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Abstract

Detecting anomalies in time series data is a problem
of great practical interest in many manufacturing and
signal processing applications. This paper presents a
novelty detection algorithm inspired by the negative-
selection mechanism of the immune system, which dis-
criminates between self and other. Here self is defined
to be normal data patterns and non-self is any devi-
ation exceeding an allowable variation. Experiments
with this novelty detection algorithm are reported for
two data sets - simulated cutting dynamics in a milling
operation and a synthetic signal. The results of the ex-
periments exhibiting the performance of the algorithm
in detecting novel patterns are reported.

1 Introduction

The normal behavior of a system is often character-
ized by a series of observations over time. The prob-
lem of detecting novelties or anomalies can be viewed
as finding deviations of a characteristic property in
the system of interest. Novelty detection is an im-
portant task in many diagnostic and monitoring sys-
tems. In safety-critical applications, it is essential to
detect the occurrence of abnormal events as quickly
as possible before significant performance degradation
results. This can be achieved by continuous monitor-
ing of the system for deviations from the normal be-
havior patterns. For example, drilling and high speed
milling processes require continuous monitoring to as-
sure quality production; machines such as jet engines
require continuous monitoring to assure safe opera-
tion.

There have been a number of techniques suggested
in the literature for detecting novelties, anomalies and
faults in monitored systems. These include control
charts, model-based methods, knowledge-based expert
systems, pattern recognition and cluster analysis, hid-
den markov models, and neural networks. Most ex-
isting methods require either prior knowledge about
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various novelty conditions [11] or precise theoreti-
cal models [10] of the monitored system. A robust
method, however, should detect any unacceptable (un-
seen) change rather than looking for specific (known)
abnormal activity patterns. Recently, neural network-
based methods have been used for novelty detection in-
cluding Multi-Layer Perceptrons (MLP)[1, 13], which
require prior knowledge of different novelty classes,
and Adaptive Resonance Theory (ART)[2, 9], which
do not.

This paper proposes a novelty detection method,
which is based on ideas from the immune system. It
is a probabilistic method that notices changes in nor-
mal behavior without requiring prior knowledge of the
changes for which it is looking. In this way it resembles
the approach to novelty detection taken by ART. Both
neural networks and our immune system algorithm are
biologically inspired techniques that have the capabil-
ity of identifying patterns of interest. However, they
use different mechanisms for recognition and learning.

2 Negative-Selection Algorithm

Our approach is inspired by the information-
processing properties of natural immune systems [4, 7].
Natural immune systems are capable of distinguishing
virtually any foreign cell or molecule from the body’s
own cells: this is known as self-nonself discrimina-
tion. This discrimination is achieved in part by T
cells, which have receptors on their surface that can
detect foreign proteins (antigens). T-cell receptors are
made by a pseudo-random genetic rearrangement pro-
cess, making it likely that some receptors will bind to
self. Such self-reactive T-cells are censored in the thy-
mus, with the result that only those cells that fail to
bind to self-proteins are allowed to leave the thymus
and become part of the body’s immune system. This
process is called negative selection.

We have defined an algorithm based on the principle
of negative-selection algorithm [7]. Tts basic steps are



as follows:

o Define self as a multiset S of strings of length /
over a finite alphabet that we wish to protect or
monitor. For example, S may be a segmented
file or a normal pattern of activity of some sys-
tem /process.

e Generate a set R of detectors, such that each
detector fails to match the strings in S. We
use a partial matching rule, in which two strings
match if and only if they are identical at at least
r contiguous positions, where 7 is a suitably cho-
sen parameter.

o Monitor S for changes by continually matching
the detectors against S. If any detector ever
matches, a change (or deviation) must have oc-
curred.

In the original description of the algorithm [7],
candidate detectors are generated randomly and then
eliminated if they match self. In this paper, we gen-
erate detector sets using a more efficient algorithm [4]
which runs in linear time with respect to the size of

self.

3 Novelty Detection

We reduce the novelty detection problem to the
problem of detecting whether or not a string has
changed, where a change (or match) implies a shift
in the normal behavior pattern.

We first map real-valued data into a discrete form.
An analog value is normalized with respect to a defined
range and discretized into bins (or intervals). Each da-
tum is assigned the integer corresponding to the bin
in which it falls. The integer is then encoded in bi-
nary form. However, if an observed value falls outside
the specified range, it is mapped to all 0’s or all 1’s de-
pending on which side of the range it crossed. The size
of the bins is thus determined by the number of bits
used in the discretization. If each datum is encoded by
m bits (which may be chosen according to the desired
precision), then there would be 2™ — 2 different bins
between the maximum (M AX) and minimum (M IN)
ranges of data.

3.1 Generation of Detectors

In our implementation, data are sampled from a mov-
ing time window and mapped to binary. Each win-
dow, therefore, is the concatenation of a fixed number

(called Win_size) of data points. We collect the bit
strings from a succession of windows, sliding along the
time series in discrete steps (Win_shift) until the col-
lection is sufficient to capture regularities of the nor-
mal system behavior.! As long as the time series data
pattern maintains coherent behavior, these collected
strings are sufficient to define normal behavior of the
system. This collection of strings for windows is our
self (S). We then generate strings that do not match
any of the strings in S to be members of the detec-
tor set using the negative-selection algorithm discussed
above. Our current detector generation was designed
to be used off-line, although on-line methods may be
possible. This is similar to the case of neural network
training for novelty detection [1] or developing rules for
anomaly-detecting expert-systems [8]. Our approach
can be summarized as follows:

1. Collect time series (sensor) data that sufficiently
exhibit the normal behavior of a system (these
may be raw data at each time step, or average
values over a longer time interval).

2. Examine the data series to determine the range
of variation (M AX, MIN values) of data and
choose the data encoding parameter (m) accord-
ing to the desired precision.

3. Encode each value in binary form.

4. Select a suitable window size which captures reg-
ularities of interest.

. Slide the window along the time series (in
nonoverlapping steps) and store the encoded
string for each window as self, from which de-
tectors will be generated.

Ot

6. Generate a set of detectors that do not match
any of the self strings.

7. Once a unique set of detectors is generated from
the normal database of patterns, it can proba-
bilistically detect any change (or abnormality)
in patterns of unseen time series data.

8. When monitoring the system, we use the prepro-
cessing parameters in step 3 to encode new data
patterns. If a detector is ever activated (matched
with current pattern), a change in behavior pat-
tern is known to have occurred and an alarm sig-
nal is generated regarding the abnormality. We

!'When Winsize = Win_shift the windows are nonoverlap-
ping. The results reported in this paper used nonoverlapping
windows.



use the same matching rule (for monitoring the
system) as was used in generating detectors.

4 Example Applications

We have tested the feasibility of this novelty detec-
tion algorithm on a number of data sets, including the
Mackey Glass series [2], simulated cutting tool dynam-
ics in a milling process, and some sensory data. In this
paper, we report data for the two of these examples
(we achieved similar results on the other data set).

In milling industries, on-line monitoring of tool con-
ditions is very important to achieve automated ma-
chining operation. To prevent possible damage to
the workpiece and the machine tool (or to avoid pro-
duction of defective parts and possible overloading of
tools), a reliable and effective tool breakage detection
technique is required for providing a rapid response to
an unexpected tool failure. Usually, methods for mon-
itoring a milling process use measurements of cutting
parameters correlated with tool breakage [6]. These
cutting parameters include temperature, cutting force,
torque, vibration, acoustic emission, motor current,
etc. Of these parameters, cutting forces are widely
used for tool breakage detection for several reasons:
(1) cutting force signals are much less dependent on
the structure of the workpiece; (2) cutting force signals
can be simulated easily and more accurately than ac-
celeration and acoustic emission signal; (3) the cutting
force is a very good indicator of the vibration between
the tool and workpiece because of its higher sensitiv-
ity and more rapid response to the changes in cutting
state.

The cutting force variation characteristics of normal
and broken tools are different. Under normal (stable)
cutting conditions, the cutting force periodically varies
with the tooth frequency which depending on the spin-
dle speed. If the tool is broken, the force changes as
long as the broken tooth stays in the workpiece, since
it can not remove the same amount of material as the
other teeth. The number of tooth periods deviates
from the stable cutting pattern depends on the num-
ber of teeth that are actively involved in the cutting
zone.

We prepared simulated data for cutting operations
using the vibratory model described in [5, 17]. This
model has been used by many other investigators for
tool breakage detection [14, 16]. In our experiments,
a four-tooth cutter with uniform pitch, performing an
end-milling is considered and one tooth is engaged in
the cut at an angle ¢, where the cutting angle varies
from 0 to w/2 for every tooth engagement. The cutting

force profiles were simulated using fourth order Runge-
Kutta method for every time step (dt = 0.0001 sec),
where displacements at step, t + 1 are calculated from
the cutting force data at step t. References [5, 17]
give details of the vibratory model and calculation of
the cutting force and vibration. The parameter values
used in our simulation are as follows: [5, 14]:

Mass, my; = my = 10 kg;

Damping coeff., ¢, = ¢y = 471.9 kg/s;
Spring constant, k; = ky, = 8.1 x 10° N/m;
Feed rate/tooth, f; = 0.2 mm;

Cutting coefficient, K. = 6.67 % 10° N/m;
Depth of cut, b = 0.508 mm;

Spindle speed, Ny, = 600 rpm;

Spindle diameter, D = 40 mm.

4.1 Experimental Results

In the first set of experiments, we simulated instan-
taneous cutting force patterns with and without tool
breakage, shown in Figure 1. In this simulation, the
tool was in normal (stable) cutting operation for 1500
time steps and then one tooth was broken, causing
changes in cutting force signals at the corresponding
tooth periods. In our experiments, we used the first
1000 data points as the self set, S, for generating de-
tectors and the rest of the data series were used for
testing. Results of the experiments are shown in table
1 and in figure 2. Table 1 shows the various param-
eters used for preprocessing data and for generating
detectors. We tried several different parameter val-
ues and found the reported values most suitable (see
[3] for details). In these experiments, we set m = 6

Encoding Matching No. of Tool Breakage Detection
parameters threshold] detectors| Mean(Std. dev) | Detection
Winsize = 5 10 40 12.20(5.52 50.83%
Winshift= 5 9 30 16.16(4.78 67.33%
i =30, 5 =200 [8 20 21.88(2.53 81.16%
Winsize = 7 12 40 10.36(3.36) 62.78%
Winshift= 7 10 30 20.38(5.57) 75.56%
i =42, S =142 [ 9 20 30.75(7.91) 93.28%

Table 1: Novelty detection results on tool breakage
problem. Results are averaged over 50 runs. Column
4 shows the mean number of detections (number of
times detectors activated). The standard deviations
are shown in parentheses. The average detection rate
is shown in column 5. This is the ratio of the average
detection to the number of actual novel patterns in the
data.

for binary encoding of data and two different window
sizes are considered. Detection results (columns 4 and
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Figure 1: Simulated cutting force signals of normal

behavior and with tool breakage in a milling operation.
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Figure 2: The height of vertical lines in the graph
corresponds to the number of detectors activated when
novel patterns are found.

5) show the mean number of times detectors were ac-
tivated and the average detection rate in each case.

In all the test runs, the generated detectors could
detect the tooth periods in which the changes in the
force pattern occurred. Figure 2 shows a typical run
and the number of activated detectors (novel patterns
encountered) at different time steps. In this exam-
ple, a maximum of three detectors is activated (out
of 20) when there are significant changes. Note that
the detectors remain inactive during the normal op-
eration period, in particular, between 1000 and 1500
time steps where the data exhibit a normal pattern,
thus avoiding false positives.

We next considered the second data series - a typ-
ical example found in many signal processing appli-
cations (figure 3), where signals of varying amplitude
are observed under normal behavior. The data pat-
terns, however, show regularities over a period of time.
Detecting unknown changes (noise) in this signal pat-
tern is a very difficult task, although monitoring such
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Figure 3: An example of signal processing data series.
Here the signals are noisy during the time period 75

and 85.

20 detectors were generated from data
During time period 0 to 50

) 1

Number of detectors activated
N
1

0 20 40 60 80 100
Time

Figure 4: The vertical lines indicate the activation of
detectors indicating the changes in signal pattern. The
detectors are only activated during the time period
when signals get distorted as in figure 3.

changes is essential in some applications. However,
most existing threshold-based methods fail to detect
small changes because of varying boundary conditions.
We conducted experiments with similar parameter set-
tings as in the previous example. Figure 4 shows a typ-
ical result demonstrating that the proposed algorithm
can easily detect noisy signals by monitoring with a
small set of detectors. In particular, we generated 20
detectors from initial data (data during 0 to 50 time
steps are assumed as the normal pattern of signals).
The detector set was then used to monitor future sig-
nal patterns (test signals), and it could detect changes
during the time period 75 and 85. This suggests that
the detection of gradual change can be monitored with
a suitable detector set.



5 Observations

We observed that the performance of the algorithm
varies with the choice of the matching threshold (r)
for a defined string length (/) and encoding. With
larger 7, the generated detectors become sensitive to
any novelty in the data patterns, so more detectors
are necessary to achieve a desired level of overall re-
liability. On the other hand, if r is too small, it may
not be possible to generate a reasonable size detector
set from the available self, since there may not exist
any unmatched strings (non-self) at that value of r.
The choice of a suitable value is desirable for optimal
performance of the algorithm.? This suggests that the
value of r can be used to tune the reliability of detec-
tion against the risk of false positives.

Recently, neural network methods, in particular,
ART networks have been used on the problem of de-
tecting tool breakage in milling operations [12, 15].
Our results agree qualitatively with those of ART.
However, there are some important differences be-
tween the two approaches:

e ART and other neural networks recognize/ clas-
sify input patterns in the space defined by the
training data set (actual encoded space of data
or signals), while our detection algorithm is
based on negative selection, and recognizes pat-
terns in the complement space as novel. Some
circumstances will favor the positive selection
approach while others will favor negative selec-
tion (See [4] for some explanation).

e Recognizing an input pattern is a global deci-
sion over the ART network, whereas the recog-
nition of a novel pattern by detectors in our al-
gorithm is a decentralized local decision. This
property results in generating a quick response
to any changes, and may be very useful in mon-
itoring safety-critical systems.

6 Conclusion

In this paper we have proposed and demonstrated
a method for novelty detection based on our earlier
work in computer virus detection [7]. The objective of
this work is to develop an efficient detection algorithm
that can be used to alert an operator to any changes

2In an ART network, a similar effect is also noticed when
choosing vigilance threshold (p). A p value near zero gives a
network with low discrimination, and a value near one gives a
network with high discrimination (forming many clusters).

in steady-state characteristics of a monitored system.
Our approach relies on a large enough sample of nor-
mal data to generate a diverse set of detectors that
probabilistically notice any deviation from the normal.
The detection system may be updated by generating
a new set of detectors as the normal system behavior
shifts due to aging, system modifications, change in
operating environments, etc.

In this paper we demonstrated that the proposed
algorithm successfully detects the tool breakage, and
also can detect noise in signals. In these examples,
the detection of a spurious change in data is not as
important as the change in the data pattern over a pe-
riod of time, and our probabilistic detection algorithm
appears to be a feasible approach to such problems.
There are a number of parameters which are tunable
in both the preprocessing and the detector generation
stage. In the preprocessing stage, the desired preci-
sion can be achieved by grouping similar analog data
in the same bin, and the window size may be suitably
chosen to capture the semantics of the data patterns.
Note that the system can be monitored using different
time-scales simultaneously. Also instead of directly
encoding the time series data, it may be necessary to
transform data (e.g. by Fourier transform) depending
on the properties of sensor data. In cases of multi-
variate data series, the system can be monitored by
a single set of detectors, constructing self strings by
concatenation of patterns of data for each variable. A
desired level of reliability can be achieved by changing
the window size, matching threshold, and the num-
ber of detectors. Other encoding techniques, matching
rules and generation algorithms are currently under
investigation.

There exist many potential application areas in
which this method may be useful. They include fault
detection, anomaly detection, machine monitoring,
signature verification, noise detection, patient’s con-
dition monitoring and so forth. The remarkable de-
tection abilities of animal immune systems suggests
negative-selection algorithms such as ours are well
worth exploring.
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