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Abstract

We consider networks of small, autonomous devices that communicate with each other
wirelessly. Minimizing energy usage is an important consideration in designing algorithms for
such networks, as battery life is a crucial and limited resource. Working in a model where
both sending and listening for messages deplete energy, we consider the problem of finding a
maximal matching of the nodes in a radio network of arbitrary and unknown topology.

We present a distributed randomized algorithm that produces, with high probability, a
maximal matching. The maximum energy cost per node is O(log2 n), where n is the size of the
network. The total latency of our algorithm is O(n logn) time steps. We observe that there
exist families of network topologies for which both of these bounds are simultaneously optimal
up to polylog factors, so any significant improvement will require additional assumptions about
the network topology.

We also consider the related problem of assigning, for each node in the network, a neighbor
to back up its data in case of node failure. Here, a key goal is to minimize the maximum load,
defined as the number of nodes assigned to a single node. We present a decentralized low-energy
algorithm that finds a neighbor assignment whose maximum load is at most a polylog(n) factor
bigger that the optimum.

1 Introduction

For networks of small computers, energy management and conservation is often a major concern.
When these networks communicate wirelessly, usage of the radio transceiver to send or listen for
messages is often one of the dominant causes of energy usage. Moreover, this has tended to be
increasingly true as the devices have gotten smaller; see, for example, [8, 1]. Motivated by these
considerations, Chang et al. [2] introduced a model of distributed computation in which each send
or listen operation costs one unit of energy, but local computation is free. Over a sequence of
discrete timesteps, nodes choose whether to sleep, listen, or send a message of O(log n) bits. A
listening node successfully receives a message only when exactly one of its neighbors has chosen to
send in that timestep; otherwise it receives no input.
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In this model, [2] presented a polylog-energy, polynomial-latency algorithm for the problem of
one-to-all broadcast. A later paper, by Chang, Dani, Hayes and Pettie [3], gave a sub-polynomial
energy, polynomial-latency algorithm for the related problem of breadth-first search.

We will be concerned with another fundamental problem of graph theory, namely to find large
sets of pairwise disjoint edges, or matchings. The problem of finding large matchings has been
thoroughly studied in a wide variety of computational models dating back more than a century, to
König [7]. For a fairly comprehensive review of past results, we recommend Duan and Pettie [5,
Introduction].

The main goal of the present work is to present a log-energy, nearly-linear latency distributed
algorithm that computes a maximal matching. The term maximal here indicates that the matching
intersects every edge of the graph, and therefore cannot be augmented without first removing edges.
It is well-known that the cardinality of any maximal matching is within a factor two of the largest
(or maximum) matching.

1.1 Application: Neighbor Assignment

One possible motivation for finding large matchings, apart from their intrinsic mathematical inter-
est, comes from the desire to back up data in case of node failures. Suppose we had a perfect
matching (that is, one whose edges contain every node) on the n nodes of our network. Then the
matching could be viewed as pairing each node with a neighboring node that could serve as its
backup device. This would ensure that each device has a load of one node to back up, and that
each node is directly adjacent to its backup device.

Since perfect matchings are not always available, we consider a more general scheme, in which
each node is assigned one of its neighbors to be its backup device, but we allow for loads greater
than one. Such a function can be visualized as a directed graph, with a directed edge from each
node to its backup device. In this case, each node has out-degree 1, and load equal to its in-degree.
We would like to minimize the maximum load over all vertices.

In Section 6, we will show that, if one is willing to accept a maximum load that is O(log n) times
the optimum, this problem can be simply reduced to the maximal matching problem. In light of
our main result, this means that, if there exists a neighbor assignment with polylog(n) maximum
load, then we can find one on a radio network, while using only polylog(n) energy.

1.2 Techniques

Our matching algorithm can be thought of as a distributed and low-energy version of the following
greedy, centralized algorithm. Randomly shuffle the m edges. Then, processing the edges in order,
accept each edge that is disjoint from all previous edges. Note that this always results in a maximal
matching.

To make this into a distributed algorithm, we make each node, in parallel, try to establish
contact with one of its unmatched neighbors to form an edge. Since a node can only receive a
message successfully if exactly one of its neighbors is sending, we limit the probability for each
node to participate in a given round, by setting a participation rate that is, with high probability,
at most the inverse of the maximum degree of the residual graph induced by the unmatched nodes.
It turns out that this can be accomplished using a set schedule, where the participation rate is a
function of the amount of elapsed time.
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The main technical obstacle in the analysis is proving that the maximum degree of the graph
decreases according to schedule (or faster). This is achieved by noting that, if not, the first vertex
to have its degree exceed the schedule would have to have been failed to be paired by our algorithm,
despite going through a long sequence of consecutive rounds in which its chance to be paired was
relatively high.

2 Preliminaries

2.1 Matchings

A matching is an subset of the edges of a graph G, such that no two of the edges share an endpoint.
We say a matching is maximum if it has at least as many edges as any other matching for G. We say
a matching is maximal if it is not contained in a larger matching for G. Equivalently, a matching
is maximal if every edge of G shares at least one endpoint with an edge from the matching.

For α > 1, we say a matching is α-approximately maximum if its cardinality is at least 1/α
times the cardinality of a maximum matching. It is an immediate consequence of the definitions
that any maximal matching is 2-approximately maximum.

2.2 Low-Energy Radio Networks

We work in the Radio Network model, where we have a communication network on an underlying
graph G. Each node in G is an identical processor equipped with a transmitter and receiver to
communicate with other nodes. There is an edge between nodes u and v in the graph if u and v
are within transmission range of each other. Time is divided into discrete timesteps. In each time
step a processor can choose to do one of three actions: transmit, listen, or sleep. A message travels
from a node u to a neighbor v of u at time t if

• u decides to transmit at time t,

• v decides to listen at time t and

• No other neighbor of v decides to transmit at time t.

Thus when a node u decides to send a message, that message is heard by all of its neighbors
who happen to be listening, and for whom none of their other neighbors are sending.

So what happens if node v happens to listen and more than one of its neighbors is sending a
message? There are several different models for this situation. In the most permissive of these,
the LOCAL model, v receives all the messages sent by its neighbors. As already specified, we are
not working in this model. A more restrictive model is the Collision Detection model (CD) where,
when a listening node does not receive a message, it can can tell the difference between silence
(no neighbors sending) and a collision (more than one neighbor sending). Our results hold in the
even more restrictive “No Collision Detection” model, where a listening node receives a message
when exactly one of its neighbors is sending, but it cannot distinguish between silence and colliding
messages.

What about message sizes? The LOCAL model allows nodes to send messages of arbitrary size
in a single timestep. In our work we assume that the messages sent in a single timestep are of size
that is logarithmic in the size of the network. That is, when there are n nodes, the message sizes
are O(log n).
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We measure the cost of our algorithms in terms of their energy usage. We assume that a node
incurs a cost of 1 energy unit each time that it decides to send or listen. When the node is sleeping
there is no energy cost. We also assume that local computation is free. The goal of energy aware
computation is to design algorithms where the nodes can schedule sleep and communication times
so that the energy expenditure is small, ideally polylog(n), without compromising the latency too
much (i.e. the latency remains poly(n)).

3 Notation

3.1 The network

As mentioned earlier, G = (V,E) is the graph defining our radio network. We denote n = |V |, and
refer to the nodes as “processors.” Although the processors are identical, and run identical code, we
will assume each node has a unique ID that it knows and uses as its “name” in communication. We
make the standard observation that, if each node were to generate an independently random string
of C log n bits as its ID, the probability that all n nodes have distinct IDs is at least 1 − 1/nC−1,
which can be made overwhelmingly likely.

When we present our pseudocode, it will be written from the perspective of a single processor.
However, most of our analysis will be written from the “global” perspective of the entire graph.

3.2 Measuring time

To begin with, we define two units of time that will be used throughout the paper. The smaller
unit of time is called a timestep, and refers to the basic time unit of our radio network model: in
each timestep the nodes that choose to transmit are allowed to send a single message.

The larger unit of time, is called a round, and consists of three timesteps of the form 3t−2, 3t−
1, 3t, where 1 ≤ t ≤ tmax is the round number. As shall be seen, rounds have the property that
at the end of each round, the aggregate state of the network encodes a matching. More precisely,
each node has a variable, partner, and at the end of each round, this variable is either the ID
of one of its neighbor nodes, or has the value null; moreover, whenever, at the end of a round,
partner(v) = w 6= null, we also have partner(w) = v.

3.3 The Evolving Matching

For t ≥ 0, we denote by M(t) the matching encoded by the network at the end of round t; this is
a random variable whose value is always a pairwise disjoint set of edges of the graph. As discussed
earlier, M(t) is well defined because, at the end of every round, all vertices have a mutually consistent
view of whom they are paired to.

We mention that our matching will be non-decreasing over time, that is, for all t < t′, M(t) ⊆
M(t′) with probability one. Next we define a few useful notations, all defined in terms of G and
M(t).

By G(t), we denote the residual graph at the end of round t; that is, the graph induced by all

unmatched vertices of G. Thus G(t) = (V (t), E(t)), where V (t) = V \
⋃
M(t) and E(t) = E∩

(
V (t)

2

)
.

Similarly, for a vertex v, we will refer to its residual neighbor set, N(v, t) = N(v) ∩ V (t), and its
residual degree, d(v, t) = |N(v, t)|. We will denote the maximum degree in the residual graph by
∆(t) = max

v∈V (t)
d(v, t), taking this value to be zero if V (t) is empty.
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4 Maximal Matching Algorithm

The basic idea of our algorithm is, starting with the empty matching, to greedily add disjoint edges
until a maximal matching is achieved. The challenge is to keep each node’s energy cost low. We
achieve this by having nodes wake up at random times, and try to recruit one of their neighbors
to pair with them. If this succeeds, and is not hampered by additional, redundant, neighbors that
also happen to wake up, then an edge is added to the matching.

To ensure that both endpoints of the edge agree about who they are paired with, the nodes
execute a three-step “handshake” protocol, with the property that, if it succeeds, both nodes know
that the other node has only been in communication with them, and was not, for instance, trying
to form an edge with another, different, endpoint.

To keep the energy costs low, it is essential that nodes wake up with approximately the correct
frequency. If the rate is too high (significantly greater than the inverse of the degree), too many
nodes will wake up at once, causing collisions. Even if we get around these collisions by some device,
having too many nodes wake up at once seems likely to lead to excessive energy consumption, since
at most one neighbor of a node can get a message through in a single round.

If the rate is too low (significantly less than the inverse of the degree), then too few nodes will
wake up at once, again leading to an excessive waste of energy, since a node whose neighbors are
all asleep cannot get anywhere.

We define the “participation rate,” r(t) by the function

r(t) =
3C log(n)

4C log(n) + tmax − t

where tmax = Cn log(n). The value of the constant C will be specified in the proof of Theorem 5.5.

Algorithm 1 Main Algorithm: A Low-Energy Distributed implementation of Greedy Maximal
Matching in a Radio Network.

1: t← 1
2: partner← NULL
3: while partner= NULL and t ≤ tmax do
4: Sample x uniformly from [0, 1].
5: if x ≤ r(t)/2 then
6: Do RECRUIT PROTOCOL this round.
7: else if r(t)/2 < x ≤ r(t) then
8: Do ACCEPT PROTOCOL this round.
9: else

10: Sleep this round.
11: end if
12: t← t+ 1
13: end while
14: Sleep for the remaining tmax − t rounds.
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Algorithm 2 RECRUIT PROTOCOL: Try to form an edge as initial sender.

1: At timestep 1, Send my id . “My name is my id and I am available”
2: At timestep 2, Listen
3: if message received then
4: Interpret the message as an ordered pair of integers (x, y)
5: if x = my id then . Match found
6: partner← y
7: At timestep 3, send (x, y) . “x and y are paired”
8: end if
9: else

10: Sleep for timestep 3.
11: end if

Algorithm 3 ACCEPT PROTOCOL: Try to form an edge as initial listener.

1: At timestep 1, Listen
2: if message received then
3: Interpret the message as an integer x
4: At timestep 2, Send (x,my id) . “Hello, lets match up, x and my id”
5: At timestep 3, Listen
6: if message received then
7: Interpret the message as an ordered pair of integers (x, y)
8: if (y == my id) then . x and y are matched
9: partner← x

10: end if
11: end if
12: end if
13: Sleep for any timesteps remaining in the round.
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5 Maximal Matching Analysis

Lemma 5.1. With probability one, at the end of every round t ≥ 0, the partner variables of the
n nodes encode a well-defined matching M(t).

Proof. Initially, all the vertices are unmatched, with null partners, so M(0) = ∅. Later, we observe
that the only circumstances under which the partner variables have their values reassigned is when
a vertex v has chosen to participate in that round as recruiter, a neighboring vertex w has chosen
to participate in that round as accepter, and furthermore, both v and w receive a message each
time they Listen during their respective protocols. Since a message is received if and only if exactly
one neighbor Sends in that timestep, the messages v receives must come from w, and vice-versa.
Therefore v stores the id of w in its partner variable, and vice-versa.

Furthermore, since v and w would not have participated in round t unless their partner variables
were both NULL beforehand, we know by induction that no other vertices have v or w as their
partners. Since this applies for all vertices and all rounds, the pairing is one-to-one, as desired.

Lemma 5.2. Let t ≥ 1, let {v, w} ∈ E, and let Xv,w,t be the indicator random variable for the
event that v and w get matched to each other in round t. Then

E (Xv,w,t |M(t− 1)) ≥ r(t)2

2
(1− r(t))∆(t−1)−1

1(v, w ∈ V (t− 1))

Proof. Recall that, in order for an edge to form between v and w in a particular round, we need

1. v and w both participate in that round

2. exactly one of v, w participates as recruiter, one as accepter, and

3. v and w receive each other’s messages.

Clearly, we need v and w to be unmatched, which explains the indicator variable. Assuming
this, the likelihood of the first item is r(t)2. Given that, the likelihood of also having the second
item is 1/2. Now, the third item is a little complicated, because the neighborhoods of v and w may
overlap. For the recruiter to hear the accepter’s message it suffices if none of its other neighbors
participate as potential accepters and similarly, for the accepter to hear the recruiter’s messages it
suffices if none of its other neighbors participate as potential recruiters. To state this differently,

• for each y ∈ N(v, t − 1) ∩ N(w, t − 1), it suffices for y not to participate in round t at all,
which occurs with probability 1− r(t), and

• for each y in the symmetric difference N(u, t− 1)⊕N(v, t− 1), excluding v and w, it suffices
for y to not participate in round t in a specific role; either as sender or as receiver, which
occurs with probability 1− r(t)/2.

Now observe that

∆(t− 1)− 1 ≥ 1

2
(|N(v, t− 1)|+ |N(w, t− 1)| − 2)

=
1

2
(2|N(v, t− 1) ∩N(w, t− 1)|+ |N(u, t− 1)⊕N(v, t− 1) \ {v, w}|)

= |N(v, t− 1) ∩N(w, t− 1)|+ |N(u, t− 1)⊕N(v, t− 1) \ {v, w}|
2

.
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Since
(

1− r(t)
2

)2

≥ 1− r(t), and since each vertex decides independently whether to participate or

not, we find that

P (v and w receive each other’s messages) ≥ (1− r(t))∆(t−1)−1 .

Multiplying the probabilities of the three items gives the desired bound.

We now introduce a ramdom variable that will be used crucially in the remainder of our analysis.

Definition 5.3. Let v be a vertex, and 1 ≤ t ≤ tmax. Z(v, t) denotes the indicator random for the
event {d(v, t) ≥ 1/(2r(t)) and ∆(t− 1) ≤ 1/r(t).

This definition is motivated by the observation that, if t were minimal such that there exists
a v such that d(v, t) ≥ 1/(2r(t)), then Z(v, t) would have to have value 1 for many immediately
preceding rounds, which we can prove is highly unlikely.

Lemma 5.4.

E (Z(v, t) |M(t− 1)) ≤ 1− r(t)

4e2
.

Proof. Recall that, by definition, Z(v, t) = 1 if and only if: v ∈ V (t) and d(v, t) ≥ 1/2r(t) and
∆(t − 1) ≤ 1/r(t). Now, since the degrees at time t − 1 are determined by M(t − 1), and there
is nothing to prove when the conditional information implies Z(v, t) is identically zero, we may
assume d(v, t− 1) ≥ 1/2r(t) and maxw d(w, t− 1) ≤ 1/r(t).

Also, note that v /∈ V (t) will occur if and only if Xv,w,t = 1 for some w ∈ N(v, t − 1). Since
these events are disjoint, we may sum their probabilities, obtaining

E (Z(v, t) |M(t− 1)) ≤ 1−
∑
w

E (Xv,w,t |M(t− 1))

≤ 1− d(v, t− 1)
r(t)2

2
(1− r(t))∆(t−1)−1

by Lemma 5.2.

≤ 1− d(v, t− 1)
r(t)2

2
(1− r(t))1/r(t)

, since Z(v, t) = 0 unless d(v, t) ≥ 1/2r(t), we have

E (Z(v, t) |M(t− 1)) ≤ 1− 1

2r(t)

r(t)2

2
(1− r(t))1/r(t)

≤ 1− r(t)

4
(1− r(t))1/r(t)

≤ 1− r(t)

4e2
.

Here the last inequality follows because on the interval [0, 3/4] we have 1−x > e−2x, and r(t) ≤ 3/4
for all t.

Theorem 5.5. Let G be any graph on n vertices. Then Algorithm 1 always terminates in O(n log n)
timesteps, at which point each node knows its partner in a matching, M . Furthermore,

P
(
M is a maximal matching and every node used energy ≤ 20C log2 n

)
≥ 1− 1

n2
.
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Proof of Theorem 5.5. We focus on the probability that M is maximal. If not, then there exists a
vertex whose degree is positive after round tmax. Since r(tmax) = 3/4, it follows that the set

S =

{
(v, t) : v ∈ V, 0 < t ≤ tmax, d(v, t) ≥ 3

4r(t)

}
is non-empty. Let t be the smallest time such that there exists a vertex v with (v, t) ∈ S.

Let I be the set of all times t′ ≤ t such that 2r(t)/3 < r(t′) ≤ r(t). By our assumption that t is
minimal, we have

d(w, t′ − 1) <
3

4r(t′ − 1)
<

1

r(t′)

for all vertices w ∈ V and times t′ ∈ I. Hence ∆(t′− 1) < 1/r(t′) for all t′ ∈ I. On the other hand,
since d(v, t′) is a non-increasing function of t′, we also have

d(v, t′) ≥ d(v, t) ≥ 3

4r(t)
>

1

2r(t′)
,

for all t′ ∈ I, where the last inequality is by the definition of I. It follows that

for all t′ ∈ I, Z(v, t′) = 1.

Let Ev,t be the above event, i.e., that
∏
t′∈I

Z(v, t′) = 1. We want to compute the probability of

Ev,t. Let t0 be the smallest time in I. Then

P (Ev,t) = E

(
t∏

t′=t0

Z(v, t′)

)

= E

(
E

(
t∏

t′=t0

Z(v, t′)

∣∣∣∣∣M(t− 1)

))
by the Law of Total Expectation

= E

((
t−1∏
t′=t0

Z(v, t′)

)
E (Z(v, t) |M(t− 1))

)
since M(t− 1) determines Z(v, t0), . . . , Z(v, t− 1)

≤ E

(
t−1∏
t′=t0

Z(v, t′)

)(
1− r(t)

4e2

)
by Lemma 5.4

By repeating the steps from using the Law of Total Expectation to applying Lemma 5.4 on the
remaining expectation of a product, we see by induction that

P (Ev,t) ≤
∏
t′∈I

(
1− r(t′)

4e2

)

≤ exp

(
− 1

4e2

∑
t′∈I

r(t′)

)
since for all x, 1− x ≤ e−x
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To get a handle on the expression on the right hand side, we need a lower bound on the sum of
the participation rates. Let t∗ ∈ R be such that r(t∗) = 2

3r(t). Then t0 − 1 < t∗ ≤ t0, and we have

t∑
t′=t0

r(t′) ≥
∫ t

t0−1

r(t′)dt′ upper Riemann sum

≥
∫ t

t∗
r(t′)dt′

≥
∫ t

t∗

3C log n

4C log n+ tmax − t′
dt′

= 3C log n [log(4C log n+ tmax − t∗)− log(4C log n+ tmax − t)]

= 3C log n log

(
r(t)

r(t∗)

)
= 3C log n log(3/2)

Plugging this back into the probability calculation,

P (Ev,t) ≤ exp

(
− 1

4e2

∑
t′∈I

r(t′)

)

≤ exp

(
−3C log n log(3/2)

4e2

)
≤ 1

n4+ε

where the last inequality holds for suitably large values of C, e.g., when C = 100.
Taking a union bound over the ntmax = O(n2 log n) events Ev,t completes the proof of correct-

ness.
The upper bound on energy use comes from a simple analysis of the number of rounds each

vertex participates in. Clearly, the energy use is at most 3 times the number of rounds the vertex
participates in, which is at most the number of heads that would be flipped in tmax independent
coin flips, with probabilities of heads r(1), r(2), . . . , r(tmax). Hence the expected energy use is at

most the sum, which we calculated above as approximately 3 · 3C log n log
(
r(tmax)
r(0)

)
, which is at

most 9C(log n)2 = O(log2 n). Chernoff’s bound, together with with a union bound over the n
vertices, implies the high-probability upper bound on expected energy cost.

6 Neighbor Assignment Functions

Motivated by the problem of assigning nodes to backup data from their neighbors in a sensor
network, we introduce the following definition. As we shall see later, it is extremely closely connected
to the established concept of matching covering number.

Definition 6.1. Given graph G = (V,E), a neighbor assignment function (NAF) is a function
f : V → V such that for all v ∈ V , {v, f(v)} ∈ E. Equivalently, we may think of this as an oriented
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Figure 1: Sketch of the digraph of a NAF with only one component. Each component can be seen
as a directed cycle, along with zero or more “tributary trees.”

subgraph of G, in which each vertex has out-degree 1. The load of the assignment is the maximum
in-degree of this digraph. Equivalently, load is maxv∈V |f−1(v)|. The minimum NAF load of G is
the minimum load among all NAFs for G.

Note: In the case whenG is bipartite, NAFs are also known as “semi-matchings.” (See, for example,
[6, 4].) However, since we are particularly concerned with the non-bipartite case, we preferred to
introduce a different term.

In the context of backing up data, we think of the assigned node f(v) as the node who will store
a backup copy of v’s data. Our goal for this section is to find a NAF whose load is small. In the
energy-aware radio network setting, we also want to ensure that the per-node energy use is small.

Our next result establishes a close connection between the load of the best NAF for a graph
and the minimum number of matchings needed to cover all of its vertices.

Definition 6.2. For a graph, G, the matching cover number of G, denoted mc(G), is the minimum
integer k, such that there exists a set of k matchings of G, whose union contains every vertex of G.

Theorem 6.3. For every graph G, the minimum NAF-load of G equals the matching cover number
of G, unless the NAF-load of G equals 1. If the NAF-load of G equals 1, the matching cover number
of G can be 1 or 2.

Proof. Suppose V = V (G) is covered by the union of matchings M1, . . . ,ML. Then assigning each
vertex v to its partner in the first matching that contains v is an NAF with maximum load at most
L. This establishes that the NAF-load is always at most the matching covering number.

Before we begin the proof for the reverse implication, we make the following general observation
about digraphs with out-degree 1. By considering the unique walk obtained by starting at any vertex
v, and repeatedly following the edge {v, f(v)}, we can see that each weakly connected component
consists of one oriented cycle (of length ≥ 2), together with one or more “tributary” trees, each
rooted at a node of this cycle, and oriented towards that root. See Figure 1.

Now, if f has any leaf, that is, a node, v, whose load is zero, we can obtain a new NAF by
reassigning f(v) to point back to v. This increases the load at v to 1, decreases the load by 1 at
f(f(v)), and doesn’t change any other vertex loads. Repeated application of this rule to all leaves
in turn, eventually leads to a NAF whose components are all either (a) directed cycles, which don’t
have any leaves, or (b) stars with one bi-directed edge. See Figure 2. In case (b), the component
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Figure 2: Example of the conversion of a given NAF by decreasing the number of load-zero nodes.
The number by each node indicates its load. Note that, after the conversion, the maximum load did
not increase, and the connected components of the NAF are now all directed cycles and/or stars
with one bi-directed edge. (The components of size 2 are both.)

consists of one node, r, of in-degree i ≤ L, i nodes, x1, . . . , xi, each with an edge directed to r, and
one edge from r to x1.

It is easy to see that, for a directed cycle, whose edges are e1, . . . , e`, a single matching consisting
of the even edges, e2, e4, . . . ,, will cover all the vertices if ` is even, and all but one vertex if ` is
odd. Therefore, one matching covers the component if ` is even, and two if ` is odd.

For the star with bi-directed edge, the maximum load equals the degree, d, of the center vertex.
And a matching cover consists of the d single edges that make up the star.

In this way, we can build up our matching cover component by component, noting that if every
component has a matching cover of size at most k, then so does the entire graph. Since the only
case when our matching cover was smaller than the maximum load for the component was when
L = 1, the proof is complete.

Song, Wang, and Yuan [9] have given an O(n3)-time centralized algorithm for finding the min-
imum number of matchings needed to cover a graph. In light of Theorem 6.3, their result implies
an O(n3) algorithm for finding the minimum-load NAF for any graph.

In the distributed and low-energy setting, it is unlikely that we can achieve such an ambitious
goal. For instance, a node cannot determine its exact degree without receiving that many messages
successfully, which may require linear energy. Instead, we aim for the less ambitious goal of finding
a NAF whose maximum load is well within our energy budget. Our next result shows that this is
possible, assuming one exists.

Theorem 6.4. Suppose G has a NAF with maximum load L. Then Algorithm 4, run with parameter
k = O(L log n), will, with high probability, output a NAF with maximum load O(L log n). Its per-
vertex energy usage will be O(Lpolylog n).

Proof. Since G has a NAF with maximum load L, by Theorem 6.3, it has a vertex cover by L
matchings. This implies that the maximum matching covers at least N/L vertices. Hence every
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Algorithm 4 Low-Energy Distributed algorithm to compute a NAF in a Radio Network.

1: Run our Maximal Matching algorithm on G.
2: For each edge {u, v} in the matching, mark u, v as assigned, and assign them to each other.
3: for i← 1 to k do
4: Run the maximal matching algorithm on G, modified so that only unassigned nodes are

allowed to recruit, and only assigned nodes are allowed to accept.
5: For each edge {u, v} in the matching, mark u, v as assigned, and (re-)assign them to each

other.
6: end for

maximal matching covers at leastN/2L vertices. So the first call to the maximal matching algorithm
will assign neighbors to at least N/2L vertices.

In subsequent rounds, the modification to the maximal matching algorithm has the effect of
making it run on the bipartite graph where the bipartition is into the assigned and unassigned
vertices. Now, consider the vertex cover by the L matchings in G. By pigeonhole principle, at least
one of these matchings, M , must cover at least a 1/L fraction of the unassigned vertices. Since
the first matching was maximal, no edges in G have both endpoints unassigned; therefore, M is a
matching within the bipartite graph being fed into our maximal matchings algorithm. Therefore,
the maximal matching that is found must cover at least a 1/2L fraction of the unassigned vertices.
It follows that after k iterations, at most(

1− 1

2L

)k
n ≤ e−k/2Ln

nodes will remain unassigned.
Setting k = 2L log(n) gives a good chance that no nodes remain unassigned, and so the algo-

rithm produces a NAF. Clearly, since the digraph for the NAF is contained within the union of k
matchings, this is an upper bound on the maximum load. Since each run of the maximal matching
algorithm succeeds with probability 1 − O(1/n2), a union bound establishes the high-probability
bound.

More generally, if a partial NAF exists, that covers a (1−ε) fraction of the nodes, with maximum
load L, and we run Algorithm 4 with k = 2L log(1/δ), it should, with high proobability, produce a
partial NAF that covers at least (1− eps)(1− δ)n nodes, and has maximum load k
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