
Using Lazy Evaluation to Simulate Realistic-Size Repertoires
in Models of the Immune System1

Derek J. Smith
Department of Computer Science

University of New Mexico
Albuquerque, NM 87131 USA

dsmith@cs.unm.edu

Stephanie Forrest
Department of Computer Science

University of New Mexico
Albuquerque, NM 87131 USA

forrest@cs.unm.edu

David H. Ackley
Department of Computer Science

University of New Mexico
Albuquerque, NM 87131 USA

ackley@cs.unm.edu

Alan S. Perelson
Theoretical Division

Los Alamos National Laboratory
Los Alamos, NM 87545 USA

asp@lanl.gov

Abstract

We describe a method of implementing efficient computer simulations of immune systems that
have a large number of unique B and/or T cell clones. The method uses an implementation
technique called lazy evaluation to create the illusion that all clones are being simulated, while
only actually simulating a much smaller number of clones that can respond to the antigens in
the simulation. The method is effective because only 0.001% to 0.01% of clones can typi-
cally be stimulated by an antigen, and because many simulations involve only a small number
of distinct antigens. A lazy simulation of a realistic number of clones and 10 distinct anti-
gens is 1,000 times faster and 10,000 times smaller than a conventional simulation—making
simulations of immune systems with realistic-size repertoires computationally tractable.

Keywords: lazy evaluation, simulation, immune system, cross-reactive memory

1 Introduction

The B and T cell repertoires of vertebrate immune systems can recognize and respond to almost
all foreign antigens, even laboratory derived ones that almost surely have never been seen in evo-
lutionary history. The repertoire can also distinguish, at a fine level of detail, between foreign
antigens and the components of the body it protects. To achieve this broad yet detailed coverage,
the immune system maintains a large number of highly specific clones, where a clone is a set of
cells derived from a single precursor and which almost assuredly have a unique B or T cell recep-
tor. In this paper we discuss only the B cell repertoire; however, the method is also applicable to
the T cell repertoire.

1Bulletin of Mathematical Biology (in press).

1

The murine B cell repertoire maintains 107 to 108 distinct clones (Köhler, 1976; Klinman et al.,
1976; Klinman et al., 1977), each of which typically can be stimulated by only 10�5 to 10�4 of all
possible antigens (Edelman, 1974; Nossal & Ada, 1971; Jerne, 1974). In order for an antigen to
stimulate a B cell it must bind to antigen-specific receptors on the surface of the B cell.

The binding affinity between receptors and antigens is based on complementarity at the molecular
level. Perelson & Oster (1979) introduced an abstract model of binding in which molecules are
considered as points in a “shape space” and affinity is measured as a function of the distance
between such points. Modelers have used a variety of methods to represent molecules in shape
space. Segel & Perelson (1988) and DeBoer et al. (1992) examined one and two dimensional
shape spaces in which the shape of molecules was represented by one or two real numbers, e.g. the
depth or depth and width of a binding cleft or protrusion on a molecule. Affinity was then measured
as a function of the Euclidean distance2 between the shapes. Seiden & Celada (1992), Forrest &
Perelson (1991), and Perelson et al. (1996) (after Farmer et al. (1986)), represented molecules
as strings of 8, 32, and 64 bits respectively and measured affinity as a function of the Hamming
distance3 (or a variation on it) between them. Weisbuch & Oprea (1994) and Detours et al. (1996)
represented molecules as strings of digits chosen from a 4 and 16 letter alphabet respectively.
Smith et al. (1997b) determined that representing molecules as strings of 20 symbols, with each
symbol chosen from a 4 letter alphabet, and affinity measured as a function of Hamming distance,
as well as using a realistic-size repertoire of 107 B cell clones, gave good fits to immunological
data important for a model of cross-reactive memory.

To make simulations of 107 clones computationally tractable, we use a technique called lazy eval-
uation (Friedman & Wise, 1976; Henderson & Morris, 1976). This technique (as illustrated in
the next section) delays calculations, and the building of data structures, until they are needed.
When not all calculations and data structures affect the result of a program, and when the relevant
ones can be identified efficiently, lazy evaluation can result in significant savings in run time and
memory usage. In the case of the immune system, lazy evaluation can be effective because only
0.001% to 0.01% of all clones are usually stimulated by any particular antigen, and because many
simulations involve only a small number of distinct antigens.

Lazy evaluation can be programmed explicitly in traditional programming languages, or implicitly
by using languages in which all evaluations are performed lazily (Turner, 1979; Turner, 1985; Hu-
dak et al., 1992). Lazy evaluation has been applied in numerous domains including: animation
(Elliott & Hudak, 1997), simulation of integrated circuits (Dunne et al., 1993) (and a production
simulator based on Yoshino et al. (1987)), sound synthesis (Dannenberg et al., 1992), and dic-
tionary lookup (Lucas, 1995). In this paper we describe how lazy evaluation can be programmed
explicitly in models of the immune system.

2Euclidean distance is the familiar square root of the sum of the squares of the differences in each dimension. The
Euclidean distance between receptors a1; a2 : : : an and b1; b2 : : : bn, is

pP
1�i�n (ai � bi)

2

3Hamming distance is a count of the number of locations in which the receptors differ. The Hamming distance
between the receptors ABDCCDADDA and ABACCDADCA is 2 because they differ in the two underlined locations.

2

2 Algorithm

In a conventional eager approach to immune system simulation, computation time is taken and
memory space explicitly allocated to generate all clones at the start of the simulation (Figure 1a).
When an antigen is introduced, the clones that can be stimulated by it (said to be within its ball
of stimulation (Perelson & Oster, 1979)), already exist and the simulation proceeds (Figure 1b).
In the modified lazy simulation, no clones are generated at the start of the simulation (Figure
2a). Instead, when an antigen is introduced, the simulation is suspended while clones within the
ball of stimulation of the antigen are generated (Figure 2b). In this way, all clones that could be
stimulated by the antigen appear and act as in an eager simulation. The absence of the remaining
clones has no effect on the simulation other than making it run faster and take less memory. Clones
must not be added to regions of a ball of stimulation where they have already been created by the
introduction of previous antigens—this would result in too many clones in the intersections of balls
of stimulation (Figure 2c).

(a)

...
B cell clones Antigen Ball of Stimulation

(b) (c)

Figure 1: (a) In an eager simulation, all clones (�) are generated at the start of the simulation.
(b) & (c) When antigens (�) are introduced, clones already exist and no new ones need to be gener-
ated.

(a) (b) (c)

Figure 2: (a) In a lazy simulation, no clones are generated at the start of the simulation.
(b) When an antigen (�) is introduced, the simulation is temporarily halted while clones (�) within
its ball of stimulation are created. (c) When the ball of stimulation of a new antigen intersects that
of an existing antigen, no additional clones need to be generated in the intersection as it has already
been adequately populated.

For a lazy simulation to be functionally equivalent to an eager simulation, clones generated within
a ball of stimulation must be added in the same distribution they would have had in an eager sim-
ulation. The correct distribution depends on how receptors and antigens are represented, and how

3

When a new antigen is added to the simulation

loop for i from 0 to r do
loop for j from 1 to num-clones(i) do

let clone = mutate(center, i)
if fclone is outside the ball of stimulation

of all previously added antigensg
then fadd clone to the simulationg

where r is the radius of a ball of stimulation;

where num-clones(i) produces a random number from the binomial
distribution B(n; pi), where n is the number of clones in an eager simulation,
and pi is the probability that a clone is a radius i from an antigen;

and where mutate(center, i) mutates i distinct locations of the
string representing the center of the ball of stimulation.

Figure 3: Pseudo-code describing the lazy algorithm for generating clones.

affinity between them is measured. Here we describe a lazy algorithm for receptors represented as
strings of symbols, and affinity measured as a function of the Hamming distance between receptors.
In an eager simulation using this representation, receptors are generated by choosing each symbol
from a uniform distribution—loosely mimicking the random genetic process used by vertebrate
immune systems to generate clonal diversity (Leder, 1991).

For the lazy simulation, clones must be generated only within balls of stimulation. To do this
we develop a method to generate clones at radius i from the center of a ball of stimulation, and
then repeat the method at radii 0 through r, where r is the radius of a ball of stimulation. The
probability, pi, that a randomly selected clone in an eager simulation is radius i from the center

of a ball is given by pi =
�
d

i

�n
(k�1)
k

oin
1
k

o(d�i)
, where d is the number of symbols in the string

representation of the receptor, and k is the number of possible symbols at each location in the
string. Further, in an eager simulation with n clones, the probability of j clones at radius i is given
by the binomial B(n; pi) =

�
n

j

�
fpig

j f1� pig
n�j. Thus, the number of clones, ĵ, to generate at

radius i from the center of a ball should be sampled from this binomial distribution. Each of the ĵ
clones is generated by changing i distinct symbols in the string that represents the receptor at the
center of the ball of stimulation.

To avoid multiply generating clones in the intersections of balls of stimulation, each new clone is
added to the lazy repertoire only if it is outside the balls of stimulation of all antigens already in
the simulation. In the next two sections we verify that the lazy algorithm generates clones in the
same distributions as the eager algorithm, and compare the algorithmic costs of the lazy and eager
algorithms.

4

3 Verification

We generated a complex test case to check whether the lazy algorithm generates clones in the
same distributions as the eager algorithm, especially in the case of multiply overlapping balls of
stimulation. Following Smith et al. (1997b), molecules in the test were represented by strings
of 20 symbols, each symbol was chosen from a four letter alphabet, and balls of stimulation had
radius 5. A seed antigen was generated by randomly selecting each of its symbols from a uniform
distribution, and 10 test antigens were generated in a cluster around the seed. Each test antigen
was generated by mutating m randomly selected unique symbols of the seed, where m was chosen
from a uniform distribution in the range zero to three so the balls of stimulation of the test antigens
would have intersections of various sizes. Clones were generated, according to the lazy algorithm,
and the number of clones at radii 0 through 5 for each antigen were counted. The experiment was
replicated 100,000 times. For 10,000 of these experiments, the algorithm was metered to record
the balls of stimulation that a newly generated clone fell within. These data were used to determine
how much of each ball of stimulation was populated with clones generated by previous antigens.

Table 1 shows that the 10 antigens were at varying Hamming distances from each other and thus
had varying overlaps. Table 2 shows that these overlaps resulted in many different proportions of
balls of stimulation being populated by clones generated by prior antigens, and were thus a reason-
able test of the lazy algorithm. Figure 4 shows that the observed and expected distributions are the
same when compared visually, and Table 3 shows they are the same when compared statistically.
Thus, the lazy algorithm worked correctly.

4 Algorithmic Cost

In this section we compare the algorithmic cost of the lazy and eager algorithms. The number of
clones generated in a lazy simulation is g�p�n, where g is the number of distinct antigens in
the simulation, p is the proportion of the repertoire that can be stimulated by an antigen, and n

is the total number of clones in the eager simulation. Each of these clones needs to be checked
to see if it falls within the ball of stimulation of any previously added antigen. Thus, the total
number of checks after adding g antigens is pn

P
0�j<g j =

(g(g�1))
2

pn. If we assume that the cost
of generating a clone is approximately the same as the cost of checking if a clone is in the ball
of stimulation of an antigen, then the total cost of generating the lazy repertoire for g antigens is
gpn + g(g�1)

2
pn = g2+g

2
pn. The cost of the eager method is n because it generates n clones and

does not have to do any checks. Comparing the cost of the lazy and eager algorithms, the lazy
method is more efficient than the eager method when g is less than approximately

q
2
p
.

For a realistic-size repertoire with n = 107 and p=10�5, in a simulation with 10 distinct antigens,
the lazy algorithm will create less than 0.01% of the clone repertoire at 0.1% of the cost of the
eager algorithm. For less than 447 distinct antigens, and the same realistic-size repertoire, the lazy
algorithm is lower cost than the eager algorithm (Figure 5). Simulations of more than 447 antigens,
which would probably include simulations of immune networks, would be more efficient using an
eager algorithm.

5

Antigen Hamming distance to other antigens Antigen string
1 2 3 4 5 6 7 8 9 10

1 0 4 2 1 4 4 2 3 3 2 CCBDDDBCCCABDCCDADAD
2 4 0 4 3 6 6 4 4 5 4 BCBDDDBCCCADDCCDAAAC
3 2 4 0 1 3 4 2 3 3 2 CCBDDDBCCCABACCDADAC
4 1 3 1 0 3 3 1 2 2 1 CCBDDDBCCCABDCCDADAC
5 4 6 3 3 0 6 4 5 5 4 CCCDDDBCCCABCCCDDDAC
6 4 6 4 3 6 0 3 4 5 3 CCBCDDBCCCBBDCCCADAC
7 2 4 2 1 4 3 0 1 3 2 CCBDDDBCCCDBDCCDADAC
8 3 4 3 2 5 4 1 0 4 3 CCBDDDBCCCDBDCCDACAC
9 3 5 3 2 5 5 3 4 0 3 CCBDDCDCCCABDCCDADAC

10 2 4 2 1 4 3 2 3 3 0 CCBBDDBCCCABDCCDADAC

Table 1: The pairwise Hamming distances between the 10 test antigens used in the ex-
perimental verification of the algorithm. The table is symmetric about the main diagonal
because Hamming distance is commutative. The table shows that the antigens were at vari-
ous Hamming distances from each other.

Antigen Proportion of clones generated by each antigen
1 2 3 4 5 6 7 8 9 10

1 1.00 - - - - - - - - -
2 0.05 0.95 - - - - - - - -
3 0.21 0.03 0.77 - - - - - - -
4 0.33 0.06 0.17 0.45 - - - - - -
5 0.05 0.01 0.06 0.02 0.86 - - - - -
6 0.05 0.01 0.03 0.05 0.00 0.86 - - - -
7 0.21 0.03 0.09 0.13 0.01 0.02 0.51 - - -
8 0.10 0.03 0.05 0.09 0.01 0.02 0.14 0.57 - -
9 0.01 0.01 0.05 0.10 0.01 0.01 0.02 0.01 0.71 -

10 0.21 0.03 0.09 0.13 0.01 0.02 0.05 0.01 0.02 0.44

Table 2: The balls of stimulation of the 10 test antigens all overlapped each other; thus,
many of the clones within a ball of stimulation were generated by the lazy algorithm oper-
ating on prior overlapping antigens. The proportions generated by each antigen are shown
in this table. For example, for the fourth antigen, on average, 0.33 of the clones in its ball of
stimulation were already generated by the first antigen, 0.06 by the second antigen, 0.17 by
the third antigen, and 0.45 were generated de novo by the lazy algorithm on injection of the
fourth antigen. The data were calculated by metering the lazy algorithm to record which
balls of stimulation a newly generated clone fell within. The varying proportions suggest
that the 10 antigens were a reasonable test of the lazy algorithm.

6

0

5000

10000

15000

20000

25000

0 2 4 6 8 10 12

N
um

be
r

of
 o

cc
ur

en
ce

s

(a) Number of clones at radius 4 from antigen 1

Observed (solid impulses)
Expected (dashed curve)

0

1000

2000

3000

4000

5000

6000

7000

10 15 20 25 30 35 40 45 50 55 60

N
um

be
r

of
 o

cc
ur

en
ce

s

(c) Number of clones at radius 5 from antigen 1

Observed (solid impulses)
Expected (dashed curve)

0

5000

10000

15000

20000

25000

0 2 4 6 8 10 12

N
um

be
r

of
 o

cc
ur

en
ce

s

(b) Number of clones at radius 4 from antigen 10

Observed (solid impulses)
Expected (dashed curve)

0

1000

2000

3000

4000

5000

6000

7000

10 15 20 25 30 35 40 45 50 55 60

N
um

be
r

of
 o

cc
ur

en
ce

s

(d) Number of clones at radius 5 from antigen 10

Observed (solid impulses)
Expected (dashed curve)

Figure 4: The expected (dashed curve) and observed (solid impulses) distributions of the number of clones
at radii 4 and 5 from antigens 1 and 10. These data were collected from the application of the lazy algorithm
to the sequential introduction of the 10 test antigens in 100,000 independent simulations and counting the
number of clones at each radius within the ball of stimulation of each antigen. Antigens 1 and 10 are
shown because they had the least and most number of clones, respectively, generated by prior antigens.
Plots showing the distributions for the other antigens, and other radii, showed similar visual correspondence
between the observed and expected distributions.

Radius Observed �2 goodness-of-fit values for each antigen at each radius Degrees Critical
1 2 3 4 5 6 7 8 9 10 of freedom �2

1 0.00 0.11 0.00 1.34 0.23 0.04 0.11 0.23 1.02 0.12 1 3.84
2 4.36 1.50 0.89 3.08 1.19 2.61 1.71 4.55 0.48 1.04 2 5.99
3 5.15 3.06 5.40 0.43 0.60 2.14 4.13 4.87 3.20 1.69 4 9.49
4 13.57 10.68 22.36 17.71 6.44 11.24 12.10 7.33 17.46 10.08 12 21.03
5 39.47 44.45 31.72 31.74 45.25 39.95 35.96 48.35 28.22 54.58 40 55.76

Table 3: All observed �2 values (except one) were below their respective critical �2 value. Thus, there is
no evidence (p=0.05) for rejecting the hypothesis that the observed data were in their expected distributions,
and we conclude the lazy algorithm worked correctly. The one exception (antigen 3, radius 4) appears to
be a Type I error, due to statistical variation, because its �2 value was less than the critical value when the
experiment was repeated. One such error in 20 tests is to be expected at p=0.05. The data used were from
the same 100,000 simulations used to make the plots of Figure 4. Not enough clones were generated at
radius 0 (eight total in 100,000 simulations) to perform the test.

7

 1

 10

 100

 1000

 10000

 100000

 1000000

1 10 100 1000

A
lg

or
ith

m
ic

 c
os

t (
hu

nd
re

ds
 o

f o
pe

ra
tio

ns
)

Number of distinct antigens in a simulation (g)

Lazy algorithm
Eager algorithm

Figure 5: A comparison of the algorithmic cost of creating the B cell repertoire by the lazy
and eager algorithms. The algorithmic cost was measured as the sum of the number of clones
generated plus the number of checks that a clone was within the ball of stimulation of an antigen.
Calculations were done for a realistic-size repertoire with n = 107 and p = 10�5. The lazy
algorithm costs less than the eager algorithm when there are less than 447 distinct antigens in
a simulation, and costs 1,000 times less when there are less than 10 distinct antigens in the
simulation.

When there are more than 10 distinct antigens in a realistic-size simulation, most of the algorithmic
cost of the lazy method is in the g2 comparisons of new clones with previously added antigens. In
simulations involving hundreds of antigens, this g2 cost could be reduced by various methods. One
method is only to compare clones against antigens that are within distance 2r of the antigen for
which clones are being generated. The algorithm still works correctly because antigens at greater
than 2r distance cannot have intersecting balls of stimulation. In this case, the g2 comparisons
become a worst case, and the actual number of comparisons depends on the distances between the
antigens in the simulation. Another method to reduce the g2 comparisons is to generate clones
in a ball larger than a ball of stimulation and thus avoid lazy generation for any future antigens
whose balls of stimulation fall completely within the previously generated larger balls. This second
method is effective when the antigens are tightly clustered.

5 Discussion

We have described an algorithm that uses lazy evaluation to generate only the subset of clones
that can be stimulated by the antigens introduced into a simulation. Because this subset is typ-
ically a tiny proportion of the clone repertoire, the algorithm permits the efficient simulation of
realistic-size repertoires. Correctness of the algorithm was checked by showing that, in a test case
of 10 overlapping antigens, the algorithm produced clones in the same distributions as an eager
algorithm. Analysis of the algorithm showed, in simulations of realistic-size repertoires involving
less than 10 distinct antigens, that less than 0.01% of the expressed repertoire was created at less
than 0.1% of the cost of creating a complete repertoire. We have implemented a lazy simulation of

8

the humoral immune response that uses a realistic-size repertoire with a steady-state size of 107 B
cell clones and a turnover of 5�105 B cell clones every 6 simulated hours (Smith et al., 1997a).
Simulations of the sequential infection by three antigens that have overlapping balls of stimulation,
over a simulated period of 200 days, takes less than 2 minutes of CPU time, running in Lisp, on a
Sun Ultra 2/2300.

The algorithm we described is specific for models in which receptors are represented as strings of
symbols and affinity is calculated as a function of the Hamming distance between receptors. The
method could also be applied to other representations of receptors and other methods of calculat-
ing affinity, by changing the calculation of the probability distribution of clones within a ball of
stimulation and the method of generating clones within a ball of stimulation. The method is appli-
cable to both agent based models in which each cell is represented individually, and to differential
equation based models in which each clone is represented by a differential equation.

Some neural network and associative memory models have similar structure and function to the
immune system models discussed above (Smith et al., 1996). Thus, the lazy method can also
be applied to implementation of such models. In particular, the method can be applied without
modification to the Sparse Distributed Memory (SDM) model (Kanerva, 1988). The method can
also be applied, with modifications similar to those described for other representations of receptors,
to the Cerebellar Model Arithmetic Computer (Albus, 1981), the Theory of Cerebellar Cortex
(Marr, 1969), WISARD (Aleksander et al., 1984), and variations on SDM (Jaeckel, 1989a; Jaeckel,
1989b). Danforth (1997) used a lazy-like method, and a modified SDM learning rule (Danforth,
1991), to improve the performance of SDM. Danforth’s method adds at most one hard location (the
SDM equivalent of a clone) on each write to the memory, at the exact location of the write. This
is in contrast to the cluster of hard locations that would be added by our method. Both methods
significantly reduce the number of hard locations in a simulation (compared to an equivalent eager
simulation), and distribute hard locations in accordance with the distribution of addresses used to
write to the memory. Danforth’s method modifies the behavior of the SDM; our method leaves the
behavior unchanged, and only modifies the implementation.

General immune system models that include clones with receptors have been simulated with the
order of 103 clones (DeBoer & Perelson, 1991; Celada & Seiden, 1996; Detours et al., 1996).
Lattice based cellular models that use only one or two bits to represent the concentration of highly
simplified clones, and measure affinity by neighborhood on the lattice, have simulated 104 clones
(DeBoer et al., 1992a), and 108 clones (Stauffer & Sahimi, 1994) (the latter on a Cray-YMP). The
lazy evaluation method presented here is the first to permit realistic-size repertoires of 107 to 108

clones for general immune system models.

Acknowledgments

The authors gratefully acknowledge the ongoing support of the Santa Fe Institute and its Joseph P. and Jeanne
M. Sullivan program in theoretical immunology. This work was also supported by grants ONR (N00014-
95-1-0364), NSF (IRI-9157644), and NIH (RR06555). Portions of this work were performed under the
auspices of the U.S. Department of Energy. DJS also acknowledges the University of New Mexico Computer
Science Department AI fellowship and Digital Equipment fellowship, and the help of Doug Danforth, Ron
Hightower, Peter Hraber, Terry Jones, Pentti Kanerva, Catherine Macken, Ronald Moore, Francesca Shrady,

9

Suzanne Sluizer, Paul Stanford, and Carla Wofsy. This paper was written while Forrest was visiting the MIT
Artificial Intelligence Laboratory.

REFERENCES

Albus, J. S. (1981). Brains, Behavior, and Robotics. Byte Books, Peterborough, NH.
Aleksander, I., Thomas, W. V. & Bowden, P. A. (1984). Wisard-a radical step forward in image recognition.

Sensor Review 4(3), 120–124.
Celada, F. & Seiden, P. E. (1996). Affinity maturation and hypermutation in a simulation of the humoral

immune response. Eur. J. Immunol. 26, 1350–1358.
Danforth, D. G. (1991). Total recall in distributed associative memories. Technical Report TR 91.03,

Research Institute for Advanced Computer Science, NASA Ames Research Center.
Danforth, D. G., (1997). Personal communication of work performed at the Research Institute for Ad-

vanced Computer Science, NASA Ames Research Center.
Dannenberg, R. B., Fraley, C. L. & Velikonja, P. (1992). A functional language for sound synthesis with

behavioral abstraction and lazy evaluation. In: Computer Generated Music (Baggi, D., ed.). IEEE
Computer Society Press.

DeBoer, R. J. & Perelson, A. S. (1991). Size and connectivity as emergent properties of a developing
immune network. J. Theoret. Biol. 149, 381–424.

DeBoer, R. J., Hogeweg, P. & Perelson, A. S. (1992). Growth and recruitment in the immune network.
In: Theoretical and Experimental Insights into Immunology (Perelson, A. S. & Weisbuch, G., eds) pp.
223–247. Springer-Verlag, Berlin.

DeBoer, R. J., Segel, L. A. & Perelson, A. S. (1992). Pattern formation in one and two dimensional shape
space models of the immune system. J. Theoret. Biol. 155, 295–333.

Detours, V., Sulzer, B. & Perelson, A. S. (1996). Size and connectivity of the idiotypic network are
independent of the discreteness of the affinity distribution. J. Theoret. Biol. 183, 409–416.

Dunne, P. E., J.Gittings, C. J. & Leng, P. H. (1993). Sequential and parallel strategies for the demand-driven
simulation of logic circuits. Microprocessing and microprogramming 1, 591–525.

Edelman, G. M. (1974). Origins and mechanisms of specificity in clonal selection. In: Cellular Selection
and Regulation in the Immune System (Edelman, G. M., ed.) pp. 1–38. Raven Press, New York.

Elliott, C. & Hudak, P. (1997). Functional reactive animation. In: Proc. ACM SIGPLAN International
Conference on Functional Programming (ICFP ’97).

Farmer, J. D., Packard, N. H. & Perelson, A. S. (1986). The immune system, adaptation, and machine
learning. Physica D 22, 187–204.

Forrest, S. & Perelson, A. S. (1991). Genetic algorithms and the immune system. In: Parallel Problem
Solving from Nature (Schwefel, H. & Maenner, R., eds) pp. 320–325. Springer-Verlag, Berlin.

Friedman, D. P. & Wise, D. (1976). CONS should not evaluate its arguments. In: Automata, Languages
and Programming (Michaelson, S. & Milner, R., eds) pp. 257–284, Edinburgh. Edinburgh University
Press.

Henderson, P. & Morris, J. M. (1976). A lazy evaluator. In: Proc. 3rd Annual ACM symposium on
Principles of Programming Languages pp. 95–103, New York. ACM.

Hudak, P., Peyton Jones, S. L., Wadler, P. et al. (1992). Report on the functional programming language
Haskell: A non-strict, purely functional language: Version 1.2. ACM SIGPLAN Notices 27, 1–163.

Jaeckel, L. A. (1989). An alternative deisgn for a sparse distributed memory. Technical Report TR 89.28,
Research Institute for Advanced Computer Science, NASA Ames Research Center.

10

Jaeckel, L. A. (1989). A class of designs for a sparse distributed memory. Technical Report TR 89.30,
Research Institute for Advanced Computer Science, NASA Ames Research Center.

Jerne, N. K. (1974). Clonal selection in a lymphocyte network. In: Cellular Selection and Regulation in
the Immune System (Edelman, G. M., ed.) pp. 39–48. Raven Press, New York.

Kanerva, P. (1988). Sparse Distributed Memory. MIT Press, Cambridge, MA.
Klinman, N. R., Press, J. L., Sigal, N. H. & Gerhart, P. J. (1976). The acquisition of the B cell speci-

ficity repertoire: the germ-line theory of predetermined permutation of genetic information. In: The
Generation of Antibody Diversity (Cunningham, A. J., ed.) pp. 127–150. Academic Press, New York.

Klinman, N. R., Sigal, N. H., Metcalf, E. S., Gerhart, P. J. & Pierce, S. K. (1977). Cold Spring Harbor
Symp. Quant. Biol. 41, 165.

Köhler, G. (1976). Frequency of precursor cells against the enzyme beta-galactosidase: an estimate of the
BALB/c strain antibody repertoire. Eur. J. Immunol. 6, 340–347.

Leder, P. (1991). The genetics of antibody diversity. In: Immunology: Recognition and Response
(Paul, W., ed.) pp. 20–34. W. H. Freeman, New York.

Lucas, S. M. (1995). Rapid best-first retrieval from massive dictionaries by lazy evaluation of a syntactic
neural network. In: Proc. IEEE Intnl. Conf. on Neural Networks pp. 2237–42, New York, NY. IEEE.

Marr, D. (1969). A theory of cerebellar cortex. J. Physiology 202, 437–470.
Nossal, C. J. V. & Ada, G. L. (1971). Antigens, Lymphoid Cells and The Immune Response. Academic

Press, New York.
Perelson, A. S. & Oster, G. F. (1979). Theoretical studies of clonal selection: Minimal antibody repertoire

size and reliability of self- non-self discrimination. J. Theoret. Biol. 81, 645–670.
Perelson, A. S., Hightower, R. & Forrest, S. (1996). Evolution and somatic learning in V-region genes.

Res. Immunol. 147, 202–208.
Segel, L. A. & Perelson, A. S. (1988). Computations in shape space: A new approach to immune network

theory. In: Theoretical Immunology, Part Two, SFI Studies in the Sciences of Complexity (Perel-
son, A. S., ed.) pp. 321–343. Addison-Wesley, Reading, MA.

Seiden, P. E. & Celada, F. (1992). A model for simulating cognate recognition and response in the immune
system. J. Theoret. Biol. 158, 329–357.

Smith, D. J., Forrest, S. & Perelson, A. S. (1996). Immunological memory is associative. In: Workshop
Notes, Workshop 4: Immunity Based Systems, Intnl. Conf. on Multiagent Systems pp. 62–70, Kyoto,
Japan.

Smith, D. J., Forrest, S., Ackley, D. H. & Perelson, A. S. (1997a). Modeling the effects of prior infection
on vaccine efficacy. In: IEEE Intnl. Conf. on Systems, Man, and Cybernetics pp. 363–368, Orlando,
Florida. IEEE.

Smith, D. J., Forrest, S., Hightower, R. R. & Perelson, A. S. (1997b). Deriving shape space parameters
from immunological data. J. Theoret. Biol. (in press) and Santa Fe Institute Working Paper 97-03-017 .

Stauffer, D. & Sahimi, M. (1994). High-dimensional simulation of simple immunological models. J.
Theoret. Biol. 166, 289–297.

Turner, D. A. (1979). A new implementation technique for applicative languages. Software—Practice
and Experience 9, 31–49.

Turner, D. A. (1985). Miranda: a non-strict functional language with polymorphic types. In: Proc.
Int’l Conf. on Functional Programming and Computer Architecture, Nancy, Lecture Notes in Computer
Science 201 (Jouannaud, J.-P., ed.) pp. 1–16, Berlin. Springer-Verlag.

Weisbuch, G. & Oprea, M. (1994). Capacity of a model immune network. Bull. Math. Biol. 56, 899–921.
Yoshino, T., Smith, D. J. & Matzke, D. J. (1987). An RTL simulator based on functional programming.

Texas Instruments Technical Journal 4(3).

11

