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ABSTRACT
The speed with which newly discovered software vulner-
abilities are patched is a critical factor in mitigating the
harm caused by subsequent exploits. Unfortunately, soft-
ware vendors are often slow or unwilling to patch vulner-
abilities, especially in embedded systems which frequently
have no mechanism for updating factory-installed firmware.
The situation is particularly dire for commercial off the shelf
(COTS) software users, who lack source code and are wholly
dependent on patches released by the vendor.

We propose a solution in which the vulnerabilities drive
an automated evolutionary computation repair process ca-
pable of directly patching embedded systems firmware. Our
approach does not require access to source code, regression
tests, or any participation from the software vendor. In-
stead, we present an interactive evolutionary algorithm that
searches for patches that resolve target vulnerabilities while
relying heavily on post-evolution difference minimization to
remove most regressions. Extensions to prior work in evo-
lutionary program repair include: repairing vulnerabilities
in COTS router firmware; handling stripped MIPS executa-
bles; operating without fault localization information; oper-
ating without a regression test suite; and incorporating user
interaction into the evolutionary repair process.

We demonstrate this method by repairing two well-known
vulnerabilities in version 4 of NETGEAR’s WNDR3700 wire-
less router before NETGEAR released patches publicly for
the vulnerabilities. Without fault localization we are able
to find repair edits that are not located on execution traces.
Without the advantage of regression tests to guide the search,
we find that 80% of repairs of the example vulnerabilities
retain program functionality after minimization. With min-
imal user interaction to demonstrate required functionality,
100% of the proposed repairs were able to address the vul-
nerabilities while retaining required functionality.
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1. INTRODUCTION
Embedded devices handle private data, operate heavy ma-

chinery, and run continuously while communicating over the
Internet. End users are unable to read or write the software
controlling these devices, or to patch known vulnerabilities.
As embedded systems become increasingly ubiquitous, tech-
niques enabling users to customize and protect the software
running their devices will become increasingly important, cf.
the Internet of things [3].

Router bugs are an important class of embedded system
vulnerabilities, ranging from the bug in CISCO’s IOS, which
caused outages in nearly every country worldwide [42], to
security vulnerabilities in home routers such as recent ex-
amples in NEGEAR [9], and D-Link [11]. Unfortunately
major software vendors commonly delay releasing patches
to security vulnerabilities. In a study of high and medium
risk vulnerabilities in Microsoft and Apple products between
2002 and 2008, for example, about 10% of vulnerabilities
were found to be still un-patched 150 days after disclosure,
and on any given date from around 10 to over 20 disclosed
vulnerabilities were public and un-patched for Microsoft and
Apple respectively [14].

Rather than waiting for vendor-delivered patches, we pro-
pose a technique for users to repair vulnerabilities automat-
ically, even when developer source code and test suites are
not available. A user-produced patch could be installed tem-
porarily for internal protection, redistributed with the ex-
ploit (reporting an exploit with a patch in hand has been
shown to reduce the total number of attacks [2]), or sent
to the software vendor to reduce development time for the
official patch [40].

In recent years, a variety of automated methods for pro-
gram repair have successfully repaired defects in real-world
software (e.g., [32, 24, 20, 30]). Automated repair methods
based on evolutionary computation (EC) have also repaired
defects directly in x86 and ARM ELF files, without access to
program source code [34, 36]. This prior work, however, re-
lies on a regression test suite to define the required function-
ality, or informal specification, of the program under repair,
and on fault localization information to guide the genetic
operations. Here we consider a setting in which none of
source code, test suites, or fault localization information is
available, and there is no cooperation from the vendor.

We demonstrate our technique by patching multiple secu-
rity vulnerabilities in the popular NETGEAR WNDR3700
wireless router, which at the time of writing NETGEAR has
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not publicly addressed. Although previous EC program re-
pair techniques explicitly require access to a regression test
suite, we explore the feasibility of performing repairs without
any test suite and find that for our demonstration vulnera-
bilities, regression test suites are most often not necessary.
In addition, we find that multiple vulnerabilities can be re-
paired in a single evolutionary repair run.

The main contributions of this paper are as follows.

• EC repair without a regression test suite

• EC repair without fault localization

• EC repair that leverages user interaction

• EC repair in embedded firmware

• EC repair of a current real-world unpatched exploitable
vulnerability

• Iterative EC repair of multiple vulnerabilities in a sin-
gle repair run

To encourage reproducible research [6, 28] and to allow
others to patch future vulnerabilities, we have published a
companion open source repository.1 It contains the instruc-
tions, source code, and tooling needed to extract, execute
and repair the binary NETGEAR router image vulnerabil-
ities, as well as the data used to generate the analyses and
figures reported in this paper. In this work we aspire to em-
power users to patch important vulnerabilities quickly and
researchers to release patches simultaneously with exploit
announcements.

The remainder of the paper reviews two recent exploits
of NETGEAR WNDR3700 (§2); details the extraction and
execution of the NETGEAR firmware in a virtualized sand-
box (§3.1); describes the automated program repair tech-
nique (§3.2 and §3.3); evaluates effectiveness and quality of
repairs (§4); summarizes related work (§5); and discusses
implications and limitations (§6).

2. DESCRIPTION OF EXPLOITS
We address two current exploits in version 4 of the NET-

GEAR WNDR3700 wireless router. The popularity of this
router implies that vulnerable systems are currently widespread.
For example, the shodan2 device search engine returned hun-
dreds of vulnerable publicly accessible WNDR3700 routers
at the time of writing. Both exploits exist in the router’s
internal web server in a binary executable named net-cgi,
and both are related to how net-cgi handles authentica-
tion [9].

The vendor-deployed binary is insecure in at least two
ways:

1. Any URI starting with the string “BRS” bypasses au-
thentication.

2. Any URI including the substrings “unauth.cgi” or
“securityquestions.cgi”bypass authentication. This
applies even to requests of the form http://router/
page.html?foo=unauth.cgi, meaning that the vulner-
ability effectively applies to all internal webpages.

1https://github.com/eschulte/netgear-repair
2http://www.shodanhq.com/search?q=wndr3700v4+http

Many administrative pages start with the “BRS” string, pro-
viding attackers with access to personal information such
as users passwords. By accessing the page http://router/
BRS 02 genieHelp.html, attackers can disable authentica-
tion completely in a way that persists across reboots.

3. AUTOMATED REPAIR METHOD
Figure 1 gives a high-level overview of the repair tech-

nique, which consists of three stages:

1. Extract the binary executable from the firmware and
reproduce the exploit (§3.1).

2. Use EC to search for repairs by applying random muta-
tions and crossover to the embedded stripped (without
symbols or section tables) MIPS ELF binary (§3.2).

3. Interactively construct test cases and return to (2) as
needed to improve the quality of unsatisfactory candi-
date repairs (§3.3).

The first step in repairing the net-cgi executable is to
extract the vulnerable executable and the router file system
from the firmware image distributed by NETGEAR. Using
these we construct a test harness that can exercise the vul-
nerabilities in net-cgi. This test harness is used by the
repair algorithm to evaluate candidate repairs and to iden-
tify when repairs to the vulnerabilities have been found.

3.1 Firmware Extraction and Virtualization
NETGEAR distributes firmware with a full system image

for the WNDR3700 router, which includes the router file
system that has the vulnerable net-cgi executable. The file
system was extracted using the binwalk3 firmware extrac-
tion tool, which scans the binary data in the raw monolothic
firmware file, searching for signatures identifying embedded
data sections, including a squashfs [26] section that holds
the router’s file system.

The router runs on a big-endian MIPS architecture, re-
quiring emulation on most desktop system to safely repro-
duce the exploit and evaluate candidate repairs. We used
the QEMU system emulator [4] to emulate the MIPS ar-
chitecture. The extracted router file system is first copied
into the emulated MIPS Linux system. Then a number of
special directories (e.g., /proc/, /dev/ etc.) are mounted
inside the extracted file system and bound to the corre-
sponding directories on the virtual machine. At this point,
commands can be executed in an environment that closely
approximates the execution environment of the NETGEAR
router by using the chroot command to confine executable
access to within the extracted NETGEAR file system. This
also effectively sandboxes all trial executions. Additional de-
tails are given in http://eschulte.github.io/netgear-repair/
INSTRUCTIONS.html.

Using this system the entire NETGEAR router can be run
under virtualization. In particular, the router’s web inter-
face can be accessed either using an external web browser
or the net-cgi executable can be called directly from the
command line.

3.2 Automated Program Repair and ELF Files
We use EC methods [12, 24, 25, 15] to search for small

changes to existing programs that eliminate undesired buggy

3http://binwalk.org
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Figure 1: Three-stage automated evolutionary repair technique: (1) the vulnerable binary is extracted from
the vendor-supplied firmware; (2) EC techniques are used to find versions of the binary which resolve the
target vulnerabilities; (3) the user interactively adds test cases protecting broken functionality and returns
to step 2 until an acceptable repair is found.

behavior. This process typically requires access to the source
code of the original program, which is first transformed into
an abstract syntax tree and then iteratively modified using
mutation and crossover, guided by fault localization, to gen-
erate program variants. Each variant would then be eval-
uated in a process called fitness evaluation by running it
against the program’s existing regression test suite and at
least one additional test that demonstrates the undesired
behavior.

The repair algorithm constructs a population of program
variants, each with one or more random mutations. This
population is evolved through an iterated process of evalu-
ation, selection, mutation, and crossover (pseudo-code pro-
vided in Figure 3) until a version of the original program
is found that repairs the bug. “Repair” in this context is
defined to mean that it avoids the buggy behavior and does
not break required functionality. Execution traces collected
during program execution are used as a form of fault local-
ization to bias random mutations towards the parts of the
program most likely to contain the bug.

We modify this repair algorithm in several ways to ad-
dress the unique scenario of a user repairing a faulty binary
COTS executable (§3.2.1), without access to a regression
test suite (§3.3), and without the fault localization optimiza-
tion (§4.2.2).

3.2.1 Challenge: Mutating Stripped Binaries
Executable programs for Unix and embedded system are

commonly distributed as ELF (Executable and Linking For-
mat) [7] files. Each ELF file contains a number of head-
ers and tables containing administrative data, and sections
holding program code and data. The three main administra-
tive elements of an ELF file are the ELF header, the section
table and the program table (see Figure 2). The ELF header
points to the section table and the program table, the sec-
tion table holds information on the layout of sections in the
ELF file on disk, and the program table holds information
on how to copy sections from disk into memory for program
execution.

ELF Header

Program Table

...

Section Data

...

Section Table Linker

Memory

Figure 2: Sections and their uses in an Executable
and Linking Format (ELF) file.

Although the majority of ELF files include all three of the
elements shown in Figure 2, only the ELF Header is guaran-
teed to exist in all cases. In executable ELF files the program
table is also required, and similarly, in linkable files the sec-
tion table is required.

We extend previous work that repaired unstripped Intel
and ARM files [36]. The ELF file is modfied by similar muta-
tion and crossover operations, but in this case net-cgi does
not include key information on which the earlier work re-
lied, namely the section table and section name string table.
This information was used to locate the .text section of the
ELF file where program code is normally stored. The data
in the .text section were then coerced into a linear array of
assembly instructions (the genome) on which mutation and
crossover operated. Our work removes this dependence by
concatenating the data of every section in the program table
that has a loadable (PT_LOAD) type to produce the genome.
The genome thus includes all sections whose data are loaded
into memory during program execution including both code
and data.

Mutation operations must change program code without
corrupting the structure of the file or breaking the many
memory addresses hard coded into the program (e.g., as
destinations for jumps, loads, or stores). In general, it is im-
possible to distinguish between an integer literal and an ad-
dress in program code and data, so our mutation operations



are designed to preserve operand absolute sizes and offsets
within the ELF program data. In addition, the preserva-
tion of absolute size ensures that the modified ELF file may
directly replace the original in the firmware image. These
requirements are more easily met on the MIPS RISC archi-
tecture because every argumented assembly instruction is
exactly one word long [17].

The preservation of offsets allows the use of “Single point
crossover” to recombine two ELF files. An offset in the pro-
gram is selected, then bytes from one file are taken up to
that offset and bytes from the other file taken after that
offset. This form of crossover works especially well because
all ELF files are homologous, i.e. they will have similar to-
tal length and similar contents at any given offset. Single
point crossover has previously been shown effective for the
evolution of homologous machine code [31]. The mutation
and crossover operations used to modify stripped MIPS ELF
files are shown in Figure 3.

Replace Delete

0x0

Swap

One Point Crossover

Figure 3: Mutation and Crossover operations for
stripped MIPS ELF files. The program data are rep-
resented as a fixed length array of single-word sec-
tions. These operators change these sections main-
taining length and offset in the array.

3.3 Interactive Regression Testing
Our approach to program repair relies on the ability to

assess the validity of any candidate repair. The program
transformations do not take into account or preserve the
semantics of the program. They are more likely to create
new bugs or vulnerabilities than they are to repair undesired
behavior, and an evaluation scheme is required to distinguish
between these cases.

Instead of relying on a pre-existing regression test suite,
we assume only that a demonstration of the exploit provides
a single available test. By mutating programs without the
safety net of a regression test suite, the evolved “repairs”
often introduce significant regressions. However, by apply-
ing a strict minimization process after the primary repair is
evolved, these regressions are usually removed (§4.2.3). The
minimization reduces the difference between the evolved re-
pair and the original program to as few edits as possible
using Delta Debugging [41]. The final phase of the repair
algorithm asks the user to identify any regressions that re-
main after the Delta Debugging step through interactive use
of the modified binary, e.g. through a web interface. If any

failures are found, the user must manually write a regres-
sion test encoding the steps of the interactive process which
led to the identification of the regression. For example after
interactively identifying a broken web page, a user would
write a regression test script which first downloads the bro-
ken page’s URI, then checks for a successful download and
for desired properties in the downloaded file, such as the
presence of required components of the page. High-level
pseudocode for the repair algorithm is show in Figure 4.

Our method is thus an interactive repair process in which
the algorithm searches for a patch that passes every available
test (starting with only the exploit), and then minimizes it
using Delta Debugging. In a third step, the user evaluates its
suitability. If the repair is accepted, the process terminates.
Otherwise, the user supplies a new regression test that the
repair fails (a witness to its unsuitability) and the process
repeats. In §4 we find that 80% of our attempts to repair
the NETGEAR WNDR3700 vulnerabilities did not require
any user-written regression tests.

Input: Vulnerable Program, original : ELF
Input: Exploit Tests, vulnerabilities : [ELF → Fitness]
Input: Interactive Check, goodEnough : ELF → [ELF → Fitness]

Output: Patched version of Program
1: let new ← null
2: let fitness← null
3: let suite← vulnerabilities
4: repeat
5: let full← evolutionarySubroutine(original, suite)
6: new ← minimize()
7: let newRegressionTests← goodEnough(new)
8: suite← suite + +newRegressionTests
9: until length(newRegressionTests) ≡ 0

10: return new

Figure 4: High-level Pseudocode for interactive evo-
lutionary repair algorithm.

The evolutionarySubroutine in Figure 4 is organized
similarly to previous work [24], but it uses a steady state evo-
lutionary computational algorithm [27] for reduced memory
usage, ease of parallelization of fitness evaluation, and rec-
ognizes the nearness of the original program to likely valid
repairs [35, §2.2.2]. Figure 5 gives the high-level pseudocode.
Note that every time the user rejects the solution returned
by evolutionarySubroutine, the evolved and minimized so-
lution is discarded and a new population is generated by
recopying the original in evolutionarySubroutine. Most
applications of EC begin with a randomly generated pop-
ulation, but we begin with a population of copies of the
original. This is because the original program is in fact a
highly engineered solution to the program fitness landscape
and likely to lay close to acceptable repairs. This algorith-
mic choice acknowledges the fitness of the original program,
and for this reason gives it primacy over the evolved solu-
tions of previous iterations (which may well have evolved
into fitness valleys as in run 8 Table 1).

4. REPAIRING THE NETGEAR VULNER-
ABILITIES

We first describe the experimental setup used to test the
repair technique on the NETGEAR WNDR3700 exploit (§4.1).
We then analyze the results of ten repair attempts (§4.2).



Input: Vulnerable Program, original : ELF
Input: Test Suite, suite : [ELF → Fitness]
Parameters: populationSize, tournamentSize, crossRate
Output: Patched version of Program
1: let fitness← evaluate(original, suite)
2: let pop← populationSize copies of 〈original, fitness〉
3: repeat
4: if Random() < CrossRate then
5: let p1 ← tournament(pop, tounamentSize,+)
6: let p2 ← tournament(pop, tounamentSize,+)
7: let p← crossover(p1, p2)
8: else
9: p← tournament(pop, tounamentSize,+)

10: end if
11: let p′ ← Mutate(p)
12: let fitness← evaluate(suite, p′)
13: incorporate(pop, 〈p′,Fitness(Run(p′))〉)
14: if length(pop) > maxPopulationSize then
15: evict(pop, tournament(pop, tounamentSize,−))
16: end if
17: until fitness > length(suite)
18: return p′

Figure 5: High-level Pseudocode for the steady state
parallel evolutionary repair subroutine.

4.1 Methodology
All repairs were performed on a server-class machine with

32 physical Intel Xeon 2.60GHz cores, Hyper-Threading and
120 GB of Memory. We used a test harness to assess the fit-
ness of each program variant (§4.1.1) and report parameters
used in the experiments (§4.1.2).

4.1.1 Fitness Evaluation
We used 32 QEMU virtual machines, each running De-

bian Linux with the NETGEAR router firmware environ-
ment available inside of a chroot. The repair algorithm
uses 32 threads for parallel fitness evaluation. Each thread
is paired with a single QEMU VM on which it tests fitness.

The test framework includes both a host and a guest test
script. The host script runs on the server performing repair
and the guest script runs in a MIPS virtual machine. The
host script copies a variant of the net-cgi executable to the
guest VM where the guest test script executes net-cgi the
command line and reports a result of Pass, Fail, or Error
for each test. These values are then used to calculate the
variant’s scalar fitness.
Pass indicates that the program completed successfully

and produced the correct result, Fail indicates that the pro-
gram completed successfully but produced an incorrect re-
sult, and Error indicates that the program execution did
not complete successfully due to early termination (e.g., be-
cause of a segfault) or by a non-zero “errno” exit value.

4.1.2 Repair Parameters
Our algorithm uses the following parameters. The max-

imum population size is 512 individuals, selection is per-
formed using a tournament size of two. When the popula-
tion overflows the maximum population size, an individual
is selected for eviction using tournament selection in reverse.
Newly generated individuals undergo crossover two-thirds of
the time.

These parameters differ significantly from those used in
previous evolutionary computation (EC) repair algorithms
(e.g., [12, 15, 25]). Specifically, we use larger populations

(512 instead of 40 individuals), running for many more fit-
ness evaluations (≤100,000 instead of ≤400). The parame-
ters used here are in line with those used in other EC publi-
cations given the size of the net-cgi binary, and they help
compensate for the lack of fault localization information.

The increased memory required by the larger population
size is offset by the use of a steady-state [27] EC algorithm,
and the increased computational demand of the greater num-
ber of fitness evaluations is offset by parallelization of fitness
evaluation.

4.2 Experimental Results
We report results for the time typically taken to generate

a repair (§4.2.1), the effect of eliminating fault localization
(§4.2.2), and the impact of the minimization process (§4.2.3),
both with respect to the size of the repair in terms of byte
difference from the original and in terms of the fitness im-
provement. Finally we demonstrate how multiple repairs
can be discovered iteratively by the repair process (§4.2.4).

4.2.1 Repair Runtime
In 8 of the 10 runs of the algorithm (with random restarts),

the three exploit tests alone were sufficient to generate a
satisfactory repair (determined using a withheld regression
test suite hand-written by the authors4), and the third phase
of user-generated tests was not required.

In these cases the repair process took an average of 36,000
total fitness evaluations requiring on average 86.6 minutes
to find a repair using 32 virtual machines for parallelized
fitness evaluation.

4.2.2 Repair without Fault Localization
In the NETGEAR scenario, we do not have access to fault

localization information. Although commonly required, fault
localization information may sometimes over-constrain the
search operators (mutation and crossover) [37], preventing
the discovery of valid repairs.

One of the NETGEAR vulnerabilities exemplifies this is-
sue. As shown in Figure 6, fault localization might have
prevented the repair process from succeeding. The figure
shows that many of the program edit locations for success-
ful repairs were not visited by the execution trace. In fact,
only 2 of these 22 program edit locations were within 3 in-
structions of the execution traces. In fact, one of the edit
locations was in the .rodata section of the binary which
could never appear in an execution trace. The .rodata sec-
tion typically holds read-only data such as static variables.
Such non-code sections of the executable were only mutated
because of the lack of section names as discussed in §3.2.1.
This surprising result suggests that earlier work, which con-
fines edit operations to execution traces, would possibly be
unable to repair the NETGEAR bugs. Testing this possibil-
ity more definitively would require developer-written regres-
sion tests, however. While fault localization is reasonable
for source-level repairs (e.g., by definition the defect must
be addressable in a visited statement), at the binary level
repair can often be created by changing data [10, 32]. While
fault localization does reduce the search time, for binary-
level repairs it may cause a larger number of viable repair
candidates to be excluded from the search space.

4https://github.com/eschulte/netgear-repair/blob/master/
bin/test-cgi
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4.2.3 The impact of Minimization
In some cases the initial suggested repair, known as the

primary repair, was not satisfactory. For example, sug-
gested repairs sometimes worked when net-cgi was called
directly on the command line but not through the embed-
ded µHTTPd webserver,5 or the repaired file failed to serve
pages not used in the exploit test. However, Table 1 shows
that in most cases the minimized version of the repair was
satisfactory, successfully passing all hand-written regression
tests, even those not used during the repair process.

As shown in Table 1, the initial evolved repair differed
from the original at over 200 locations on average in the
ELF program data, while the minimized repairs differed at
only 1–3 locations on average. This great discrepancy is due
to the accumulation of candidate edits in non-tested portions
of the program data. Since these portions of the program
were not tested, there was no evolutionary pressure to purge
the harmful edits. Delta Debugging eliminates these edits.

Given the small number of edits which remain after min-
imization it is possible that, at least for those repairs which
minimize to two diff windows (Column“Min Diff”in Table 1)
corresponding to the two vulnerabilities in the original pro-
gram, the use of a systematic exhaustive search that only
retains program edits that strictly improve fitness may be
sufficient to perform program repair.

4.2.4 Iterative Repair
The NETGEAR repairs required two distinct modifica-

tions, addressing two different vulnerabilities in a single evo-
lutionary run. This is an instance of“iterative repair”of mul-
tiple vulnerabilities which has not previously been demon-
strated in real-world software.

5http://wiki.openwrt.org/doc/uci/uhttpd

Run Fit Evals Full Diff Min Diff Full Fit Min Fit

0 90405 500 2 8 22
1 17231 134 3 22 22
2 26879 205 2 21 22
3 23764 199 2 19 22
4 47906 319 2 6 6
5 13102 95 2 16 22
6 76960 556 3 17 22
7 11831 79 3 20 22
8 2846 10 1 14 14
9 25600 182 2 21 22

mean 33652.4 227.9 2.2 16.4 19.6

Table 1: The evolved repair before and after mini-
mization. In these columns “Full” refers to evolved
solutions before minimization and “Min” refers to
solutions after. Columns labeled “Diff” report the
number of unified diff windows against the original
program data. The columns labeled “Fit” report fit-
ness as measured with a full regression test suite,
including the exploit tests. The maximum possible
fitness score is 22, indicating a successful repair.

5. RELATED WORK
Evolutionary computation (EC) refers to the use of nat-

ural selection as a search heuristic [18, 21]. EC techniques
have been developed to operate directly on machine code [22],
and more recently they have been applied to the problem of
software source-code repair [24, 1], optimization [39, 37, 23],
to repairing assembly code and binary ELF files [34, 36], to
combine different versions of software [13, 33], and to the in-
corporation of new functionality into existing software [16].
Software is inherently robust to mutation, a property termed
software mutational robustness [38]. Software mutational ro-
bustness has been measured in software represented using
source code, intermediate representations (e.g., Cil, LLVM
IR), assembly code, and binary executables [35].

In addition to the EC methods mentioned above, Clearview
[32] automatically patches errors in running binaries by learn-
ing invariants of running executables, and then reacting to
attacks or bugs that invalidate the invariants by applying
predefined patches.

6. DISCUSSION
The results presented here open up the possibility that end

users could repair software vulnerabilities in closed source
software without special information or aid from the soft-
ware vendor.

6.1 Threats to Validity
There are several caveats associated with this initial work.

First, we demonstrated repair on a single executable, and it
is possible that our success in the absence of regression test
suite will not generalize. However, our results do not ap-
pear to be based on any property unique to the NETGEAR
vulnerabilities. We conjecture that our success at finding
functional repairs is due to the beneficial impact of mini-
mization and to software mutational robustness [38, 35].

We demonstrated our repairs running in a virtualized envi-
ronment and not natively in the router. Although we did not
test our repairs on physical NETGEAR WNDR3700 hard-
ware, we are confident that our repairs would have the same

http://wiki.openwrt.org/doc/uci/uhttpd


effect on hardware as they do in emulation, given that they
affect aspects of program logic not directly related to the
execution environment.

6.2 Future Work
Although security vulnerabilities are serious, an important

implication of this technique is the ability of end users to
change non-security aspects of software, i.e. the customiza-
tion of COTS binaries by end users. This approach could be
applied to any feature of program behavior which may be en-
coded in a fitness function. Although the direct synthesis of
novel program behavior is certainly a more challenging task
than the patching of vulnerabilities, there are many plausi-
ble and desirable yet simple software customizations, even
including the direct removal of unwanted software features.

This technique could be combined with an automated
testing or exploit generation technique, such as fuzz test-
ing [29], to automatically “harden” closed source applica-
tions. Such a process would allow end users to proactively
protect their devices from a wide range of easily generated
attacks and could potentially be used to disrupt the large
mono-culture of commercial firmware [19]. The technique
could also be adapted by users to disable or break unde-
sirable or insecure functionality (e.g., password reset) in
closed-source applications. Finally, the technique could be
distributed across multiple untrusted peers and used to dis-
tribute self-certifying patches [8, 36].

Whenever a patch is distributed there is the risk that a
malicious individual will reverse-engineering an exploit from
the patch text [5]. As shown in Table 1 our technique
can generate edits that are not directly relevant to the re-
paired exploit. It may be possible to leverage these harmless,
i.e. neutral, edits to reduce the risk of reverse engineering.
By skipping the post-evolutionary minimization step, these
irrelevant edits would be retained resulting in obfuscated
patches which hide the relevant edits. However, skipping
minimization would likely require a regression test suite or
other method of ensuring semantic correctness.

7. CONCLUSION
The paper described a method that enables end users to

repair COTS software without cooperation from the soft-
ware vendor. This is accomplished through a number of
novel extension to existing techniques of evolutionary pro-
gram repair, including the use of user interaction and remov-
ing the requirements of a regression test suite and fault local-
ization. We demonstrate the method by repairing two secu-
rity vulnerabilities in the popular NETGEAR WNDR3700
router, vulnerabilities that currently exist in many actively
used devices and to the authors knowledge have not been
addressed by NETGEAR.
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