
A Distributed Approach to Anomaly Detection

Patrik D’haeseleer

Dept. of Computer Science

University of New Mexico

Albuquerque, NM, 87131

patrik@cs.unm.edu

Stephanie Forrest

Dept. of Computer Science

University of New Mexico

Albuquerque, NM, 87131

forrest@cs.unm.edu

Paul Helman

Dept. of Computer Science

University of New Mexico

Albuquerque, NM, 87131

helman@cs.unm.edu

DRAFT - Saturday, August 30, 1997

Abstract:

The natural immune system has evolved many interesting mechanisms to solve the problem of self-nonself discrimination.

An anomaly detection system based upon principles derived from the immune system was introduced in [Forr94] . Its main

advantages are that it is distributable, local, and tunable. This paper provides an overview of the theoretical, algorithmic

and practical developments extending the original proposal. In particular, we present information theoretic results on the

detection method, show the possibility of strings that cannot be detected for a given combination of self set and matching

rule, present efficient algorithms to generate the detector set, and provide rules of thumb for setting the parameters to apply

this method to a real data set.

1. Introduction

1.1 Motivations from Immunology

Much of computer security can be viewed as the problem of distinguishing self (legitimate users, authorized actions,

original source code, uncorrupted data, etc.) from nonself (intruders, computer viruses, spoofing, Trojan horses, etc.).

Nature, more specifically the natural immune system, has been solving a similar problem for hundreds of millions of years,

using methods quite different from those typically used to protect computers.

The body’s immune system is comprised of a wide range of mechanisms, the intricacies of which are still being

unraveled (see [Jane97] for an overview of immunology). These mechanisms are often categorized as either “specific” or

“nonspecific” depending on whether they provide specialized protection against a known type of intrusion (such as

antibodies reacting against one specific kind of virus), or a more general protection against anything coming in from the

outside (such as the skin, or inflammatory responses against cell damage). Likewise, computer security measures can be

divided into specific (virus checking with signatures, security analysis tools [Farm93], etc.) and nonspecific (good code

hygiene, firewalls, encryption, etc.). However, most of the nonspecific measures are passive, in the sense that they only

prevent nonself from intruding on the system but do not detect intrusions in progress, whereas the specific measures usually

have a difficult time keeping up with the new attacks continually being developed or discovered by malicious agents. Any

single protection mechanism is likely to have its own vulnerabilities, making it hard to find and patch every security hole in

2

a large computer system. It is our belief that a comprehensive multi-faceted approach is necessary, in which, similar to

natural immune systems, both specific and nonspecific protection mechanisms play an integrated role.

In earlier work by Forrest et al. [Forr94], an anomaly-detection algorithm was introduced based on one of the

mechanisms used by the immune system: The generation of T lymphocytes in the thymus (see [Dipa97] for a survey of

other immunity-based systems for engineering applications). T lymphocytes, or T cells, are one of the many kinds of

specialized cells in the immune system. The surface of a lymphocyte is covered with receptors that can bind to antigens

(foreign proteins). Each lymphocyte has one specific kind of receptor, and each receptor binds to a small group of struc-

turally related antigens. The receptors on T cells are constructed by a pseudo-random process. As the T cells mature in the

thymus, they undergo a censoring process called negative selection, in which those T cells that bind self proteins are

destroyed [Kapp87, Paul89]. After censoring, T cells that do not bind self are released to the rest of the body and provide

the basis for our immune protection against foreign antigens. This mechanism in the immune system is very robust, because

of its distributed nature, and remarkably efficient. The repertoire of T cells produced in this way seems to cover most of the

antigen space (estimated at around 1016 different possible foreign molecules), while tolerating an estimated 106 different

body proteins as “self” [Inma78]. In immunology, T cells are counted under the specific immune response, because each

individual T cell responds to a specific antigen. However, the generation of a repertoire of randomly generated T cells

covering almost all of the antigen space can be viewed as a nonspecific mechanism.

The algorithm presented in [Forr94] works in a similar way. Detectors are generated to match anything that does not

belong to self (for this reason, it is also sometimes called the “negative selection method”). In operation, these detectors are

used in much the same way as signatures are used to scan for specific computer viruses. However, a virus scan program

only checks for a small number of known signatures and needs to be updated continuously with signatures for newly emerg-

ing viruses. Our method relies on having a large enough set of random detectors that virtually all nonself objects will be

detected. Thus, the negative selection method can be classified as an active, yet nonspecific, protection mechanism. As a

nonspecific method, it might not always be as efficient or effective as some of the knowledge-intensive special-purpose

mechanisms for detecting specific kinds of changes or known attacks. Its strength, however, is its generality; it potentially

could be applied in many settings as a safety net to catch anomalies that might otherwise go undetected.

1.2. A Distributable, Local and Tunable Anomaly Detection Method

In the immune system, the self and nonself objects, as well as the detectors, are peptides, short strings of amino acids. It

is not entirely clear at what level of granularity we should place the corresponding elements in a computer system. For

instance, the self objects could be the users logged on a system, with each detector looking at some random part of their

audit trail. Our emphasis, however, has been on a lower level of granularity, where both the detectors and the data to be

protected consist of fixed length strings over a given alphabet of symbols (usually binary). However, the method does not

depend on this representation and can be applied to any collection of objects. In immunology, binding between antigen and

T-cell receptors depends on interactions between the complementary shapes of antigen and receptor molecules (the so-

called “ lock and key” model). The match between antigen and receptor need not be exact, so each receptor can bind a small

range of similar antigens and vice versa. We simulate this by using a “matching rule” which, given a detector and an

3

unknown string, decides whether the detector matches the string. This decision can be based on any of a number of string

matching algorithms, such as edit distance, Hamming distance etc.

The choice of matching rule is crucial to the performance of this method. To date, our research has mainly used the “ r-

contiguous-bits” matching rule, taken from theoretical immunology [Perc92]. With this rule, two strings are said to match if

they are identical in at least r contiguous positions (where r is a parameter of the matching rule). For instance, for r=5, the

two strings on the left match under this rule, whereas the two strings on the right do not match:

1000111101011010 1010010001000110

0101011101101000 0101001011100010

Although this is the matching rule used throughout most of the paper, it should be stressed that this choice of rule was

fairly arbitrary. It does lend itself quite well to analysis and serves mainly as an illustration of the feasibility of the method.

In [Forr94] for example, it was used successfully to do some simple virus detection. For use in a real security system, other

matching rules based on checksums or even cryptographic one-way hash functions might be more appropriate.

Similar to the generation of T cells in the thymus, detector strings can be generated at random. The ones that match any

of the self strings to be protected (according to the specified matching rule) are eliminated. The ones that fail to match any

of the self strings form the detector set (or “ repertoire”) R. This process is repeated until we have enough detectors to ensure

the desired protection level (defined in terms of the probability of success in detecting any nonself strings with at least one

detector). This generate-and-test algorithm, illustrated in Figure 1, works for any matching rule, however it requires sam-

pling a number of candidate detectors that is exponential in the size of the self set [DeBo93]. Similarly, in the thymus, 95-

99% of all immature T cells get eliminated, an apparent waste of resources. In a highly parallel system like the body,

however, this does not pose a problem. In a computer system we would prefer to be able to generate valid detectors directly,

1101

0000
1101

Match?

No

S

Ro

R

Generate random strings

1000

1100

1011

0111

0011

0000

1000

1100

1101
...

Yes
(Reject)

(Accept)

Figure 1: Constructing a set of detectors R for a set of self strings S, using generate-and-

test. The matching rule used here is “r-contiguous-bits” with r=2. The strings in Ro are

generated at random. The ones that match any of the strings in S are rejected.

4

without having to guess randomly. We will present some much more efficient algorithms to generate detectors in Section 3.

Figure 2 shows the relevant sets of strings and how they relate to each other. String space U and detector space Ud are

drawn separately for clarity, even though in this paper U = Ud. We introduce the following notation:

Matches(P) = Q (read: “P matches Q”) iff Q contains all the strings matched by any detector in P.

MatchedBy(Q) = P (read: “Q is matched by P”) iff P contains all the detectors matching any string in Q.

Matching probability Pm : probability that a randomly chosen string and detector match according to the matching rule.

Failure probability Pf : probability that a single random nonself string will not be matched by any of the detectors in R.1

We write NX for the size (cardinality) of a set X. In particular, NS is the size of the self set and NR is the detector set size.

Given a set of self strings S ⊂ U, the goal is to find a detector set R ⊂ Ud that matches as many of the nonself strings in N

as possible (N = U-S), without matching any of the self strings in S. The detectors in R are chosen from the set of candidate

detectors C, consisting of all strings that do not match any string in S (i.e., C = Ud - MatchedBy(S)). If we were to include

all candidate detector strings in R, we would be able to detect all nonself strings in set N′, which may or may not be equal to

N (see the discussion of holes in Subsection 2.3). Generally, only a small subset of candidate detectors will be included in R,

allowing us to detect all nonself strings in D (with D ⊂ N′ ⊂ N). Failure probability Pf = ND/NN, or Pf ≈ ND/NU if NS << NU.

Matches

Matches

MatchedBy

�

�
��� �

��

�

� 	�

detected

undetected

holes

self strings

Figure 2: Relationships between the subsets of string space U and detector space Ud. String space is

partitioned into self strings S and nonself strings N. Candidate detectors (C) are those that do not

match any string in S. The detector set R is a subset of the candidate detectors. Nonself strings can

be further subdivided in detectable nonself strings (N´) and holes (H = N - N´, not labeled). Detectable

nonself strings can be detected (D) or not (F = N´ - D, not labeled), depending on the choice of R.

This method (as is true of most other anomaly detection methods) relies on having an accurate and stable description of

self. In this sense it could be considered as static (although some of the more dynamic mechanisms in the immune system

5

can be used to provide a form of online learning). Earlier work emphasized the change detection properties of the algorithm

[Dhae95b, Dhae96a, Dhae96b], but its application is not limited to purely static data sets such as data files. Thus it is

properly classified as an anomaly detection rather than a change detection algorithm. Our current research is applying it to

monitoring patterns of activity. For instance, the pattern of "normal" sequences of system calls for certain running processes

has been shown to be quite stable [Forr95] and can be used to detect anomalous behavior of these processes. Some work has

also been done on applying this method to anomaly detection in manufacturing processes [Dipa95].

The negative selection method has a number of features which distinguish it from most other methods:

• No prior knowledge of intrusions is necessary. This is in contrast with signature-based virus scanners.

• Detection is probabilistic but tunable. That is, in general we will not be generating a complete repertoire of detectors (i.e.

a set of detectors that covers all possible nonself strings). Instead we will content ourselves with matching all but a small

fraction Pf of nonself strings, in exchange for a smaller set of detectors. The desired probability of success in detecting

random nonself strings with a single set of detectors can be weighed against the expected number of nonself strings per

anomaly and the cost of generating, storing and checking detectors.

• The detection scheme is inherently distributable. Small sections of the protected object can be checked separately,

different sites can have independently created detector sets for the same object, and the detectors in the detector set can

themselves be run independently. No communication between detectors or detector sets is needed until a change is

detected. This makes it a promising tool for computer security in networked or distributed computer environments, or in a

scheme with autonomous agents such as the one presented in [Cros95].

• Detection is local. Classical change detection methods (such as checksum methods) typically require the entire data set to

be checked at once. Our method allows small sections of the data to be checked, and when a detector does find an

anomaly it can be localized to the string that the detector is checking.

• The set of detectors at each site can be unique. This means that if one site should be compromised, others would still be

protected. For independent detector sets, the system-wide failure probability decreases exponentially with the number of

sites protected. This may allow us to choose a fairly high Pf (and thus small detector sets) for the individual systems.

• The set of self strings and the detector set are mutually protective, meaning that the detector set protects the self set

against change and vice versa. Also, detection is local: we can pinpoint the individual string (or detector) which has been

changed.

An often heard comment when describing this anomaly detection method is “Why don’ t you just use checksums”?

Firstly, it should be noted that checksum methods are really a special case of the method described here, where the self set

consists of a single object (the file to be protected), the detector set contains a single detector (the checksum), and the

matching rule consists of calculating the checksum over the file and comparing it with the stored checksum. Therefore,

given appropriate parameter choice, out method could have all the same advantages of normal checksum methods. In that

sense, it could be considered as a generalized checksum method for protection of NS files or file sections using NR

checksums. This allows the detection to be distributed and localized. An added benefit is its tunability, which allows it to be

used as a anomaly detection method in a dynamic environment, where sensitivity to single-bit changes is not desirable.

1 Of course, the probability that an anomaly goes undetected will tend to be much smaller if a single anomaly results in several nonself strings.

6

One of the difficulties in implementing this method is that there are many degrees of freedom in choosing the

parameters. Section 2 gives an overview of the theoretical analysis, aimed towards deriving some theoretical bounds for

these parameters and a greater understanding of the properties of this anomaly detection method. Information theoretic

approaches have been very useful in this regard. In Section 3, we give an overview of the algorithms that have been

developed to generate detector sets efficiently. We give the time and space complexity of these algorithms, as well as some

formulas and parameter bounds derived from them. We also present a similar algorithm that can be used to count the exact

number of holes (undetectable nonself strings). Section 4 compares results obtained with the different algorithms and

formulas, both on randomly generated files and on a real binary file. We also touch on some of the practical issues,

including guidelines for applying the method, how to choose the parameters, and the formulas involved. Section 5 presents

conclusions and outlines areas for further study.

2. Theoretical Analysis

In subsection 2.1, we derive an estimate of the amount of information that is lost by splitting a data stream into

unordered strings, and show how this estimate can be used to guide the choice of string length. Subsection 2.2 derives two

separate lower bounds on the size of the detector set, one based on the geometry of the string space, the other based on

information-theoretic arguments. We show how these bounds are related, and that they can be used to derive an upper

bound for the matching probability Pm. The principle of holes (undetectable nonself strings) is illustrated in subsection 2.3,

along with a proof of their existence for a large class of matching rules. The influence of holes on the achievable failure rate

is discussed, along with guidelines on how to avoid holes. A preliminary version of the material in this section appeared in

[Dhae95b].

2.1. Splitting data into strings

The anomaly detection method described above works on an unordered set of strings. In order to apply the method to a

real data set (such as a file on disk, an audit trail, the behavior of a process, a sequence of system calls of a running

program, etc.), we will typically have to preprocess the data by splitting it into strings of length l over an alphabet of size m.

This destroys some of the internal structure of the data that could be used to make the detection proceed more efficiently.

Because we want to use as much information as possible about Self, we would like to minimize this information loss. In the

following analysis we assume a binary alphabet, but extension to larger alphabets is straightforward.

The information lost by splitting up a stream ˆ S into a set of unordered strings S is equal to the amount of information (in

bits) we would need to be given in order to reconstruct the original stream from the unordered set, or alternatively the

amount of information we would gain by being given the original stream ˆ S if we already knew S. This can be denoted by

H(ˆ S | S) (i.e. the conditional entropy of ˆ S given S). In information theory, this quantity is often called the Doubt, since it is

the amount of information about ˆ S that is missing in the encoding S. For a given string length l, a stream ˆ S of LS bits will

7

be split up into a set S of NS l-bit self strings.2 Usually, not all of these strings will be unique, so S is really a multiset. Say

we get k unique l-bit strings, where each string si appears Ni times:

N Ni S
i k

=
=
∑

1..

.

Given such a set of NS strings, the original stream could have been one of

N

N N N

N

N N N
S

k

S

k1 2 1 2,

!

! ! !⋅⋅⋅






 =

⋅ ⋅⋅⋅

possible rearrangements of these strings. If we assume that each possible rearrangement is equally likely (i.e. we have no

prior information about the nature of the data stream), then the amount of information lost is:

()∆I H SS
N

N N N
S

k
1 2

1 2

= = ⋅ ⋅ ⋅








log

,
 bits.

From Stirling’s approximation for the factorial function, or by a reasoning similar to the one in [Cove91], it can be

shown that:

()N

N N N
S

k

N H N NS i S

1 2

2
, ⋅ ⋅ ⋅







 ≤ ⋅ (1)

where H(Ni/NS) stands for the entropy associated with the relative frequencies of occurrence of the strings in S. Taking the

logarithm base 2, this becomes:

log
,2

1 2

N

N N N
N H

N

N
S

k
S

i

S⋅ ⋅ ⋅






 ≤ ⋅









or, in “big- ” notation:

()()log
,2

1 2

N

N N N
N H N N

S

k
S i S⋅ ⋅ ⋅







 = ⋅ .

Therefore, as a bound on the amount of information lost, we get:

()() ()()∆I N H N N L H N N lS i S S i S1 = ⋅ = ⋅ . (2)

This analysis suggests that if we measure the average entropy per bit of the strings in S for different string lengths l, we

could minimize the information loss by choosing the value of l for which the entropy per bit is minimal. In general, this will

only be one of many factors that need to be considered in the choice of l. Although a small l tends to reduce the entropy of

the strings because it reduces the size of the total string space, the entropy per bit will tend to go up with decreasing string

length. On the other hand, increasing l beyond the point where most of the strings in S are unique will reduce entropy

2 The alternative would be to generate the strings using a sliding window of length l. This can result in significantly less information loss but is

harder to analyze.

8

because it reduces the number of strings in S, but choosing a large l will make generation of detectors difficult in terms of

space and time requirements.

0

5

10

15

20

0 16 32 48 64 80 96 112 128
string length l

(a)

en
tr

o
p

y
H

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 16 32 48 64 80 96 112 128
string length l

(b)

en
tr

o
p

y
p

er
 b

it
 H

/l
Figure 3: Entropy of the set of strings obtained by splitting an emacs binary into l-bit strings. The

dotted lines indicate the envelope within which H must fall, delimited by H/l=1 and H=log2(NS).

(a) shows the entropy H(Ni/NS) of the resulting set of strings. (b) shows the entropy per bit of

these strings, which is proportional to ∆I1.

Figure 3 illustrates how H(Ni/NS) changes with respect to l for a real data file. The data chosen was an emacs binary

(GNU emacs v19.25.2 SGI binary, 3.2MB). The file was split up into strings of length l=1 (single bits), 2, 4, and multiples

of 8 (i.e. at byte boundaries) up to 16 bytes long. For each value of l, the entropy of the resulting set of strings was

calculated. Figure 3(a) shows clearly that there are minima in the entropy at multiples of 4 bytes, corresponding to the 32-

bit RISC instruction used to compile the binary. The values plotted here at 8-bit intervals are themselves local minima as

well: for intermediate values of l the entropy would be much higher, because this corresponds to cutting up the data at non-

byte boundaries, ignoring the natural byte structure present in the data. The entropy per bit plotted in Figure 3(b) is

proportional to ∆I1 (apart from a constant factor LS). This graph is uniformly decreasing, so in order to minimize

information loss for this data we would want to choose l as high as our other constraints allow, with a preference for multi-

ples of 4 bytes. Note that most of the gain occurs at lower string lengths, so increasing string length beyond 64 bits (8 bytes)

gives little extra improvement.

This calculation of the information lost by splitting up the data at l-bit boundaries applies not only to the anomaly

detection method described here. This is a general result, applicable to any method that transforms a stream of data into an

unordered set of strings. In particular, it would also hold for methods that take into account the frequency of occurrence of

the self strings. However, because our method ignores the frequency of occurrence of each unique l-bit string si, this

constitutes a second source of information loss. If we assume NS is known, then if we are given the set of k unique strings in

S (s1, s2, … , sk), there are

9

NS − 1

k −1









possible ways of assigning the values for Ni (such that they sum up to NS), and thus of reconstructing the unordered multiset

S. If each of those assignments is equally likely (again, assuming we have no prior knowledge of the contents of the data

stream), the amount of information (in bits) lost by ignoring the frequencies of the strings is given by:

()

()

∆I H Ss

N

k

N H
k

N
N

i

S

S
S

S

2

2

1

1

1
1

1

=

=
−

−








≤ − ⋅
−
−









<

log

 (see [3])

 .

In general, ∆I2 will be small compared to ∆I1 and can be ignored. If we do want to minimize ∆I2, minimizing NS by

choosing a large string length l would be the obvious way to do it. This would tend to reduce the number of duplicate strings

and thus the amount of information lost by ignoring duplicates, although this may in some cases increase ∆I1 because of an

increase in H(Ni/NS).

2.2. Detector set size

The number of detectors needed to achieve a specified failure rate Pf is an important factor in comparing different

parameter settings, because this affects the time needed to generate the detector set, the storage space needed for the

detector, the amount of nonself space covered by each detector, etc. It is possible to derive theoretical lower bounds on the

number of detectors needed.

A first lower bound for NR can be derived from the average matching probability Pm (probability that a randomly chosen

string and detector match according to the specified matching rule) [Pere79]. At best, we can spread the detectors apart such

that no two detectors match the same nonself string. The amount of string space covered by NR detectors is then PmNRNU.

This needs to be at least as big as (1-Pf)NU, in order to cover enough nonself strings for a failure probability of Pf (ignoring

NS with respect to NU), so:

()N P PR f m≥ −1 . (3)

A second, more general, lower bound can be derived based on the amount of information about S that can be stored in R.

A set of detectors R constructed for a given set of self strings S can be viewed as a message encoding information about that

self set. Given a "perfect" detector set R´, that is, a set of detector strings that exactly recognizes all nonself strings, it would

be possible to reconstruct the original self set S (by checking for each string in the string space whether it is detected by any

detector in R´). Therefore, this set R´ would have to contain at least the same information as the original set S. By

calculating the information content of the original file of self strings it is possible to get an absolute lower bound on the

information content, and thus on the size, of the detector set. For a random self set, the information content will be of the

10

same order as its size in bits. This means that the perfect detector set R´ would have to be of approximately the same size

(in bits) as the self set S. For large self sets this will generally not be acceptable.

We can alleviate this problem by allowing a certain amount of error in the self-nonself detection performed by the

detectors. For the purpose of this analysis, we will assume that a fraction Pf of the nonself strings are not matched by the

detectors. In other words, we allow at most Pf(NU-NS) (where U is the total string space, and NU=|U|) false negatives (nonself

strings not detected) but no false positives (no self strings classified as nonself)3. Not requiring an exact encoding of the self

set S means that we can get away with a much smaller information content, and thus, a much smaller size for the detector

set.

If we choose the self strings from the set of all possible strings U, then there are

M =
NU

NS









possible self sets of size NS. If we assume (i) that the set S of self strings is independent, i.e. that each string is chosen at

random out of the set of all possible strings, then each of those sets is equally likely, so the average information content (i.e.

entropy) of a self set of size NS is:

H S() = log2

NU

NS







 .

Given a detector set R constructed for this self set S we could try to reconstruct S. Since R has been constructed to allow

a certain amount Pf of false negatives, we won't be able to reconstruct S exactly from R. Instead we would get a set ′ S

consisting of the NS original self strings plus Pf(NU-NS) unmatched nonself strings.

Assumption (i) says that the self strings are independent of each other. We will make a second assumption (ii) that given

Ś we have no knowledge of which subset of NS strings constitutes the original set S. The amount of information about S

that is missing in the encoding R is then H(S|R) (i.e. the amount of information we would gain by being given S if we

already knew R). Assumptions (i) and (ii) tell us that any subset of size NS, taken from the set ′ S of size NS + Pf(NU-NS), is

equally likely to be the original self set S, so:

() ()
H SR

N P N N

N
S f U S

S

=
+ −







log2 .

The difference between H(S) and H(S|R) (i.e. the information in S, minus the information about S that is missing in R)

represents the amount of information about S that is preserved in the encoding R and is called the Mutual Information of S

and R (denoted by I(S;R)):

3 A similar analysis can be made for the general case, with both false positives and false negatives. See [Dhae97].

11

() () ()
()

()

()
()()
()()

I S R H S H SR

N

N
N P N N

N

N

N
N P N N

N

N

N N N

N P N N

N P N N

N

N P N N

U

S

S f U S

S

U

S

S f U S

S

U

S U S

S f U S

S f U S

U

S f U

;

log log

log

log
!

! !

!

! !

log

= −

=






 −

+ −









=








+ −





















=
⋅ −

+ −

⋅ −

















=
+ −

 2 2

2

2

2 () () ()S

U

S f U S

U S

S f U S S

N

N P N N

N N

N P N N N
⋅

−
+ − −

⋅⋅ ⋅ ⋅
− +

+ − − +













1

1

1

1

Using a third and last assumption, (iii): PfNU>>NS and thus also NU>>NS, we can simplify this further (the validity and

consequences of these three assumptions will be discussed later):

()

()
()

I S R
N

P N

N

P N

N N

P N N

P

N P

U

f U

U

f U

U S

f U S

f

N

S f

S

; log

log

log

≈ ⋅
−
−

⋅⋅ ⋅
− +
− +













≈ 





≈ ⋅

2

2

2

1

1

1

1

1

1 .

(Similar results can be obtained using (1)). Since R needs to contain at least this much information, this is a lower bound

on the size of the detector set, expressed in bits. If the detectors are strings of length l in an alphabet of size m, the required

number of detectors NR is given by:

()
N

N P

l mR

S f≥
⋅

⋅

log

log ()
2

2

1
 . (4)

Table 1 illustrates this theoretical lower bound for NR as a function of string length l for a data stream of one million bits.

Note that for a tenfold decrease in failure rate we only need a twofold increase in the number of detectors.

l NS NR (Pf = 0.1) NR (Pf = 0.01)

16 62500 12977 25953

20 50000 8305 16610

24 41667 5768 11535

28 35715 4238 8474

32 31250 3245 6489

36 27778 2564 5127

40 25000 2077 4152

Table 1: lower bounds on NR for a 1Mbit long data set, for different string lengths.

12

If the self strings are not independent of each other (as is often the case in reality), this will affect both assumptions (i)

and (ii). Assumption (i) (self strings are independent) led us directly to the formula for H(S) because we were allowed to

assume that all self sets were equally likely. In reality this will not be the case. We can expect real data to show some

structure, which may be reflected in a greater degree of similarity between the self strings than in sets of totally random

strings. Our experiments so far seem to confirm that we can use significantly smaller detector sets for real data. Also, if we

have high-level knowledge about the nature of the ensemble of "normal" self sets, we may be able to use that information to

achieve a smaller encoding.

It is unclear what effect non-independent self strings would have on assumption (ii). Clearly, if the NS self strings in Ś

share some characteristics that make them stand out from the Pf(NU-NS) undetected nonself strings, we have some

information about which subset of NS strings is more likely to be the original self file S and therefore H(S|R) can be smaller.

However, the character of the undetected nonself strings will largely depend on the matching rule and repertoire con-

struction algorithm chosen. With our current matching rules and algorithms, we would expect the undetected nonself strings

to lie approximately in the same region of space as the self strings. This may mean that assumption (ii) would still hold. Of

course, in practice it is recommended to check the real failure probability achieved with the generated detector set, by

sampling nonself strings or expected intrusion strings, if the distribution of these is known.

Assumption (iii) states that PfNU>>NS. In general it will be reasonable to assume at least NU>>NS (otherwise almost all

possible detector strings would match at least one of the self strings, and most of the nonself strings would in fact be unde-

tectable holes). For failure rates that are not excessively small, assumption (iii) will usually still hold. For instance, with

Pf=0.1, every single nonself string has 10% chance of escaping detection by the detectors. If an intrusion in the self file

consists of one single changed string, 10% may be quite a large error rate. However, intrusions will generally consist of

several different nonself strings and it is sufficient to catch only one of these to sound the alarm. If we have to use an

excessively small value for Pf, our approximation may no longer hold.

Although the above analysis was performed with the anomaly detection algorithm in mind (and bit strings for detectors

and self strings), it is clear that this approach is more general. In fact, the result above holds for any possible classification

scheme for a set S with zero false positives and Pf false negatives. Examples include: Matching rules with a variable radius

for each detector, matching rules based on Hamming distance, symbolic representations for self objects and detectors, other

self-nonself detection methods (such as k-nearest-neighbors, Neural Networks, etc.), and even the natural immune system.

In particular, for checksum methods, (4) reduces trivially to Pf = 2-l, where l is the length of the checksum.

The lower bounds given by (3) and (4) use different lines of reasoning and appear to have little in common. Whereas (3)

depends mainly on the matching rule (via the matching probability Pm), (4) is a property of the self string space and desired

success rate. Depending on the parameters chosen, (3) can be smaller or larger than (4). If (3) > (4), we might be able to

construct a detector set which in principle contains enough bits of information to distinguish between S and N up to an error

rate Pf, but which can not cover enough of the string space because each detector matches too few strings. On the other

hand, if (4) > (3) this implies that there might exist a set of detectors that are spread apart in such a way that they cover all

but a fraction Pf of N, but which does not really contain enough bits of information to distinguish between S and N with this

accuracy. Because such a detector set clearly cannot exist, it must be impossible to create such a small detector set that still

13

covers enough of the string space. In other words, given this matching probability it must be impossible to avoid

overlapping detector regions, so the optimal coverage assumed in (3) cannot be obtained.

If we are given a specific string space, set of self strings and desired success rate, lower bound (4) is fixed. We then need

to choose the matching rule to achieve this success rate in the most efficient way. Increasing the matching probability Pm

allows each detector to cover a larger part of the nonself space and results in a smaller detector set, as indicated by the

bound given by (3). However, the size of the detector set cannot be lowered beyond the lower bound (4), so increasing the

matching probability even further only causes more overlap between detectors, making it harder to detect all nonself strings

without also detecting some self strings (see Sections 2.3 and 4.1). Therefore, (3) ≥ (4) becomes an upper bound on the

useful matching probability Pm:

() ()
1

12

2

− ≥
⋅

⋅
P P

N P

l mf m

S flog

log ()

or

()
()P

l m P

N P
m

f

S f

≤
⋅ ⋅ −

⋅

log ()

log

2

2

1

1 (5)

2.3. The existence of holes

The bounds on detector set size seem to indicate that we merely have to choose a large enough detector set in order to

achieve any desired failure probability Pf. However, generally speaking, there will be a lower bound on the achievable

failure probability as well. This depends largely on the specific matching rule used. For the “ r-contiguous-bits” matching

rule (two l-bit strings match each other if they are identical in at least r contiguous positions), we have developed efficient

detector generating algorithms [Helm94, Dhae95a], making it possible to generate a complete detector repertoire, in the

sense that it covers all nonself strings that can be covered. As shown in [Dhae96a], it turns out that for the r-contiguous bits

matching rule there may be some nonself strings, called “holes,” for which it is impossible to generate valid detectors. If S

contains two strings s1 and s2 that match each other over at least (r-1) contiguous bits, they may induce two other strings h1

and h2 that cannot be detected because any candidate detector would also match either s1 or s2, as shown below for two 16-

bit self strings, with r = 7.

s

s

h

h
1

2

1

2

0000 000000

1111 111111

0000 111111

1111 000000

:

:

:

:

010101

010101

010101

010101
⇒

A similar argument shows that we also can have holes using a Hamming distance matching rule (where two strings

match if their Hamming distance is less than or equal to a fixed radius r). Figure 4 shows that a similar situation occurs

when self strings are represented as points in a Cartesian plane and a match between a string and a detector is said to occur

if the Euclidean distance between the corresponding points is smaller than a certain radius r.

14

h

s2

s1

s2

Closest valid
detectors to h

Figure 4: if self strings are presented as points in a plane and the matching rule is Euclidean distance,

three self strings s1, s2, s3 may induce a hole h for which no valid detector can be generated.

We show that all practical matching rules with a constant matching probability (i.e. each detector matches equally many

strings and vice versa) can exhibit holes even with a non-trivial set of self strings. Let U be the set of all strings, S the set of

self strings to be protected, Matches(d) the strings detector d matches, and MatchedBy(s) the detectors string s is matched

by, then h ∈U is a hole iff ∀d ∈ MatchedBy(s), ∃s ∈ S: s ∈Matches(d). Given a string h and a matching rule M with

constant matching probability Pm, it suffices to show that we can construct a non-trivial self set S such that h is a hole.

Starting with the empty set, for each detector d matching h, we pick one string sd matched by d and add this string to S.

Then, by construction, for each possible detector for h there exists a self string matching that detector. The set S constructed

in this way will be non-trivial if it does not need to contain a significant portion of the total string space U in order for h to

be a hole. An example of a trivial set S inducing holes would be one where the number of nonself strings is smaller than the

number of strings matched by any detector. If we are using a matching rule with a constant matching probability Pm, a self

set of size NS = |MatchedBy(h)| = PmNU always suffices to induce a hole. Of course, we may already get holes for smaller

self sets than that. As we have shown earlier, just two self strings matching over r-1 contiguous bits are sufficient for the r-

contiguous-bits matching rule.

The existence of holes imposes a lower bound on the failure probability Pf we can achieve with a given detection

method, because it will always fail to detect holes (however, we will present some techniques below that enable us to get

around this limitation). If we calculate the required number of detectors to achieve a certain acceptable Pf without taking

holes into account, the real Pf achieved with this detector set may be substantially higher than expected. Further, the failure

probability associated with the holes themselves does not improve by distributing the algorithm if we use the same matching

rule at all the sites. Although the detector set on each machine may be generated independently from the other machines, the

same holes occur on all machines. Therefore, it might be useful to try to spread the self strings apart as much as possible,

reducing the number of holes between them. This can be achieved by randomizing each self string with a hash function. We

may also choose to use detectors with a greater specificity (smaller radius in Figure 4), at the expense of a larger detector

set.

Another option is to try to eliminate the holes altogether, either locally or in a distributed fashion. Locally, this can be

achieved by using a matching rule that does not exhibit holes. For instance, with the r-contiguous-bits rule, we can choose a

15

different value of r for each detector, between r=1 (detector matches almost the entire string space) and r=l (detector only

matches a single string: itself), such that potential holes can be filled by detectors with high specificity. The value of r

would have to be stored with each detector. This method also has the advantage that very large sections of string space

could be covered with only a few detectors. Note that although this seems to be a much more efficient way to cover the

nonself string space, the size of the detector set still has to conform to equation (4). In a distributed setting, with several

sites running their own detector sets, we can choose a different matching rule (same rule with different parameters or

different rule altogether) for each machine. Each will have a different set of holes which hopefully will be covered by some

other machines. For example, each site could perform a different permutation on the bits in the bit strings before applying

the r-contiguous-bits matching rule, or all strings could be encrypted with a site-dependent key. The combination of the

permutation (or encryption) plus the r-contiguous-bits rule generates an entire family of matching rule, one for each

different permutation (or encryption key).

Note that the existence of holes can be a blessing instead of a curse. Since holes are generated by interaction between a

number of self strings, holes will tend to be “close to” these self strings in strings space (according to the matching rule

used). In some applications, we might not wish to detect strings that are that close to self. For instance, if this method is

used to monitor the behavior of a process, small deviations from the known normal behavior would likely be acceptable.

Many other change detection algorithms (such as checksums and message digests) are sensitive to any change in the data

and therefore not applicable when a certain amount of noise tolerance is required. On the other hand, if the method is being

used to detect viral code in a binary program file, both the self strings and the viral strings will consist of short machine

code segments. Pieces of viral code would likely be more similar to the valid self strings than to a totally random string of

the same length, and thus be more likely to be obscured by holes. In either case, it may be wise to calculate Pf based on the

a priori probabilities of expected changes (if known) instead of on random nonself strings.

3. Algorithms

This section describes three different algorithms for generating detector sets. Subsection 3.1 covers the original generate-

and-test algorithm presented in [Forr94]. Subsections 3.2 and 3.3 present two algorithms based on dynamic programming,

which run in linear time with respect to the size of the input: the linear time algorithm and the greedy algorithm. For some

examples and a more detailed derivation of the time and space complexities of these algorithms see [Helm94] and

[Dhae95a]. This last report also contains the algorithm for counting the holes, included here in subsection 3.4.

3.1. Generate-and-Test Algorithm

This algorithm mimics the generation of T cells in the immune system. Strings are drawn at random from Ud and

checked against all strings in S. If they fail to match any of the self strings, they are kept as valid detectors. This process of

random generation and checking against S is repeated until the required number of detectors is generated.

Generate-and-Test requires generating a number of random detector strings (NRo: initial detector repertoire size, before

negative selection) that is exponential in the size of self (for a fixed matching probability Pm) [DeBo93]:

16

NR0
=

− ln(Pf)

Pm ⋅ (1 − Pm)NS
 .

For independent detectors, we can approximate the failure probability Pf achieved by NR detectors:

Pf ≈ 1− Pm()NR . (6)

For Pm sufficiently small and NR sufficiently large, this gives:

NR ≈ − ln Pf() Pm . (7)

The assumption that the detectors are independent is not entirely valid. As NS or Pm increases, the candidate detector set

(C in Figure 2) will shrink, so the detectors chosen become less independent. Overlap among the detectors decreases the

amount of string space covered, resulting in a higher failure probability Pf than (6) would indicate.

The time complexity of this algorithm is proportional to NR, the number of candidate detectors that need to be examined,

and NS (because each string may have to be compared against all self strings). Space complexity is determined by NS:

time:
−
⋅ −

⋅








ln()

()
,

P

P P
N

f

m m
N SS1

()space: l NS⋅ .

3.2. Linear Time Algorithm

The generate-and-test algorithm is inefficient because most of the candidate detector strings are rejected, but works for

arbitrary matching rules. Some matching rules allow for more efficient detector generating algorithms. Here, we describe a

two-phase algorithm for the “ r-contiguous-bits” matching rule (two l-bit strings match each other if they are identical in at

least r contiguous positions) that runs in linear time with respect to the size of the input (for fixed matching parameters l and

r). In Phase I, we use dynamic programming to solve a counting recurrence for the number of strings unmatched by strings

in S (candidate detectors, set C in Figure 2). In Phase II, we use the enumeration imposed by the counting recurrence to pick

detectors randomly from this set of candidate detectors.

Phase I: Solving the counting recurrence. Essentially, we try to answer the following question: For any r-bit string s,

how many l-bit strings starting with s are not matched by any string in S? We answer this question recursively, by counting

for any r-bit string s how many r+k bit strings starting with s are not matched by the last r+k bits of any string in S. This can

be calculated based on the number of r+k-1 bit strings starting with ˆ s (denoting s stripped of its first bit) followed by either

a 0 or 1, that are not matched by the last r+k-1 bits of any string in S. These numbers are stored in an array Ck[s], built up

recursively with k increasing from 0 to l-r. See the Appendix for a simple example of the construction of a C array.

Phase II: Generating strings unmatched by S. Note that Cl-r[.] sums up to the total number of strings not matched by any

string in S, i.e. |C|, the size of the set of candidate detectors C in Figure 2. We can impose a natural ordering on the

candidate detectors by sorting them by their digital representation. The first candidate detectors will then start with r zeroes,

and we know from above that there are exactly Cl-r[00…00] such strings not matched by S. Likewise, the next Cl-r[00…01]

17

candidate detectors will start with 00…01, etc. If we now pick a random number between 0 and |C|, we can determine

which r-bit string s the corresponding candidate detector starts with, based on the partitioning imposed by Cl-r[s].

Furthermore, by construction each Cl-r[s] is the sum of two entries Cl-r[ˆ s .0] and Cl-r[ˆ s .1]. This further partitions the Cl-r[s]

candidate detectors starting with s into those whose next bit is either a zero or a one. So for each random number between 0

and |C|, Cl-r[.] determines the first r bits of the unique detector that corresponds to this number, whereas the next layers of

the Ck[.] array determine the succeeding bits, with C0[.] determining the last bit of the detector. We can use this to pick NR

valid detectors uniformly over the set of all candidate detectors C. See the Appendix for a simple example of how to

retrieve a random detector based on a C array.

The principle data structure used in this algorithm consists of the large (l − r) × 2r C array representing all the possible

ways two strings can match over r contiguous bits. This has an impact on the time and space complexity of the algorithm.

Phase I takes ()()l r NS− ⋅ time to initialize those entries in C that match a self string, plus ()()l r r− ⋅ 2 time to

recursively fill in the rest of the array. Phase II takes ()r time to find the first r bits of each detector, and ()l r− time to

complete each detector:

()() ()() ()time: l r N l r l NS
r

R− ⋅ + − ⋅ + ⋅2 ,

()()space: l r r− ⋅2 2 .

The above algorithm runs in time linear in the size of the self set and detector set (for given parameters l and r). This is

in contrast to the generate-and-test algorithm, which ran in time exponential to the size of the self set, but required

essentially constant space. The linear time algorithm still requires time and space exponential in the length r of the matching

region, which could present a problem if we need to choose long strings (l) and matching regions (r).

Phase I of the linear time algorithm allows us to count exactly how many detectors do not match any of the self strings in

S. Similarly, given a detector set R, we can use Phase I to count exactly how many self plus nonself strings are not matched

by any of the detectors. This count can be used to check whether enough detectors have been generated to achieve a given

allowable failure probability.

3.3. Greedy Algorithm

We can achieve a better coverage of the string space with the same number of detectors (or a smaller detector set for the

same amount of coverage) by not selecting the detectors at random, but placing them as far apart as possible. The greedy

algorithm we developed tries to do exactly that. At each step it picks one of the detectors that will match as many as

possible of the as yet unmatched nonself strings.

To construct the C array in Phase I of the previous algorithm we chose to examine the strings from right to left (from

C0[.] to Cl-r[.]). We can also go through the strings from left to right, constructing a second array C´ starting at C´l-r[.] and

calculating the following levels using a similar recurrence relation as for C. Dk[s] = Ck[s]×C´k[s] then represents the number

of l-bit strings that have the r-bit string s in position k, unmatched by any string in S. s and k define a template, i.e. a partial

18

specification of some of the bits of a bitstring, and Dk[s] represents the number of strings with this template that are

unmatched by S.

If a given template has a zero entry in D, we know that all strings containing that template will match some string in S.

Conversely, if we restrict ourselves to picking templates with nonzero entries in D when constructing bit strings, we know

those strings will not be matched by any string in S. The algorithm uses two different D arrays, called DS and DR, the first

one based on the self set S and the second one based on the current state of the detector set R.

Phase I: Generate the DS array: this array will tell us from which templates we are allowed to choose when constructing

detectors. We will call the templates that have nonzero entries in this DS array valid detector templates.

Phase II: Generating strings unmatched by S. The second array DR, based on the current detector set R, will indicate how

many strings for each template are not yet matched by the previously generated detectors. The detector set starts out empty

and all entries in DR are initialized to 2l-r, the total number of l-bit strings containing an r-bit template. For each new detector

to be generated, we try to select the templates matching the most unmatched strings by searching through DR for the valid

detector template with the largest entry. If there is a tie between templates, we choose one at random. Starting from this

template, we then traverse the DR array to the left and to the right, each time choosing to add a 0 or 1 bit to the starting

template depending on which represents the template with the highest number of strings not yet matched by R (while still

restricting ourselves to valid detector templates). Next, we add the completed detector to R and update the DR array to

reflect accordingly.

We repeat this process of picking a detector and updating DR until all valid detector templates have zero entries in DR. At

that point, for any template that is not in S there are no more strings that have not yet been matched by a detector, i.e., we

have covered all strings that can possibly be covered by detectors. We call this a complete detector repertoire.

This algorithm also has the attractive property that we can keep a running count of the number of nonself strings that are

still unmatched by any detector. For a given acceptable failure probability Pf we can simply keep generating detectors until

we reach the corresponding number of unmatched nonself strings (or until we run out of candidate detectors, which would

mean that there are too many holes to be able to reach the desired Pf).

At best, we can spread the detectors apart such that no two detectors match the same nonself string, which would get us

the lower bound on the number of detectors mentioned earlier [Pere79]:

NR ≥ 1− Pf() Pm . (3)

Looking at the structure of the template array we can get another estimate for NR. Each detector generated matches one

of the 2r templates in each of the (l-r) columns of the template array, and sets the corresponding count there to zero. We can

zero out all the entries in a column with at most 2r detectors:

NR ≤ 2r .

This formula does not take into account the entries in the template array already zeroed out by matching self strings. If

we assume the self strings are independent, each template has a chance (1− 2−r)NS of not matching any of the NS self

strings. The estimate for NR then becomes:

19

NR ∝ 2r ⋅ 1− 2− r()NS

 . (8)

The time complexity for this algorithm is dominated by the time needed to update the template array for each new

detector generated, making it quite a bit slower than the previous algorithm, although the space complexity is of the same

order:

()()time: l r Nr
R− ⋅ ⋅2 ,

()()space: l r r− ⋅2 2 .

3.4. Counting the holes

As we mentioned earlier, even though the above algorithm is capable of constructing a complete detector repertoire, this

does not necessarily mean it can construct a detector set capable of recognizing all non-self strings, i.e., all strings not in S.

Depending on the matching rule used and the strings in S, there may be some holes for which it is impossible to generate

valid detectors.

Running the greedy algorithm until all valid detectors have been used up would tell us exactly how many nonself strings

cannot be detected. In [Dhae95a] we developed a more efficient algorithm for counting the exact number of holes, similar

to the way the number of detector strings not matched by S are counted in the linear time algorithm. In the previous section

we showed how we can generate detectors by only picking valid detector templates in array DS. Similarly, holes will have to

contain only invalid detector templates, because if a string were to contain a valid detector template, we could construct a

detector to match that string using this template. Once we have calculated DS in order to determine which are the invalid

detector templates, we can count the exact number of undetectable strings (self strings plus holes) similar to the way the

number of candidate detector strings are counted in the linear time algorithm. The space and time complexities are similar:

()() ()()time: l r N l rS
r− ⋅ + − ⋅ 2 ,

()()space: l r r− ⋅2 2 .

The reasonably short running time makes this a useful tool in discovering appropriate settings for the l and r parameters

of the matching rule. At the least, we want the number of holes, NH , to be small enough to allow the desired failure

probability Pf : NH ≤ Pf ⋅ 2l . If we stick close to this upper bound on the allowed number of holes, we can expect to need

almost all valid detectors to cover the very last nooks and crannies of the detectable nonself string space. If the number of

holes is much smaller, we may need substantially fewer detectors for the same Pf . The smaller the fraction of non-zero

entries there are in the template array, the more holes there will be (because holes consist solely of templates that have zero

entries in the template array). The template array becomes sparse if NS >> 2r , because each of the NS self strings can

match one of the 2r templates. In order to get only a small number of holes, we should therefore use

NS ≤ 2r . (9)

20

4. Practical considerations and results

In this section we use the algorithms and analysis from the previous sections to explore which parameter settings are

practical. Subsection 4.1 looks at results obtained for relatively small randomly generated self sets, and draws some

conclusions from comparisons between different algorithms and formulas. Subsection 4.2 looks at a much larger real-world

example and examines how the failure probability scales with detector set size and matching length r. In Subsection 4.3 we

present a summary of the appropriate formulas for the r-contiguous-bits matching rule, and give step-by step instructions on

how to choose the parameters for a real data stream.

4.1. Repertoire sizes using different algorithms

Table 2 shows detector repertoire sizes obtained with the different algorithms using randomly generated self files and a

number of different parameter sets (NS , l and r), as well as some upper and lower bounds predicted by the formulas

presented in the previous sections. We have arbitrarily chosen Pf =0.1 as an acceptable failure rate. Because the algorithm

might be able to cover more of the total nonself string space with a smaller set of detectors if there is some structure to the

self strings, independent self strings will tend to be a worst case situation for estimating NR (ignoring the effect of the holes

on the achievable Pf).

When we compare the results in columns (e) and (h), we see that the greedy algorithm generates a detector set that is

from 8% to 41% smaller than the size predicted for independently chosen detectors. Also note that formula (2) indicates that

the desired Pf should be reachable with a detector set of a certain size, although there might be so many holes in the string

space that this Pf is unreachable, as indicated by the entries marked “ (*)” in (h). For the linear time and the generate-and-

test algorithm, generating a detector set of the size indicated by (7) does not give us any guarantee that we will achieve the

specified Pf . For these algorithms, it will be necessary to count the number of undetected strings a posteriori (as described

in Section 3.2), and generate some more detectors if necessary. This is not a problem for the greedy algorithm, because we

have a running count of the number of unmatched strings (at the expense of a more time consuming algorithm), so we can

continue generating detectors until Pf falls below the specification.

21

Table 2: Repertoire sizes and number of holes for different configurations. (a): file size in bytes. (b),

(c): parameters chosen for the matching rule. (d): corresponding matching probability Pm for the r-

contiguous-bit matching rule. (e): NR calculated according to formula (7), for independent detectors.

(f): size of complete detector repertoire generated with the greedy algorithm. (g): estimate for (f)

based on formula (8). (h): NR generated by greedy algorithm until Pf ≤ 0.1 ((*) means that Pf ≤ 0.1

could not be achieved). (i): lower bound on (h) based on formula (3). (j): entropy-based lower bound

(4) on (h). (k): number of holes present.

With a greedy selection of detectors, the last detectors generated will only match a small number of as yet unmatched

nonself strings, and will therefore not have a significant effect on Pf . This means that when going from Pf = 0.1 to

Pf = minNR
(Pf) , quite a large number of extra detectors may have to be added to match all of the tiny unmatched regions

LS

(a)

NS×l

(b)

r

(c)

Pm

(d)

indep.

Pf =0.1

(e)

greedy

complete

(f)

estimate

complete

(g)

greedy

Pf =0.1

(h)

optimal

Pf =0.1

(i)

entropy

Pf =0.1

(j)

number

of holes

(k)

500 250×16 10

9

8

0.0039

0.0088

0.0195

589

262

118

793

320

88

802

314

96

374

212

(*)

230

102

46

52 634

4438

21076

1K 250×32 11

10

9

8

0.0056

0.0117

0.0244

0.0508

410

196

94

45

1796

821

378

89

1813

802

314

96

313

153

76

(*)

160

77

37

18

26 2649

24911

2150714

5.182e+08

500×16 11

10

9

0.0017

0.0039

0.0088

1347

589

262

1610

632

155

1604

628

193

829

445

(*)

526

230

102

104 882

3854

24937

2K 500×32 12

11

10

9

0.0027

0.0056

0.0117

0.0244

856

410

196

94

3584

1668

772

201

3625

1604

628

193

650

316

159

(*)

335

160

77

37

52 4787

52318

2420706

4.656e+08

1000×16 12

11

10

0.0007

0.0017

0.0039

3154

1347

589

3204

1258

340

3207

1257

385

1856

1233

(*)

1233

526

230

208 1353

5428

23933

4K 1000×32 13

12

11

10

0.0013

0.0027

0.0056

0.0117

1799

856

410

196

7144

3304

1516

378

7251

3207

1257

385

1352

659

328

(*)

703

335

160

77

104 8475

85798

3991790

5.230e+08

22

of nonself string space. This explains the large difference in detector set size between, for example, 90% detection rate (h)

and the maximum detection rate (complete repertoire, (f)).

Both (3) and (4) (columns (i) and (j) in Table 2) are indeed effective lower bounds on the size of the detector set needed

for a failure probability of Pf =0.1. The entropy-based lower bound is less strict, partially because it does not take the

properties of the matching rule into account. The lower bound in column (i) is based on optimal spacing of the detectors,

which is precisely what the greedy algorithm tries to achieve, so we could view column (i) as the optimal detector set size

for the greedy algorithm. Interestingly, when the greedy algorithm aims for an optimal detector set size that is smaller or

almost equal to the size indicated by the entropy-based lower bound (i.e., (i)≤(j)), it is unable to do so (entry in (h) is “ (*)”)

because the number of holes in the string space (column (k)) is too large with respect to the desired Pf . This suggests that

()
()P

l m P

N P
m

f

S f

≤
⋅ ⋅ −

⋅

log ()

log

2

2

1

1 (5)

indeed provides an interesting upper bound on the value for Pm (and therefore r) given NS , l and Pf .

Within one set of rows with the same NS and l, we see that the repertoire size decreases with matching length r.

However, the number of holes in string space seems to increase in an exponential fashion with decreasing r up to the point

where we can no longer find an adequate detector set for the acceptable failure probability Pf . Since Pm increases

exponentially with (l-r), a smaller matching length means that each detector matches more strings, so fewer detectors are

needed. However, each self string will also match more detectors, so the set of candidate detectors becomes smaller and the

number of holes gets larger due to interaction between self strings. For the smallest r for which we can still achieve Pf=0.1,

a large number of the nonself strings not matched by R are holes. As mentioned before, using different matching lengths at

the same time would allow us to combine matching all nonself strings and covering most of the nonself string space by a

small number of detectors.

By looking at rows with the same LS , we can get an idea of the effect of choosing a shorter or longer string length to

split the data up in self strings. For instance, the rows with NS=250 and l=32 are generated for the same data as the rows

with NS=500 and l=16. Similarly for NS=500, l=32 and NS=1000, l=16. We see that with a longer string length l, a

smaller number of detectors is needed to achieve Pf = 0.1. If we look at how much space is taken up by the detector set

(NR × l), the larger string length still comes out ahead. Note that with the larger string length the number of holes in the

string space is substantially larger (for the same values of r). This is due to the fact that the string space itself is much larger

as well. However, the fraction of string space occupied by holes is smaller for larger l because the self strings are spaced

farther apart and therefore interact with each other less. This means that for a larger string length l, we can choose a smaller

r (larger matching probability) and still have an acceptable detector set.

4.2. Pf versus NR for a real data file

Figure 5 shows how Pf varies with NR for a binary file (GNU emacs v19.25.2 SGI binary, 3.2MB). The data for each

value of r was derived from a single large detector set generated with the linear time algorithm (one million detectors for

23

r=16 and r=18; 5 million detectors for r=19). 1000 nonself strings were checked against each of these detector sets, and for

each nonself string we recorded the index of the first detector to match the string. We can then derive the probability of

success (1- Pf) as the cumulative histogram over these values. Note that this means that the points in each curve are not

completely independent. However, this approach gives us a reasonable approximation for a much smaller computational

effort.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200000 400000 600000 800000 1000000
Number of Detectors Nr

F
ai

lu
re

 P
ro

ba
bi

lit
y

P
f

r =16

r =18

r =19

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 100 10000 1000000
Number of Detectors Nr

F
ai

lu
re

 P
ro

ba
bi

lit
y

P
f

r=16

r=18
r=19

Figure 5: Pf versus NR for a binary file. (a): linear scale for NR; (b): log scale for NR.

The figure shows at first a sharp, almost linear, drop in the failure probability, due to each detector covering a fraction of

the nonself space. As the randomly chosen detectors start to overlap, this linear decline becomes an exponential. If we were

to use the greedy algorithm to generate the detector set, we would expect this linear decline to continue much farther, as

each new detector is designed to overlap with the previous detectors as little as possible. The decline in Pf is sharper for

smaller values of r, i.e. larger matching probabilities, because each detector matches a larger fraction of string space, so

most of the space can be covered by a small number of detectors. As the detector set size increases even further, Pf starts

to level off to a non-zero value, because of the presence of holes. Even though Pf decreases sharper initially for smaller r,

it levels off at a higher level because there are more holes. This leveling off at a non-zero value can be avoided by using

variable-radius detectors, or by using several detector sets with different matching rules.

Note also that for each detector set size there is an optimal value for r. In general, if we want to have a smaller detector

set, we will have to use a smaller value for r (such that each detector matches more nonself strings). Similarly, for each

value of Pf there is an optimal value for r. As the acceptable failure rate decreases, we will have to go to larger values of r

(more specific detectors) and larger detector sets.

Finally, if we are protecting this file in a distributed fashion, with a number of different machines each running its own

detector set, we can exploit the fact that the failure probability decreases exponentially with the number of detector sets. In

that case we may already be satisfied with a failure rate for the individual detector sets of Pf ≈ 0.5 . Theoretically, four

independent detector sets with Pf = 0.5 would give a total failure rate of only 0.0625. Figure 5 shows that this can be

achieved with a repertoire as small as 30,000 to 120,000 detectors. This is a much more reasonable size, given that the

24

original self file contains about one million strings. Similarly, if we assume each anomaly results in a number of

independent nonself strings, fairly high per-string failure rates like this can still give a very low per-anomaly failure rate.

4.3. Summary of formulas and rules of thumb

4.3.1. Choosing the alphabet size

The larger the alphabet size used, the harder it becomes to make an optimal choice for the matching length r. This is due

to the fact that for the matching rules considered here, the matching probability Pm ∝ m−r [Perc92, Uspe37]. Assuming that

Pm has to stay within certain bounds for the detection algorithm to perform efficiently, the range of acceptable values for r

becomes very narrow with increasing alphabet size.

For some applications, however, a non-binary alphabet may be more appropriate. For example, [Forr94] describes an

experiment in which a C program compiled for a RISC architecture was checked for changes. Each opcode was mapped

into one of 104 symbols (m=104). An important area of future investigation is to study the performance of different size

alphabets, especially in those cases where a non-binary alphabet is most natural.

4.3.2. Choosing the string length

First, we determine a lower bound for l by requiring that the self strings should occupy only a fraction of the total string

space:

NS ≈ LS l ≤ 2l .

This corresponds to 1-byte strings for a stream of up to 256 bytes (2Kbits), 2-byte strings for streams of up to 128KB

(1Mbits), 3-byte strings for streams of up to 50MB (400Mbits), and 4-byte strings for streams up to 17GB (137Gbits). Note

that this is not an exact lower bound for l, because splitting up the data into l-bit strings may cause many duplicate strings,

so NS ≤ LS l . If we want to know the exact lower bound for l (or if the data to be checked for changes is not a fixed size

file but rather a continuous stream of data) we can explicitly count the number of unique l-bit strings for different values of

l.

The second step in selecting string length is to determine whether there exists a natural string length imposed by the data.

For instance, to protect a database consisting of a series of 3-byte records, a multiple of three bytes would be an obvious

string length to try because it preserves the structure of the data. If the data does not exhibit any natural string length, we

might still be able to find by inspection certain recurring features that we want to be able to capture. The string length will

have to be longer than these features for them to be preserved in the self strings. Finally, there will be an upper bound to the

string length, imposed by the generating algorithms. Increasing l usually also means r has to be increased (certainly if we

want the matching probability to remain constant). However, for large l and r, the algorithms described in this report

become computationally very expensive.

4.3.3. Choosing the matching length

To keep the number of holes low, we want to pick r such that NS ≤ 2r (9). Again, we might want to replace NS in this

formula by the number of unique l-bit strings that appear in the data.

25

As illustrated by Table 2, formula (5) gives an approximate upper bound on Pm (and thus a lower bound on r, for a given

string length l) in order to be able to construct a detector repertoire for the acceptable failure probability Pf :

()
()P

l m P

N P
m

f

S f

≤
⋅ ⋅ −

⋅

log ()

log

2

2

1

1 (5)

Finally, after a minimum value for r has been chosen, we should count the exact number of holes present in the string

space. If this exceeds the acceptable number of holes of NH ≤ Pf ⋅ 2l , we choose a smaller matching probability (i.e. larger

r) and try again. In general, because we do not have an exact procedure to determine the optimal values for l and r, a

number of valid combinations may have to be tried and weighed against each other in terms of ease of construction of the

detector set, size of the resulting detector set, attainable failure probability, etc.

4.3.4. Choosing the number of detectors

We have seen a number of lower bounds and estimates for NR under different assumptions. We will go through these

one by one, from the least tight lower bounds to what we expect to be the best estimates.

If the parameters of the self set and matching rule are such that generating the detectors using the greedy algorithm is too

expensive, we can use the linear time algorithm to select a set of detectors independently chosen from the candidate

detectors. If we assume the detectors chosen are also independent of each other with respect to the total string space, we get

the lower bound from (7):

NR ≈ − ln Pf() Pm . (7)

This last independence assumption usually doesn’ t hold: because of the limited number of candidate detectors, there will

be more overlap between detectors than we would expect from strings chosen independently from the entire string space. If

this is the case, the number of detectors needed to achieve Pf could be quite a bit larger than the value indicated by (7). We

may have to estimate the actual Pf a posteriori over a sample of nonself strings.

If we use an algorithm that attempts to spread out the detectors, such as the greedy algorithm, the minimum number of

detectors needed to achieve an acceptable Pf is given by (3):

NR ≥ 1− Pf() Pm . (3)

This is an absolute lower bound, in the sense that it is impossible to cover that much of string space with fewer detectors.

However, depending on the structure present in the self data, it can be difficult to pick detectors that are spread apart

optimally. Note that if we have chosen r according to formula (5), using this lower bound for NR will automatically imply

that we also satisfy the entropy lower bound (4). Using (3) to calculate the number of detectors needed for the greedy algo-

rithm is only interesting in terms of getting a ballpark figure for NR to evaluate whether the parameters l and r have been

chosen efficiently. If we are satisfied with the estimate we simply run the greedy algorithm until it reaches exactly the

desired Pf . If we are interested in achieving the minimum possible failure probability Pf , we can construct a complete

detector repertoire by running the greedy algorithm till exhaustion. (8) provides a fairly close estimate for the size of the

complete detector set for independent self strings:

26

NR ∝ 2r ⋅ 1− 2− r()NS

 . (8)

4.3.5. Detection scheme

One area that we have not yet examined closely is how best to implement the actual detection scheme once an

appropriate detector set has been generated. Here are some possible examples:

• Maximum security: every string is checked against the entire detector set. Other, more conventional, anomaly detection

algorithms might be more appropriate in this case.

• Intermittent checking: at certain intervals, a small number of strings is checked against a small number of detectors

chosen at random from the detector set. This relies on the probabilistic nature of our anomaly detection method. It

assumes that if a change is undetected, it will be detected during some other check, or on another machine. This might not

be acceptable if a single occurrence of the change can be fatal.

• Weighted detection: detectors can be chosen more frequently depending on previous performance, based on known

expected changes (known failure modes, virus signatures, etc.), or in order to get a homogeneous coverage of nonself

string space (some areas of nonself string space may be covered by more detectors than others).

• Distributed detection: the detector set is split up over a number of autonomous agents (see [Cros95]) each doing checks in

parallel. This is also the scheme used in the real immune system, where each T cell corresponds to a single detector.

• Distributed independent detection: each agent has a detector set generated independently from all other agents. This is

similar to a population of individuals with immune systems. The advantage is that holes in one individual’s immune

system can be covered by another’s, so an infection cannot spread through the entire population. A similar setup could be

used to protect a whole network of computers.

5. Conclusions

Previous work on this new immunological approach to anomaly detection had shown its feasibility. In particular, the

linear time algorithm has made it practical to construct efficient detector sets for large data sets. We have also made

significant improvements towards quantifying the range of acceptable values for the different parameters associated with

the detection method, to the point that we can give guidelines for setting up a detection system like this for any given data

set. The distributed nature of this algorithm is promising for networked and distributed computing environments. As a very

general-purpose anomaly detection method it could be a useful supplement to more specific, and therefore more brittle,

protection mechanisms. We imagine a layered computer immune system, with specific protection mechanisms against well

known or previously encountered intrusions, and non-specific protection mechanisms like the one presented here to

intercept those intrusions that evade the specific mechanisms.

There are a number of remaining issues to be examined. Here are the most important ones:

• Developing more general formulas for systems in which a certain rate ′ P f of false positives is allowed.

• Deriving approximate formulas for non-random data by looking at some measures of the self strings (entropy, number of

unique self strings, etc.).

27

• It may prove useful to analyze the detectors with respect to their Vapnik-Chervonenkis dimension (VC-dimension). In

particular, going from detectors with a fixed matching radius r to a variable radius, as was suggested in section 2.3 to

eliminate holes, corresponds to using detectors with a higher VC-dimension.

• Constructing a linear time algorithm for the Hamming distance matching rule. This matching rule might give improved

performance because it does not limit the length of the matching templates and should therefore be able to capture larger

structures in the self strings.

• In order to eliminate the negative effect of holes on the system-wide failure probability, one would want to have a family

of matching rules with the same basic parameters. This would allow the parameters to be chosen optimally for the task,

while still allowing for an effectively different matching rule at each site. Families of matching rules based on

permutation or encryption with a unique key (as touched upon in Section 2.3) need to be analyzed with respect to their

ability to generate non-overlapping sets of holes.

• From a security point of view, it might be useful to have a matching rule for which it is provably hard to construct (and

thus to forge) a detector set. Can we come up with matching rules based on some NP-complete problems for instance?

6. Acknowledgments:

The authors thank Dipankar Dasgupta, Derek Smith, Ron Hightower and Andrew Kosoresow for their useful suggestions

and critical comments. The idea of a computer immune system grew out of a collaboration with Dr. Alan Perelson through

the Santa Fe Institute. Portions of this paper were written while S. Forrest was on sabbatical at the MIT AI Lab. This work

is supported by grants from the National Science Foundation (grants IRI-9157644 and IRI-9711199), Office of Naval

Research (grant N00014-95-1-0364), Interval Research Corporation, General Electric Corporate Research and

Development, and Digital Equipment Corporation.

APPENDIX: The Linear Time Algorithm in Action

Let l=6, r=3, S = {110100,100101} . Table 3 shows the C array constructed for this self set. First, those entries

corresponding with templates occurring directly in any of the self strings are zeroed out. This is the case for 110***,

100***, *101**, *001**, **010*, ***100 and ***101 (marked in bold). All the remaining entries in C0[s] are

set to 1. The entries in the rest of the array are then filled up according to Cn+1[000] = Cn[000] + Cn[001]; Cn+1[001] =

Cn[010] + Cn[011], … Cn+1[111] = Cn[110] + Cn[111]. Note that C1[110] = 0, even though template **110* does not

directly match any string in S. However, any string conforming to the template **110* will have to contain either

**1100 , and match 110100, or **1101, and match 100101.

28

The sum of entries in C3[s] is 32, indicating that there are 32 candidate detectors, the first 4 of which start with

000***, the next six with 001***, etc. We can now generate random, valid, detectors by choosing a number between 0

and 31, and reconstructing the corresponding detector. Suppose we pick 17. Table 4 shows how we proceed to retrieve the

detector corresponding to this number. The second column in this table (labeled “ range”) shows that detectors 14 till 19

start with 011**. Detector 17 is the fourth detector in this range. We know that C3[011] = C2[110] + C2[111] = 4 + 2. In

other words, the first four detectors in this range, including detector 17, will have a 0 next (corresponding to template

*110**), the last two detectors in this range will have a 1 next (corresponding to template *111**). Thus, we know that

detector 17 starts with 0110**. Again, C2[110] = C1[100] + C1[101] = 2 + 2. Detector 17 is the last detector within this

range, therefore it belongs to template **101*. Similarly, we find template ***011 for the final bit. The total detector is

thus 011011, which clearly does not match either string in S.

s C3[s] C2[s] C1[s] C0[s]

000 4 4 2 1

001 6 0 2 1

010 4 4 0 1

011 6 2 2 1

100 0 4 2 0

101 6 0 2 0

110 0 4 0 1

111 6 2 2 1

Table 3: C Array constructed for S = {110100,100101}, r=3.

s range C3[s] C2[s] C1[s] C0[s]

000 0-3 4 4 2 1

001 4-9 6 0 2 1

010 10-13 4 4 0 1

011 14-19 6 2 2 1

100 - 0 4 2 0

101 20-25 6 0 2 0

110 - 0 4 0 1

111 26-31 6 2 2 1

Table 4: Retrieving detector 17 from C Array.

29

References:

[Cove91] T. M. Cover, J. A. Thomas. Elements of Information Theory, a Wiley-Interscience Publication, 1991

[Cros95] M. Crosbie and G. Spafford. Defending a Computer System using Autonomous Agents. In Proceedings of the

18th National Information Systems Security Conference, 1995.

[DeBo93] R. J. De Boer and A. S. Perelson. How diverse should the immune system be? In Proceedings of the Royal

Society London B, v.252, London, 1993.

[Dhae95a] P. D’haeseleer. Further efficient algorithms for generating antibody strings. Technical Report CS95-3, The

University of New Mexico, Albuquerque, NM, 1995.

[Dhae95b] P. D’haeseleer. A change-detection algorithm inspired by the immune system: Theory, algorithms and tech-

niques. Technical Report CS95-6, The University of New Mexico, Albuquerque, NM, 1995.

[Dhae96a] P. D’haeseleer, S. Forrest and P. Helman. An Immunological Approach to Change Detection: Algorithms,

Analysis and Implications. In Proceedings of the 1996 IEEE Symposium on Security and Privacy, Los Alamitos,

CA: IEEE Computer Society Press, 1996.

[Dhae96b] P. D’haeseleer. An Immunological Approach to Change Detection: Theoretical Results. In Proceedings of the

9th IEEE Computer Security Foundations Workshop, Los Alamitos, CA: IEEE Computer Society Press, 1996.

[Dhae97] P. D’haeseleer. An Entropic Lower Bound on Classifier Size, in preparation.

[Dipa97] D. Dasgupta and N. Attoh-Okine. Immunity-Based Systems: A Survey. To appear in Proceedings of the 1997

IEEE International Conference on System, Man and Cybernetics, 1997.

[Dipa95] D. Dasgupta and S. Forrest. Tool Breakage Detection in Milling Operations using a Negative-Selection

Algorithm. Technical Report CS95-5, The University of New Mexico, Albuquerque, NM, 1995.

[Farm93] D. Farmer, W. Venema. Improving the Security of Your Site by Breaking Into it. ftp.win.tue.nl

pub/security/admin-guide-to-cracking.101.Z, 1993.

[Forr94] S. Forrest, A. S. Perelson, L. Allen and R. Cherukuri. Self-nonself discrimination in a computer. In Proceedings

of the 1994 IEEE Symposium on Research in Security and Privacy, Los Alamitos, CA: IEEE Computer Society

Press, 1994.

[Forr95] S. Forrest, S. A. Hofmeyr, A. B. Somayaji and T. A. Longstaff. A sense of self for UNIX processes. In

Proceedings of the 1996 IEEE Symposium on Security and Privacy, Los Alamitos, CA: IEEE Computer Society

Press, 1995.

[Helm94] P. Helman and S. Forrest. An efficient algorithm for generating random antibody strings. Technical Report CS-

94-07, The University of New Mexico, Albuquerque, NM, 1994.

[Inma78] J.K. Inman. The antibody combining region: Speculations on the hypothesis of general multispecificity. In

Theoretical Immunology, M. Dekker, New York, NY, 1978.

[Jane96] C.A. Janeway and P. Travers. Immunobiology : The Immune System in Health and Disease, Garland Publishing,

3rd Edition, 1997.

[Kapp87] J.W. Kappler, N. Roehm, P. Marrack. T cell tolerance by clonal elimination in the thymus. In Cell, 49:273-280,

1987.

30

[Koso97] A. Kosoresow, S. A. Hofmeyr. A Shape of Self for Unix Processes. Submitted to the 1997 IEEE Symposium on

Security and Privacy, 1997.

[Paul89] W. E. Paul, Ed. Fundamental Immunology, Raven Press Ltd. New York, 88-90, 1989.

[Perc92] J. K. Percus, O. E. Percus and A. S. Perelson. Probability of Self-Nonself discrimination. In Theoretical and

Experimental Insights into Immunology, 1992.

[Pere79] A. S. Perelson and G. F. Oster. Theoretical Studies of Clonal Selection: Minimal Antibody Repertoire Size and

Reliability of self-nonself Discrimination. In Journal of Theoretical Biology, 1979.

[Uspe37] J. V. Uspensky. Introduction to Mathematical Probability, McGraw-Hill, NY, 1937.

