = |NSSj |, any
node i knows that the real value for any node j is contained
in at least the |NSSi| + 1 largest values in the positions
noted by its own set NSSi. k is reduced if more rogue nodes
collude, which we quantify in Section III-B. To an outside
observer without knowledge of GSS, k = |U i|.

Proposition 2: KIPDA accurately computes the MAX and
MIN aggregation functions.

The aggregation result can be affected only by unrestricted
camouflage values. However, the unrestricted camouflage
values occur only in locations indexed by NSSi. Since
GSS ⊂ NSSi, and NSSi ⊂ GSS, ∀i, the unrestricted
camouflage values don’t affect the aggregated results in
positions indexed by GSS at each node. This is because the
indexes of the restricted and unrestricted camouflage sets are
disjoint.

B. Collusion Attacks

In Figure 1, if node 2 colludes with node 3, they can
determine that d1 is in slots {1, 3, 5}. They can do this by
determining the intersection of NSS2 and NSS3, since
GSS ⊆ NSSi ∩ NSSj and NSSi ∪ NSSj ⊆ GSS.
Given the size of I , the sizes of GSS and NSSi must be
chosen carefully to achieve good performance against a node
collusion attack. There are two ways for colluding nodes
to infer either GSS or GSS. The first, Proposition 3, is to
infer GSS from NSSi

T ,∀i ∈ colluding nodes; the other,
Proposition 4, is to infer GSS from NSSi or NSSi. The
optimal size of I is discussed in Section V.

Proposition 3: Assume NSSi
T is randomly selected from

GSS, and nodes collude to infer GSS from NSSi
T . If there

exist x colluding nodes, they can determine:
x∑

i=1

|GSS| − i+ 1

|GSS|
, (6)

elements in GSS. To get all |GSS| elements in GSS, the
expected number of colluding nodes is:

x = |GSS| ×
|GSS|∑
i=1

1

i
. (7)

This is an instance of the coupon collector’s problem [15].

Proposition 4: Let x be the number of nodes colluding in the
network. Let g(x) be the number of elements known in GSS
given x. We assume no bias when NSSi is determined from
GSS. The object of the colluding nodes is to infer GSS from
the information contained in NSSi. When x nodes collude,
the following equation computes the number of elements
known in set GSS, where g(x) ≤ |GSS|:

g(x) = |GSS|−(|GSS|−|NSSi|)

(
|GSS| − |NSSi|

|GSS|

)x−1

.

(8)
This is determined first by giving a recurrence relation about
g(x). When the x-th node colludes with the other (x − 1)
nodes, g(x) elements in GSS will be disclosed as follows:

g(x) = g(x− 1) + |NSSi|

(
|NSSi| − g(x− 1)

|GSS|

)
. (9)

Let a = |GSS| and b = |NSSi|, (9) implies g(x) =
a−b
a g(x− 1) + b, where g(1) = b. Let yi = g(i)− a. Replace

the g(i) with yi+a, then yi =
a−b
a yi−1 and y1 = b−a, giving

yi =
(
a−b
a

)i−1
y1. Therefore, g(i) = a− (a− b)

(
a−b
a

)i−1
.

From Proposition 4, the expected number of collusive nodes
required to recover all the elements in GSS is obtained by con-
verting (8) into the following equation where g(x) = |GSS|:

|GSS| =

|GSS| − (|GSS| − |NSSi|)
(
|GSS| − |NSSi|

|GSS|

)x−1
 .
(10)

Isolating x in (10) yields the following equation:

x = 2 +

 log( 1

|GSS|−|NSSi|
)

log( |GSS|−|NSSi|
|GSS| )

 . (11)

According to Proposition 4, the expected number of col-
luding nodes required to discover GSS decreases as |GSS|
increases. According to Proposition 3, the expected number of
colluding nodes needed to obtain GSS increases with |GSS|.
From Propositions 3 and 4, we conclude that the number of
collusive nodes needed to infer GSS or GSS is the minimum
of (7) and (11). Setting (7) equal to (11) solves for the optimal
size of GSS.

Figure 2 shows the expected number of colluding nodes
that are required to discover a given number of elements in
GSS. |I| is set to 15 and |NSSi| varies between 2 and 4
with different values of k. The figure shows that if we choose
|NSSi| = 3, i.e. (k = 4), the optimal value of |GSS| is 4, and
it will take 8 colluding nodes before GSS is entirely known.

IV. PROTOCOL DESIGN

In this section we describe our protocols for the MAX/MIN
aggregation functions. We assume the aggregation trees are
constructed according to standard data aggregation proto-
cols [9]. There are four phases to KIPDA: pre-distribution,
reporting, aggregating, and base station processing.



Fig. 2. The optimal size of GSS with |I| = 15 is given by the intersection
of (7) with (11). (11) varies for different values of k.

A. Pre-distribution

In the pre-distribution phase, the base station chooses a set
GSS ⊂ I . This is the global secret information, and each
node i keeps a subset of GSS in set NSSi along with some
noise values drawn from GSS. Hence, no nodes can infer
the exact set GSS from their local information, NSSi. Since
GSS ⊂ I , and |I| = |U i| is proportional to the bandwidth
and power consumption, |I| cannot be too large. We discuss
the proper size of I in Section V.

After |I| is determined, the optimal values of |GSS|
and |NSSi| are determined by the requirement of k-
indistinguishability and Propositions 3 and 4. As an example,
Figure 2 shows how to compute |GSS| as the intersection of
two curves: (7) and (11). When |NSSi| = 2, i.e. k = 3, the
optimal size of GSS is 5.

Next, the base station determines NSSi
T and NSSi for

each node i. For MAX/MIN, we have |NSSi
T | = 1, so the

base station can determine NSSi
T by choosing an element

from GSS. NSSi contains all the elements in set GSS and
|NSSi| − |GSS| elements from GSS, in addition to NSSi

T .
One way to select |NSSi| − |GSS| elements from set GSS
is to throw a die with |I| faces without replacement, stopping
when there are |NSSi| − |GSS| distinct numbers in GSS.
There are many methods for distributing keys securely in
WSNs, e.g. [16], which could easily be modified to distribute
NSSi and NSSi

T to the nodes. Once a node has received
NSSi, it can trivially determine NSSi.

B. Reporting

In the reporting phase, each node i determines the values for
the set U i where U i = {vi1, vi2, ..., vin}. The message set U i

contains the real values, the restricted camouflage values, and
the unrestricted camouflages values. If sensed values have the
range [dmin, dmax], the restricted camouflage values are drawn
from [dmin, di] for MAX aggregation, and from [di, dmax] for
MIN aggregation, for node i. The unrestricted camouflages

values are drawn from [dmin, dmax]. Different nodes can
use different distributions to generate random values for the
restricted or unrestricted camouflages values, so it is harder
for others to infer the real value from U i. Node i places these
values in U i according to (1) and sends message set U i to its
aggregator.

C. Aggregation

In the aggregation phase, each node i computes the MAX
(or MIN) for each l = {1, 2, ..., n} in vjl , among all child
nodes j, plus its own vil if it is also a sensing node. The
aggregated message set of node i, U i = {vi1, vi2, · · · , vin}, is
determined for the MAX function as:

vil = max(vhl , v
i
l),∀h, (12)

for each l = {1, 2, ..., n}, where h ranges over all the child
nodes of i. The aggregator i replaces values vil in U i with the
aggregated values, and then passes the aggregated message
set, U i, to its next hop. For the MAX (or MIN) aggregation
functions, the values in the message sets grow larger (or
smaller) as they approach the base station. One possible
solution is to replace one or more values indexed by NSSi

in the message sets so that the values appear more uniformly
distributed about [dmin, dmax].

D. Base Station Processing

The final aggregated message set, UΩ, arrives at the base
station and the aggregated result is computed by selecting the
MAX (or MIN) from the values indexed by GSS in UΩ. For
example, the result for MAX is:

maxk∈GSS(v
Ω
k ). (13)

E. Generalizing to the Additive Aggregation Function

Other types of aggregation functions can be used in place
of MAX/MIN. However, care must be taken when choosing
NSSi. For example, if an additive aggregation is used, we
could choose |NSSi

T | > 1, and in the data reporting phase,
we would set:

di =
∑

l∈NSSi
T

vil

0 =
∑

l∈NSSi

vil

z =
∑

l∈NSSi

vil , (14)

where z can be any value. Here, we allow negative values in
U i. The aggregators can sum up each slot their message sets
and the base station can retrieve the final aggregation result,
which is

∑
l∈GSS vΩ

l , from the final message set, UΩ.

V. EVALUATION

In this section, we compare KIPDA to hop-by-hop and end-
to-end encryption methods paying particular attention to power
consumption and time delay.



TABLE II
BANDWIDTH AND ENERGY USAGE OF END-TO-END ENCRYPTION PER

LEVEL IN A TREE NETWORK WITH A BRANCHING FACTOR OF 3,
ASSUMING NO AGGREGATION

Number Bits Sent MICAz Energy
Level of Nodes Per Node per Node (µJ)

1 3 17488 10492.8
2 9 5824 3494.4
3 27 1936 1161.6
4 81 640 384.0
5 243 208 124.9
6 729 64 38.4
7 2187 16 9.6

A. Power Analysis

1) End-to-End Encryption: End-to-end encryption without
aggregation is power-intensive because each sensed value
is transmitted to the base station. Let us assume that the
data are 16 bits wide. (In some cases with block encryp-
tion the data sent over the network would be even larger
because of padding.) Table II shows the bandwidth and energy
consumption per node for each level in a network with a
branching factor of 3. The level is the number of hops a node
is away from the base station. Energy usage is determined
using calculations from Meulenaer et al. [17] for the energy
consumed per bit transmitted of a MICAz architecture.

Nodes closer to the base station consume more bandwidth
because more data pass through them. To balance traffic load
among nodes, either the sink must be moved around, or the
nodes themselves have to migrate [5], both of which are
impractical in many cases. Average bandwidth consumption
in this scenario is O(logN) per node, assuming no aggre-
gation and N nodes in the network. For KIPDA, bandwidth
consumption is O(|U i|) per node, i.e., the number of values
in a message set. Thus, power usage will grow more quickly
with network size for end-to-end encryption than for KIPDA.
Additionally, because nodes near the sink have to send more
information, there will be larger delays due to the time to
transmit the extra bits over the radio.

Despite the energy cost, end-to-end encryption provides
the best privacy protection. Outsiders, aggregator nodes, and
neighboring nodes in the network are all prevented from
determining the sensed values or aggregated results.

2) Hop-by-Hop Encryption: We compare KIPDA to hop-
by-hop encryption using IDEA, RC5, and RC4, showing its
power savings. Although hop-by-hop methods consumes less
power near the sink than end-to-end methods, a large amount
of power is consumed throughout the network, and more delay
is introduced in the decryption and re-encryption phases.

To determine power consumption of various encryption
methods in WSNs, we use the results from [18] for IDEA,
RC4 and RC5, which were generalized to any generic mote
architecture. We apply this generalization to two common
architectures to estimate encryption times: The MICAz that
has a bus width of 8 bits and runs at 7.37 MHz, and the TelosB
that has a bus width of 16 bits and runs at a speed of 4 MHz.

TABLE III
ENERGY CONSUMPTION IN µJ AND nJ OF COMMON OPERATIONS ON THE

MICAZ MOTE,7.37 MHZ, AND THE TELOSB MOTE, 4 MHZ [17] .

Operation MICAz TelosB

Compute for 1 Clock Tick 3.5 nJ 1.2 nJ
Transmit 1 bit 0.60 µJ 0.72 µJ
Receive 1 bit 0.67 µJ 0.81 µJ

TABLE IV
PARAMETERS aBASE AND bBASE [18]

Algorithm aBASE bBASE blocksize (bits)

RC5 init/encrypt 352114 40061 64
RC5 init/decrypt 352114 39981 64

IDEA encrypt 67751 80617 64
IDEA decrypt 385562 84066 64

RC4 68540 13591 8

To determine energy costs of encryption we used the cost of
common operations reported by Meulenaer et al. [17] which
are given in Table III, together with the general equation from
Ganesan et al. [18] given as:

TimeENC/DEC =
a+ b ∗ dtextlength/blocksizee
processorfreq ∗ buswidth

, (15)

where variables a and b are given as follows:

a = aBASE + aMUL + aRISC

b = bBASE + bMUL + bRISC . (16)

Parameters aBASE and bBASE are given in Table IV, and
aMUL and bMUL are given in [18], depending on whether a
multiplication instruction is native to the architecture. aRISC

and bRISC are also given in [18] and depend on whether a
RISC or CISC architecture is used. aBASE , bBASE , aMUL,
bMUL, aRISC , and bRISC , were determined by minimizing
the least square relative error in their experiments. With this
information, we can estimate the time, and hence the number
of CPU cycles, spent on various encryption methods. The
final result, given in Table V, shows time spent per node to
encrypt and decrypt 10 bits of data on the MICAz and TelosB
architectures with IDEA, RC4, and RC5 encryption.

IDEA and RC5 are both block methods that operate on
block sizes of 64 bits, RC4 is a stream method that works
in segments of 8 bits. Because the plain text size in all cases
was only 10 bits, padding is required. The time to encrypt
and decrypt in microseconds was determined from (15). The
number of clock ticks were determined by multiplying the time
by clock frequency. And finally energy use was determined
from the number of clock ticks according to energy per tick
given in [17] shown in Table III.

To determine the energy consumption of each node in a
hop-by-hop method, we combine the information in Table V
with the costs of 1 CPU clock cycle, and the transmission
and reception of 1 bit. These costs can be found in [17] and



TABLE V
COST TO ENCRYPT 10 BITS OF DATA ON THE MICAZ AND TELOSB

ARCHITECTURES.

Method, Time Clock Energy
Architecture ms Ticks µJ

IDEA Enc, MICAz 2902.12 21388.63 74.86
IDEA Enc, TelosB 2673.58 10694.31 12.83
IDEA Dec, MICAz 8350.80 61546.13 215.41
IDEA Dec, TelosB 7693,27 30773.06 36.93
RC5 Enc, MICAz 7037.25 51864.50 181.53
RC5 Enc, TelosB 6483.06 25932.25 31.12
RC5 Dec, MICAz 7035.89 51854.50 181.49
RC5 Dec, TelosB 6481.81 25927.25 31.11

RC4, MICAz 2018.00 14872.63 52.05
RC4, TelosB 1859.08 7436.31 8.92

TABLE VI
ENERGY CONSUMPTION OF HOP-BY-HOP ENCRYPTION PER NODE FOR 10

BITS OF DATA FOR THE MICAZ AND TELOSB ARCHITECTURES

Method, Architecture Energy µJ

IDEA, MICAz 1404.74
IDEA, TelosB 502.76
RC5, MICAz 1341.80
RC5, TelosB 491.97
RC4, MICAz 375.55
RC4, TelosB 129.87

are given in Table III. The amount of energy consumed is
determined by the following equation:

EHBH = c ∗ (R(blk) +Dec+Agg) + Enc+ T (blk), (17)

where c is the branching factor, R(blk) and T (blk) are the
energy costs of receiving and transmiting blk bits, blk is the
number of bits in the encryption block sizes, and Dec and Enc
are the energy consumptions of decrypting and encrypting
given in Table V. Agg is the energy required to compute
the aggregate. We estimated the time to aggregate 2 values
with one clock tick. Table VI gives the energy consumption
of hop-by-hop encryption when the average branching factor
is 5 and a value consists of 10 bits. 10-bits were chosen to
capture 1,024 distinct values, which is enough to express a
sensor reading in many WSN applications.

The energy consumption of KIPDA is determined with the
following equation:

EKIPDA = c ∗m(R(bpv) +Agg) +m ∗ T (bpv), (18)

where m is the number of values in a message set, and bpv
is the number of bits per value.

B. Size of Set I

Figure 3 shows that KIPDA can accommodate 34 to 35
values before it consumes the same energy as IDEA and RC5
for the MICAz architecture. Note that these two methods
operate on a block size of 64 bits, which is why RC4, a
streaming encryption method, appears so low. It is operating on
segments of 8 bits. KIPDA can use up to about 7 camouflage

values before it uses the same amount of power as RC4. Figure
3 also gives results for the TelosB architecture where RC4
works so efficiently that the crossover point between the two
methods is about 2 values, yet for RC5 and IDEA the crossover
point is about 9.

To achieve a net power savings from IDEA or RC5 encryp-
tion, the size of I for the MicaZ motes needs to be less than
33, or less than 9 for RC4. For the TelosB architecture, the size
of I needs to be less than 10 in comparison to IDEA and RC5
encryption. It would not be an advantage to use KIPDA on
the TelosB architecture if RC4 encryption is used. However,
as described in the next section, KIPDA significantly reduces
delay in the network, and would be appealing in networks that
require a minimal network delay.

The sizes of the rest of the sets can be determined from |I|.
If we choose |I| based on power analysis to be 25, and we
want our k-indistinguishability factor to be 8, then based on
(5), |NSSi| should be 7, and the optimal size of GSS, based
on the method discussed in Section III-B, should be 4.

C. Delay Analysis

Timing for the hop-by-hop method is determined with the
following equation:

TimeHBH = c ∗Dect + Enct + (c+ 1)

∗dtextsize/blke ∗Blk/BW, (19)

where blk is the message block size, and BW is the bandwidth
for both architectures (.25 bits per microsecond). Since the
bandwidth on both architectures is the same, the calculated
times are the same. The equation to determine the times for
KIPDA is given as follows:

TimeKIPDA = (c+ 1) ∗m ∗ bpv/BW. (20)

We used 10 bits per value and an average branching factor
of 5 in our analysis. We compared the time it takes for IDEA,
RC4, and RC5 encryption on both architectures to KIPDA,
omitting the figure because of space constrains. However, the
analysis shows that KIPDA excels at timing and can send
about 47 decoy values before it reaches the same time used by
RC4 to encrypt and send one value on either architecture. For
IDEA and RC5, KIPDA can send about 160 decoy messages
before it uses the same amount of time that these methods
can encrypt and send one value. This could be important
on delay intolerant networks. We conclude that it would
be acceptable for our scheme to consume more power in
transmitting camouflage values if delay were important.

VI. RELATED WORK

Data aggregation without privacy achieves bandwidth and
energy efficiency in resource-limited WSNs [9]. Previous
work [19]–[22] addresses data aggregation in various applica-
tion scenarios with the assumption that all sensors are working
in trusted and friendly environments. LeMay et al. summarize
the functional characteristic of wireless metering sensors and
categorize attacks in [23], where both privacy and security are
concerns in the given scenarios. Refs. [24]–[26] investigate



Fig. 3. MicaZ and TelosB power profiles per node for 10 bits of sensed data in a network with a branching factor of 5. KIPDA can send about 30 decoy
values on the MicaZ architecture and 8 on the TelosB architecture before it uses more energy than IDEA or RC5.

secure data aggregation against adversaries who try to tamper
with the intermediate aggregation result. PDA is also closely
related to and has been studied in the data mining domain [6],
[7], [27] and peer-to-peer network applications [28].

The majority of research in secure data aggregation takes
either a hop-by-hop or end-to-end approach. In a hop-by-
hop approach, data are decrypted before the aggregation
step, aggregated, then encrypted and forwarded to its next
destination. Because data are decrypted, it cannot provide data
confidentiality at the aggregator nodes. Additionally there is
a latency delay due to the decryption/encryption process. To
combat these problems, a set of algorithms have been devel-
oped to operate on data without decryption. Homomorphic
encryption schemes [4], [5] support efficient aggregation of
encrypted data without decryption for additive aggregation
functions. Because the data are encrypted from end to end,
data confidentiality in the network is not a problem. However,
these methods do not work well with nonlinear functions
such as MAX and MIN. Although end-to-end encryption uses
less computation, distributing encryption keys to the nodes
is an issue. Hop-by-hop encryption incurs more computation
overhead, and the plain text is available at each node, which
increases the risk of data leakage through node capture attacks.

Previous efforts on PDA focused on the additive aggregation
functions. Horey et al. propose a data collection scheme
based on negative surveys [14], where sensor nodes transmit
a sample of the data complement to a base station instead of
transmitting their actual data. The base station then uses the
negative samples to reconstruct a histogram of the original
sensor readings. In [29], Feng et al. propose a family of
secret perturbation-based schemes that can protect sensor data
confidentiality without disrupting the additive data aggrega-
tion result. He et al. proposed two PDA protocols in [3]
based on algebraic properties of polynomials and addition
operation. These efforts in privacy preservation domain do not
assume data manipulation/pollution attacks. In [30], Ganti et
al. present architectural components for privacy guarantees on

stream data from private owned sensors to collect mutually
interested aggregated phenomena.

Although the concept of camouflage has not, to the best of
our knowledge, been applied to data aggregation, it has been
applied to routing methods [31], [32]. In [33], the authors use
a decoy sink to perturb traffic and hence protect the location
of the real sink.

k-Indistinguishability is closely related to k-anonymity. k-
Anonymity is designed to prohibit linking attacks, where an
adversary matches auxiliary information with public or broad-
casted information to determine the identity of one or more
individuals. In contrast, KIPDA ensures the indistinguishabil-
ity of the data itself instead of the identity of individuals or
the source of the data.

VII. FUTURE WORK AND CONCLUSION

Future work will focus on using variable sizes for sets
I,GSS,NSSi. As the cost for radio communication declines,
more emphasis will be placed on methods that take advantage
of such a decline. New keyless methods can be investigated
for the pre-distribution phase, possibly by querying the base
station for values that are in GSS after deployment. For
example, the base-station could randomly deny queries that
ask if a certain value is present in set GSS. Additional future
work will focus on addressing different adversarial models and
implementing KIPDA in actual sensors.

While encryption provides a stronger level of privacy, we
have shown in Section V that it is costly. Future network
implementors will have to determine the appropriate tradeoffs
between privacy and energy and time constraints. In this
paper we showed that WSNs can protect confidentiality by
hiding values in plain text along with decoys. By allowing
the maximum or minimum to be in plain-text, aggregation
can take place efficiently, which would otherwise be difficult.
Confidentiality is achieved through k-indistinguishability with
the aggregates hidden among k − 1 other values. Dividing a
message set into different subsets, NSSi, NSSi

T , and NSSi,



allow us to camouflage the message sets with restricted decoys
and unrestricted decoys. We use a semi shared global key,
GSS, which allows some resistance to node collusion and
capture. We have shown that it is more power efficient to
slightly increase the message bandwidth with decoys than to
use conventional methods of hop-by-hop encryption.
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