1. (16 pts.) Let L, L_1, and L_2 be languages over $\Sigma = \{0, 1\}$, and suppose that L can be written as $L = L_1 \cap L_2$ (i.e., L is equal to the intersection of L_1 and L_2). Prove or disprove: If L is regular, then it must be that at least one of L_1 and L_2 is regular.

Answer: False. Take L_1 to be any nonregular language, and let L_2 be its complement, which also must nonregular since the regular class is closed under complement. However, $\emptyset = L_1 \cap L_2$ is regular.

2. (17 pts.) Demonstrate that the language

$$L = \{0^n 1^m 0^m \mid n, m \geq 0\}$$

over $\Sigma = \{0, 1\}$ is not regular.

Answer

L cannot be pumped. Suppose to the contrary, and let p be as required by the pumping lemma for regular languages. Consider $s = 1^p 0^p$ (i.e., $n = 0$, and s is in L) and observe that y can contain only 1's. Hence pumping y either up or down results in an unequal number of 1's and terminating 0's, and hence in a string that is not in L.

3. (17 pts.) Again consider the language

$$L = \{0^n 1^m 0^m \mid n, m \geq 0\}$$

over $\Sigma = \{0, 1\}$. Let s be any string in L of length at least 2. Show how s can be divided into $uvwxy$ so as to satisfy the pumping lemma (with $p = 2$) for CFL's.

Answer

If $n > 0$, simply let v be the first 0 in s, with uxy empty and z the rest of the string. Otherwise, $m > 0$, so let v be the last 1, x empty, and y the next 0.

4. (22 pts) Let M_1 be an arbitrary NFA with input alphabet Σ. Construct a second NFA M_2 such that both:

- $L(M_2) = L(M_1)$, and
- M_2^c has as its language Σ^*,

where M_2^c is the "complement machine" of M_2 formed by reversing the accept and reject states of M_2.

Answer

To form M_2, simply add an e-transition from q_0 into new state q_{new}, where q_{new} is not an accepting state of M_2. q_{new} also has transitions defined to loop back to itself on each input symbol. Clearly, M_2 satisfies (a) (the modification does not change the set of strings accepted, since choosing to take the new e-transition out of q_0 leads to a rejecting path). (b) is satisfied since q_{new} is an accepting state of the complement machine M_2^c, and hence taking the new e-transition out of q_0 allows M_2^c to accept all strings.
5. (28 pts) Describe a PDA with input alphabet $\Sigma = \{a, b\}$ whose language is

$$L = \{ w \mid w \text{ is } (a, b)^* \text{ and } w \text{ contains exactly three more } a\text{'s than } b\text{'s } \}.$$

Rather than giving state transitions, you may describe the PDA in terms of pushing and popping the stack, checking the top symbol on the stack, checking for stack empty, and checking for end of input. Argue that the language of your PDA is as required.

ANSWER
The PDA is identical to the PDA in Exercise Set 3, Question 2, except that after our new machine has read all its input it performs a sequence of e-transitions (null input) to check that exactly 3 a’s are on the stack at this point. In particular, there are new transitions $\delta(q, e, a) = (q_{pop1}, e)$ from each q in the original machine’s Q (or just from the original machine’s final accept states). Similarly, we have null transitions from new q_{pop1} to new q_{pop2} provided there is an ’$a’ on the stacktop, and same for q_{pop2} to new q_{pop3}. If we arrive in q_{pop3} and $\$ is on top of stack, we go into q_{new_accept}, i.e., $\delta(q_{pop3}, e, \$) = (q_{new_accept}, e)$. This q_{new_accept} is the only accepting state of the new machine, and it has no transitions out. Note that since there are no transitions out of the q_{popj} that can read an input, if the new machine goes into these states prior to end of input, the path is not an accepting path.

The invariant from the original machine still holds up to the point of taking a new null transition into q_{pop1}. Consequently, at the time this null transition is taken, the number of a’s on the stack represents the surplus of a’s in the input. The new null transitions then verify that this number is 3.