
How much backtracking does it take to color random graphs?

Rigorous results on heavy tails

Haixia Jia Cristopher Moore

hjia@cs.unm.edu moore@cs.unm.edu

Computer Science Department Computer Science Department

University of New Mexico University of New Mexico

Albuquerque NM 87131 Albuquerque NM 87131

December 3, 2004

Abstract

Many backtracking algorithms exhibit heavy-tailed distributions, in which their running time is often
much longer than their median. We analyze the behavior of two natural variants of the Davis-Putnam-
Logemann-Loveland (DPLL) algorithm for Graph 3-Coloring on sparse random graphs G(n, p = c/n).
Let Pc(b) be the probability that DPLL backtracks b times. First, we calculate analytically the probability
Pc(0) that these algorithms find a 3-coloring with no backtracking at all, and show that it goes to zero
faster than any analytic function as c → c∗ = 3.847... Then we show that even in the “easy” phase
1 < c < c∗ where Pc(0) > 0, including just above the emergence of the giant component, the expected
number of backtracks is exponentially large with positive probability. To our knowledge this is the first
rigorous proof that the running time of a natural backtracking algorithm has a heavy tail for graph
coloring. In addition, we give experimental evidence and heuristic arguments that this tail takes the
form Pc(b) ∼ b−1 up to an exponential cutoff.

1 Introduction

Many common search algorithms for combinatorial problems have been found experimentally to exhibit a
heavy-tailed distribution in their running times; for instance, in the number of backtracks performed by
Davis-Putnam-Logemann-Loveland (DPLL) algorithms on constraint satisfaction problems such as Satis-
fiability, Graph Coloring, and Quasigroup Completion [11, 12, 13, 14, 16]. In such a distribution, with
significant probability, the running time is much larger than its median, and indeed the expectation can be
exponentially large even if the median is only polynomial. These distributions typically take a power-law
form, in which the probability that the algorithm backtracks b times behaves as Pc(b) ∼ b−γ for some expo-
nent γ. One consequence of this is that if a run of the algorithm has taken longer than expected, it is likely
to take much longer still, and it would be a good idea to restart it (and follow a new random branch of the
tree) rather than continuing to search in the same part of the search space.

For Graph 3-Coloring, in particular, these heavy tails were found experimentally by Hogg and Williams [14]
and Davenport and Tsang [8]. At first, it was thought that this heavy tail indicated that many instances are
exceptionally hard. A clearer picture emerged when Gomes, Selman and Crato [12] found that the running
times of randomized search algorithms on a typical fixed instance show a heavy tail. In Figure 1 we show our
own experimental data on the distribution of the number of backtracks for two versions of DPLL described
below. In both cases the log-log plot follows a straight line, indicating a power law. As n increases, the
slopes appear to converge to −1, and we conjecture that Pc(b) ∼ b−1 up to some exponential cutoff.

A fair amount of theoretical work has been done on heavy tails, including optimal restart strategies [15]
and formal models [5]. However, there have been relatively few rigorous results establishing that these tails

1

0 5 10 15 20 25
−20

−15

−10

−5

0

5

10
Distribution of backtracks for algorithm A

lo
g

pr
ob

ab
ili

ty

log2 of number of backtracks

n=50
n=100
n=200

0 5 10 15 20 25
−25

−20

−15

−10

−5

0

5

10
Distribution of backtracks for algorithm B

log2 of number of backtracks

lo
g

pr
ob

ab
ili

ty

n=50
n=100
n=200

Figure 1: Log-log plots of the distribution of the number of backtracks Pc(b) for the two DPLL algorithms
A and B described in the text on random graphs with c = 3.5. The data appears to follow a power law
Pc(b) ∼ b−1 in the limit n → ∞.

exist. The most desirable result would be a proof, for some natural probability distribution over problems
of size n, that Pc(b) ∼ b−γ for some γ in the limit of large n and b. To our knowledge, no such result has
been obtained. In this paper, we show a weaker result, namely that b is exponentially large with positive
probability, even for “easy” random problems where b = 0 with positive probability (and, if Pc(0) > 1/2,
the median value of b is zero). One related result is Achlioptas, Beame, and Molloy [1], who showed using
lower bounds on resolution proof complexity that DPLL takes exponential time on random instances of
3-SAT, even for some densities below the satisfiability threshold; our results appear to be the first on Graph
Coloring, and we rely on much simpler reasoning.

Our results hold for two variants of DPLL. Both of them are greedy, in the sense that they branch on a
vertex with the smallest available number of colors; in particular, they perform unit propagation, in which
any 1-color vertex is immediately assigned that color. They are distinguished by which 2-color vertex they
branch on when there are no 1-color vertices. In algorithm A, the vertices are given a fixed uniformly random
ordering, and we branch on the 2-color vertex of lowest index. In algorithm B, we choose a vertex uniformly
at random from among the 2-color vertices. In both variants, we try the two possible colors of the chosen
2-color vertex in random order. (How we branch on 3-color vertices is immaterial, since there is always a 1-
or 2-color vertex while the algorithm is coloring the giant component.)

Our main result is the following:

Theorem 1.1 For algorithms A and B, let b be the number of times the algorithm backtracks on G(n, c/n).
If 1 < c < c∗ = 3.847..., there exist constants β, q > 0 such that Pr[b > 2βn] ≥ q, and so E[b] = Θ(2βn).

Although this theorem does not show that the tail of Pc(b) ∼ b−1, we believe our arguments can be refined
to do that. Along the way, we calculate the precise probability that these algorithms succeed with no
backtracking at all:

Theorem 1.2 Let 1 < c < c∗ = 3.847... For algorithms A and B, the probability algorithm they color
G(n, c/n) without backtracking is

Pc(0) = exp

(

−
∫ t0

0

dt
cλ2

2(1 − λ)(2 + λ)

)

+ o(1) (1)

where t0 is the smallest positive root of 1 − t − e−ct = 0.

2

We note below that Pc(0) approaches zero faster than any analytic function as c approaches c∗, and comment
on the fact that this “essential singularity” makes it very difficult to locate the threshold at which such
heuristics succeed using numerical experiments.

Our work is motivated partly by recent results of Ein-Dor and Monasson [10]. Suppose the expected
amount of backtracking takes the form exp(ω(c)n + o(n)); then, based on an earlier analysis of 3-SAT by
Cocco and Monasson [7], they estimate ω(c) by modeling the search tree with a time-dependent branching
process. The values of ω(c) they obtain using this approach agree very well with experiment, especially when
the average degree is large. Beame, Culberson, Mitchell and Moore [4] proved for some DPLL algorithms
that ω(c) = O(1/c2) in the limit of large c, in agreement with a scaling argument of [10]. However, their
arguments do not apply as well for small values of c, below the 3-colorability threshold.

The idea behind Theorem 1.1 is very simple. Partway down a random branch of the tree, with positive
probability, the subgraph induced by the remaining vertices contains a small subgraph, which is not list-
colorable given its remaining colors; say, a triangle composed of the vertices whose available colors are red
and green. No matter what the algorithm does from that point on, it will encounter this subgraph over
and over again, vainly recoloring other vertices in the hope that it will go away. Thus every branch of this
subtree will fail, and the algorithm is forced to backtrack to before this subgraph’s neighbors were colored.
The result is that there is a strong positive correlation between the events that two different branches of the
search tree fail, and so an exponentially large number of branches can fail even though a given one succeeds
with positive probability.

We will rely heavily on the fact that for both these variants of DPLL, a single random branch is equivalent
to a linear-time greedy heuristic, 3-gl, analyzed by Achlioptas and Molloy [2]. They showed that if 1 < c < c∗

where c∗ = 3.847... then 3-gl colors G(n, c/n) with positive probability. (If c < 1 then the graph with high
probability has no bicyclic component and 3-gl colors it with probablity 1.) This shows that Pc(0) > 0,
i.e., with positive probability these variants of DPLL succeed with no backtracking at all. However, as our
results show, the expected amount of backtracking is exponentially large even for random graphs with c in
this “easy” regime, and indeed just above the appearance of the giant component at c = 1.

The paper is organized as follows. In Section 2, we prove Theorem 1.2 by looking closely at 3-gl using
the techniques of Achlioptas and Moore [3], grouping the steps of the algorithm into rounds, and exactly
analyzing the correlations between the 1-color vertices colored in a given round. We also use generating
functions to calculate the distribution of the number of 1-color vertices at a given time.

In Section 3 we prove Theorem 1.1 along the lines alluded to above. First we show that a triangle
of red-green vertices appears with positive probability, dooming an entire subtree; then, we show that for
both variants of DPLL, with positive probability the number of leaves of this subtree is exponentially large.
Finally, in Section 4 we conclude and give some intuition about how Theorem 1.1 might be strengthened to
prove that the number of backtracks is distributed as a power law.

We use red, green, and blue to denote our three colors. All asymptotics are in the limit of large n, and
we omit floors and ceilings.

2 The probability of success without backtracking

2.1 3-gl and differential equations

Achlioptas and Molloy [2] analyzed a greedy list-coloring heuristic they call 3-gl. Each vertex v has a list
`(v) of available colors, which are removed when they are assigned to its neighbors. We call v a q-color vertex
if |`(v)| = q and every vertex is 3-color vertex at the beginning. Then 3-gl works as follows:

1. If there are any 1-color vertices, choose one at random and assign its available color to it.

2. Else if there are 2-color vertices, choose one v at random, and assign it a random color c ∈ `(v).

3. Else choose a 3-color vertex at random and assign a random color to it.

3

Everything outside the giant component of G(n, c/n) with high probability consists of trees and unicyclic
components, and it is easy to see that 3-gl succeeds on such components. Therefore, we focus on the phase
of 3-gl which colors the giant component, during which there is always a 1- or 2-color vertex. We refer
to steps of type (1) and (2) above, in which we color 1-color and 2-color vertices, as “forced” and “free”
respectively. It will be useful to follow Achlioptas and Moore [3] and group steps into “rounds,” where each
round consists of a free step followed by a cascade of forced steps.

Since the first branch of both our variants of DPLL is equivalent to a run of 3-gl, the probability Pc(0)
that they color the graph with no backtracking at all is the same as the probability that 3-gl succeeds, i.e.,
that it colors the entire graph without creating a 0-color vertex. This in turn is the probability that all of
3-gl’s rounds succeed.

Now, define the state of a round as the number of uncolored vertices of each color list, i.e., the number of
3-color vertices and the number of 2-color vertices of each color pair, present at the beginning of that round
(by definition there are no 1-color vertices present). By the principle of deferred decisions, the uncolored part
of the graph is uniformly random in G(n′, p) where n′ is the total number of uncolored vertices. Therefore,
the probability that a given round fails is a function only of its state. Moreover, if we condition on the state
of each round, the events that various rounds fail become independent, and Pc(0) is simply the product over
all rounds of the probability that they succeed.

As it turns out, the probability that a given round succeeds is a continuous function of its state, so to
calculate Pc(0) within o(1) it is sufficient to estimate the state to within o(n). The technique of differential
equations, and in particular Wormald’s theorem [17], allows us to do this. Let S2(R) and S3(R) be the
number of 2- and 3-color vertices at the beginning of the R’th round. Then, the behavior of 3-gl on
G(n, c/n) can be modeled with the following set of differential equations in the “rescaled” variables s3 and
s2, where the variable of integration is r = R/n [2, 3]:

ds3

dr
= − cs3

1 − λ
, s3(0) = 1

ds2

dr
=

cs3 − 1

1 − λ
, s2(0) = 0 (2)

where

λ =
2

3
cs2 .

Specifically, let s3(r) and s2(r) be the solutions to (2), and let r0 be the smallest positive root of s2(r) = 0.
Then the following event holds with high probability: S3(R) = s3(R/n)n+o(n) and S2(R) = s2(R/n)n+o(n),
with s2(R/n)n/3 + o(n) 2-color vertices of each color pair, uniformly for all R with 0 < R/n < r0. Since
Achlioptas and Molloy [2] showed that 3-gl succeeds with positive probability, this event holds with high
probability even when we condition on the event that 3-gl succeeds.

We briefly review how the differential equations (2) are derived. The idea is that each round can be
modeled by a branching process in which coloring a vertex v causes some of v’s 2-color neighbors to become
1-color vertices. A priori we have a 3-type branching process, consisting of the 1-color vertices of the three
colors, with a 3× 3 transition matrix M whose entries depend on the number of 2-color vertices of the three
color pairs; for instance, the expected number of red 1-color vertices created by coloring a vertex blue is p
times the number of red-blue vertices. This results in a system of four coupled differential equations, which
we omit here. However, since both this system and the initial conditions are symmetric under permutations
of the colors, its trajectory is symmetric as well, and we can reduce it to the smaller system (2). In that
case there are with high probability s2n/3 + o(n) 2-color vertices of each color pair, so we have

M =
c

3

0 s2 s2

s2 0 s2

s2 s2 0

 =
1

2

0 λ λ
λ 0 λ
λ λ 0

 . (3)

and M ’s only nonzero eigenvalue is λ, the total expected number of 1-color vertices created per step.

4

If λ < 1 this branching process is subcritical, and the expected number of initially 2-color vertices colored
during a round is 1/(1−λ)−o(1). Here o(1) includes the probability that the graph induced by these vertices
is not a tree (including the probability that a 0-color vertex is created and the round fails). These vertices
have an expected number pS3/(1 − λ) − o(1) of 3-color neighbors; only o(1) of these become 1- or 0-color
vertices, and the rest become 2-color vertices. Rescaling according to Wormald’s theorem then yields the
differential equations (2).

To solve (2), it is convenient to change the variable of integration from r to t, where T = tn is the number
of steps (free and forced) taken so far. Using dt/dr = 1/(1− λ), this gives the original differential equations
derived in [2]:

ds3

dt
= −cs3, s3(0) = 1

ds2

dt
= cs3 − 1, s2(0) = 0 (4)

The solution to (4) is easily seen to be

s3(t) = e−ct, s2(t) = 1 − t − e−ct (5)

Maximizing s2(t) shows that λ < 1 for all t if and only if c < c∗ where c∗ = 3.847... is the smallest positive
root of c − ln c = 5/2. Using the −1st branch of Lambert’s function, defined as W (x) = y where y = xex,
we can write c∗ = −W−1(−e−5/2).

The number of rounds performed after T steps is with high probability r(T/n)n + o(n), where

r(t) =

∫ t

0

dt (1 − λ) =
2

3

(

1 − e−ct
)

+

(

1 − 2c

3

)

t +
c

3
t2 . (6)

We will use this in the proof of Theorem 1.1 below.

2.2 Proof of Theorem 1.2

In this section we use the branching process associated with 3-gl to calculate the probability that a given
round succeeds. As we argued above, conditioning on the state at the beginning of each round makes the
events that they succeed independent. Taking the product of these probabilities then gives (1) and proves
Theorem 1.2.

Lemma 2.1 Suppose that the state of a round R contains s2n/3 + o(n) 2-color vertices of each color pair,
where λ ≡ (2/3)cs2 < 1. Then the probability that R succeeds is

qsuccess(r) = 1 − f(λ)

n
+ o(1/n) (7)

where

f(λ) =
cλ2

2(1− λ)2(2 + λ)
. (8)

Proof. We associate R with a tree T as follows: let T ’s edges consist of the pairs u, v such that coloring
u removes a color from `(v). Then T spans the subgraph induced by the vertices colored, plus any 0-color
vertices created, during R. We will say that R generates T .

Now, the probability that R fails is clearly a function of the tree it generates, and the probability it
generates a given tree is a function only of its state. Since λ < 1, the branching process corresponding to R
is subcritical, and arguments analogous to [3] show that the probability that R generates a given tree differs
by o(1) from the probability that the branching process generates a tree of the same type. This probability in
turn is a continuous function of the entries of its transition matrix, and therefore of λ. Finally, since the size
t of the tree generated by a subcritical branching process has an exponential tail, its second moment E[t2]

5

is finite; since R fails with probability at most pt2 = O(t2/n), averaging over all trees gives a probability of
failure Θ(1/n), justifying the scaling inherent in (7).

We now calculate f(λ), i.e., n times the probability that a round fails, within the branching process
model. First, suppose a round starts (on its free step) by coloring a vertex red. Then, using (3), the
expected number of 1-color vertices of each color generated by the round is [3]

(1 − M)−1 ·

1
0
0

 =
1

(1 − λ)(2 + λ)

2− λ
λ
λ

i.e., (2− λ)/((1− λ)(2 + λ)) red vertices (including the initial one) and λ/((1− λ)(2 + λ)) each of the other
two colors. (Note that the total expected number of vertices is 1/(1−λ), but their colors are correlated with
the color of the initial vertex.)

Now, it is not the case that the probability of failure in a round is p times the number of pairs of 1-color
vertices with the same color in T . For instance, if a red 1-color vertex u is colored before v becomes a red
1-color vertex, u and v cannot be connected, since if they were v would have become a 1-color vertex (of
a different color) when we colored u. The only “dangerous” pairs where coloring u might make v a 0-color
vertex are those where v is present, but not yet colored, when we color u.

It is easy to see that whether or not a round fails does not depend on the order in which we color the
1-color vertices (although which vertex becomes a 0-color vertex does). Therefore, although 3-gl chooses
from the 1-color vertices randomly, we can assume instead that we always color the youngest 1-color vertex,
and thus perform a depth-first traversal of the tree T . A little reflection shows that the dangerous pairs are
then those u, v where v is an older sibling of u, an “uncle” which is older than u’s parent, or a great-uncle
older than u’s grandparent, and so on. In Figure 2 we show part of a round, and connect the dangerous
pairs with dotted lines. If there are D such pairs, the expected probability that the round succeeds is then
E[(1 − p)D] = 1 − cE[D]/n + o(1), so f(λ) = cE[D].

Figure 2: The dangerous pairs in a round. The root is the vertex chosen on the free step, and siblings are
ordered with the youngest on the left.

Each vertex v in the branching process has a number of children m which is Poisson-distributed with
mean λ, and the number of dangerous pairs below v includes those below each of its children. In addition,
if v is red, its children are green and blue; given a pair of siblings x and y where x is younger, the number
of additional dangerous pairs is either the number of green descendants at or below x or the number of blue
ones, depending on y’s color. Since the expected number of green or blue descendants at or below a green or
blue vertex is 2/((1−λ)(2 + λ)), y takes each of these colors with probability 1/2, and the expected number
of pairs of siblings is E[

(

m
2

)

] = λ2/2, we have

E[D] = λE[D] +
1

2

λ2

2

2

(1 − λ)(2 + λ)

6

and so

E[D] =
λ2

2(1 − λ)2(2 + λ)

Setting f(λ) = cE[D] gives (8) and completes the proof. �

Lemma 2.1 then implies the following.

Lemma 2.2 Let 1 < c < c∗ = 3.847... The probability that 3-gl succeeds on G(n, c/n), and that algorithms
A and B color G(n, c/n) without backtracking, is

Pc(0) = exp

(

−
∫ r0

0

drf(λ(r))

)

+ o(1) (9)

where f(λ) is given by (8), λ(r) = (2/3)cs2(r), s2(r) is the solution of (2), and r0 is the smallest positive
root of s2(r) = 0.

Proof. Given Lemma 2.1 and including the o(1) probability that the state is not within o(n) of that predicted
by the differential equations for all r, we can write

Pc(0) =

(

∏

R

qsuccess(R/n)

)

+ o(1)

=
∏

R

exp

(

−f(λ(r))

n
+ o(1/n)

)

+ o(1)

= exp

(

− 1

n

∑

R

f(λ(R/n))

)

+ o(1)

= exp

(

−
∫ r0

0

drf(λ(r))

)

+ o(1) .

In the second line we used ln(1 − x) = −x + O(x2), and in the last line we used the fact that f(λ(r)) is
bounded and differentiable as long as λ(r) < 1. �

Finally, we obtain (1) from (9) by changing the variable of integration from r to t. Since dt/dr = 1/(1−λ),
this gives

Pc(0) = exp

(

−
∫ t0

0

dt
cλ2

2(1 − λ)(2 + λ)

)

+ o(1) . (10)

Here t0 is the time at which we complete the giant component, or equivalently, the first time after we start
coloring the giant component at which the number of 2-color vertices becomes zero. Using (5), this is the
smallest positive root of

s2(t) = 1 − t − e−ct = 0 (11)

completing the proof of Theorem 1.2. �

We have not found a closed form for the integral in (1). However, Figure 3 compares values of Pc(0)
obtained by integrating (1) numerically with experimental data for graphs of size n = 104, and they are in
excellent agreement.

2.3 Another approach: the distribution of 1-color vertices

In this section, we look at a heuristic calculation of Pc(0) in which we consider the steps of 3-gl one at a
time, rather than in rounds. This method is analytically simpler than that in the previous section. However,
to make it rigorous, we would need to deal with the fact that the events that a pair of nearby steps fail are
positively correlated if they occur in the same round; for instance, they are both more likely to fail if that

7

2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Probability of success without backtracking

Th
e

su
cc

es
s

ra
te

C

Theoretical
Experimental

Figure 3: A comparison of our calculation (1) of the probability Pc(0) of success without backtracking (the
solid line) with experimental results (the stars) as a function of c. The experiments consisted of 104 trials
for each value of c, on graphs of size n = 104.

round colors many vertices. (One way to remove this correlation would be to note that the probability that
more than one step in a given round fails is O(polylog(n)/n2), so taking a union bound over the O(n) steps,
with probability 1 − o(1) no two steps fail in the same round.)

We start by calculating the probability distribution p(x) of the number of 1-color vertices that are present
at a given time, since the probability that two of these are neighbors is essentially p times its second moment.
If we think of 3-gl in single steps rather than in rounds, Achlioptas and Molloy [2] showed that x obeys a
biased random walk, where at each step we first decrement x if it is positive (since we color a 1-color vertex
if one exists) and then increase it by a random variable y which is Poisson-distributed with mean λ (since
we create y new 1-color vertices).

Since λ varies continuously with t, as n → ∞ we can assume that λ is roughly constant over a large
number of steps, in which case p(x) will be close to the stationary distribution of this biased random walk.
We can calculate p(x) using its generating function

g(z) =

∞
∑

x=0

p(x)zx

In particular, g(0) = p(0) is the probability that there is no 1-color vertex, i.e., that the current step is a
free step. Since the expected change in x, which is p(0)− 1+λ, must be zero for the stationary distribution,
we have p(0) = 1 − λ.

Decrementing x by 1 if x > 0 corresponds to dividing g(z) by z except for the z0 term, and adding y to
x corresponds to multiplying g(z) by the generating function of the Poisson distribution,

∞
∑

y=0

e−λλy

y!
zy = eλ(z−1) .

Thus the effect of each step on g(z) is

g(z) 7→
(

g(z) − p(0)

z
+ p(0)

)

eλ(z−1) =
(

g(z) + (1 − λ)(z − 1)
)eλ(z−1)

z

8

and solving for the stationary distribution gives

g(z) =
(1 − λ) (z − 1)

ze−λ(z−1) − 1
.

The expected number of 1-color vertices present on a given step is then

E[x] = g′(1) =
λ(2 − λ)

2(1 − λ)
.

and the expected number of 1-color vertices other than the one colored on a given step is

E[x] − 1 + p0 = E[x] − λ =
λ2

2(1− λ)
(12)

any of which could conceivably become a 0-color vertex on that step.
However, the colors of the existing 1-color vertices are correlated with each other, so we can’t simply

divide (12) by 3. Thinking back to the tree T generated by a round, if two colors are k steps apart in the
tree, then the probability that they are the same color is given by

F (k) =
1 − F (k − 1)

2
=

1

3

(

1 + 2

(

−1

2

)k
)

e.g. F (0) = 1, F (1) = 0 (since edges in T only connect 1-color vertices of different colors), F (2) = 1/2, and
so on.

In a branching process of branching ratio λ, the average number of vertices k steps away from a given
vertex is λk. Summing over all k ≥ 1 and dividing by 2 since we are counting each pair of vertices twice, the
expected number of partners forming a dangerous pair with the vertex colored on a given step is

1

2

∞
∑

k=1

λk F (k) =
1

6

∞
∑

k=1

λk +
1

3

∞
∑

k=1

(

−λ

2

)k

=
1

6

λ

1 − λ
− 1

3

λ

2 + λ

=
λ2

2(1 − λ)(2 + λ)
.

Multiplying this by p = c/n and integrating over the steps 0 < t < t0 gives the same integral for the expected
number of 0-color vertices created while coloring the giant component as in (1).

2.4 The singularity at c
∗ and the difficulty of numerical experiments

As c approaches c∗, the maximum value of λ approaches 1, and the integral in (1) diverges. To isolate the
nature of this divergence, we expand the integrand in terms of partial fractions, which gives

− lnPc(0) =
c

6

∫ t0

0

dt

(

1

1 − λ
− 2 + 3λ

2 + λ

)

=
c

6

∫ t0

0

dt

1 − λ
− O(1) . (13)

Given (4) and (5), s2 and λ are maximized at tmax = (ln c)/c. Expanding λ as a Taylor series in t around
tmax gives

∫ t0

0

dt

1 − λ
≈
∫

dt

1 − λmax − (1/2)λ′′(t − tmax)2
=

π√
1− λmax

√

−λ′′/2
(14)

where

λ′′ = −2

3
c2

9

and

λmax =
2

3
(c − ln c − 1)

Let c = c∗ − ε where c∗ is the unique positive root of c − ln c = 5/2 [2]. To leading order in ε, we have

1 − λmax ≈ ε
∂λmax

∂c

∣

∣

∣

∣

c=c∗
=

2(c∗ − 1)

3c∗
ε

and (13) and (14) give

− ln Pc(0) =
A√
ε
− O(1)

where

A =
π

2

√

c∗

2(c∗ − 1)
≈ 1.29 .

Thus the probability of success is given by

lim
ε→0

Pc(0) = exp(−A/
√

ε) Θ(1)

which goes to zero faster than any analytic function as ε → 0. In particular, all of its derivatives with respect
to c are zero at c∗.

While the threshold c∗ below which 3-gl succeeds with positive probability can be determined analyt-
ically, more sophisticated heuristics often require numerical experiments — if only to confirm a long and
involved journey through a large system of coupled differential equations. However, since Pc(0) approaches
zero very rapidly as c → c∗, the number of trials we have to do to confirm that 3-gl succeeds with positive
probability increases very rapidly. Using methods from statistical physics, Deroulers and Monasson [9] found
the same critical behavior for heuristics on random 3-SAT; we expect a similar pattern for other heuristics,
such as the smoothed Brelaz heuristic analyzed by Achlioptas and Moore [3] which succeeds for c < 4.03.

To illustrate this, in Table 1 we show Pc(0) for various values of c. Note that to measure c∗ to one, two,
or three decimal digits, we need to do roughly 102, 106, and 1028 trials! On a practical level, this means that
numerical experiments will systematically underestimate the threshold below which a heuristic of this type
succeeds with positive probability.

c − ln Pc(0) Pc(0)
3.8 4.569 0.0104
3.84 13.654 1.176× 10−6

3.847 63.467 2.733× 10−28

Table 1: The rapid decrease of Pc(0) as c approaches c∗ ≈ 3.8474.

3 Exponential backtracking with positive probability

In this section we prove Theorem 1.1, establishing rigorously that the number of backtracks of DPLL on
random graphs with degree 1 < c < c∗ has a heavy tail.

Proof of Theorem 1.1. We focus on algorithm A first, in which each vertex is given an index in a fixed
random order. Let t1 be a constant such that 0 < t1 < t0 where t0 is given by (11). Run the algorithm
for t1n steps, and then continue until the end of the current round (which takes with high probability o(n)
more steps), conditioning on not having created a 0-color vertex so far. This is equivalent to running 3-gl

conditioned on its success, so as discussed above, at the end of these t1n + o(n) steps there are with high
probability s3(t1)n+o(n) 3-color vertices and s2(t1)/3+o(n) 2-color vertices of each color pair, where s3(t1)

10

and s2(t1) are given by (5). In addition, the uncolored part of the graph G′ is uniformly random in G(n′, p)
where n′ is the total number of uncolored vertices.

Let us call a triangle bad if it is composed of 2-color vertices whose allowed colors are red and green, it is
disconnected from the rest of G′, and the indices of its vertices are all greater than the median index of the
2-color vertices in G′. Now, let E1 be the event that G′ contains exactly one bad triangle. It is easy to see
that the distribution of the number of bad triangles is within o(1) of a Poisson distribution with expectation

m =
1

8

(

s2(t1)n/3

3

)

p3(1 − p)3s3(t1)n =
c3s2(t1)

3 e−3cs3(t1)

1296
= Θ(1)

Then E1 occurs with probability q1 = me−m + o(1) > 0.
Let us call this triangle ∆. It is important to us in the following ways:

1. It is not 2-colorable, so every branch of this subtree will fail, and the algorithm will be forced to
backtrack at least to the (t1n)th step and uncolor one of ∆’s blue neighbors.

2. Since ∆ is isolated from rest of G′, we will find this contradiction only if we choose one of ∆’s vertices
from the pool of 2-color vertices; we will not be led to ∆ by a chain of forced steps.

3. When running A, we won’t choose any of ∆’s vertices until we run out of 2-color vertices of lower index,
and this will not happen until we have taken at least s2(t1)n/2 more steps.

In other words, ∆ will cause the entire subtree starting with these t1n steps to fail, but we won’t find out
about it until we explore the tree Θ(n) more deeply, and visit an exponential number of nodes.

To formalize this, let t2 be a constant such that 0 < t2 < s2(t1)/2, and consider running the algorithm
for another t2n steps. This produces a search tree of depth t2n, where each internal node corresponding
to a forced or free step has one or two children respectively. If we choose a random branch of this tree by
following the two branches with equal probability each time we come to a free step, this is equivalent to
running 3-gl on the graph G′′ = G′ \∆. Each leaf of the tree corresponds either to creating a 0-color vertex
and backtracking, or having run for t2n steps without creating a 0-color vertex. We call these “bad” and
“good” leaves respectively.

We will abuse notation by letting G(n′− 3, p) denote a random graph with three fewer red-green vertices
than G′. Once we condition on the number of uncolored vertices of each color list in G′ and on the event that
E1 occurs, G′′ is uniformly random in G(n′ − 3, p) except for the condition that it has no bad triangles (it is
easy to see this given the structure of G(n, p) as a product space). The progress of 3-gl on G(n′−3, p) is still
given by the differential equations (4), since removing three vertices changes the rescaled variables by o(1).
Since there is one free step per round, the number of free steps performed by t2n steps of 3-gl on G(n′−3, p)
is with high probability αn + o(n) where α = r(t2) − r(t1) and r(t) is given by (6). But, the event that
G(n′ − 3, p) has no bad triangles occurs with probability e−m + o(1) = Θ(1), so conditioning on this event
the number of free steps performed by 3-gl on G′′ is still with high probability αn + o(n). Furthermore,
3-gl succeeds on G(n′ − 3, p) for t2n steps with probability at least Pc(0), and since this success implies the
condition that G(n′ − 3, p) has no bad triangles, 3-gl succeeds on G′′ with probability P ≥ Pc(0).

Let us transform the search tree to a binary tree T with the same number of leaves, by replacing each
chain of forced steps with a single edge, and leaving just the internal nodes corresponding to free steps. The
depth of a leaf is now the number of free steps on the way to it, and a run of 3-gl samples a given leaf
at depth i with probability 2−i. Let M be the average depth of a good leaf according to this probability
distribution; then with high probability M = αn + o(n), and the total probability of the good leaves is P .

We wish to prove a lower bound on the number of leaves. If T were perfectly balanced, this would be
easy; but unfortunately M is not exponentially concentrated, so the depth of the leaves can vary significantly.
Therefore, we employ the following lemma.

Lemma 3.1 Let T be a binary tree. Assign a probability 2−i to each leaf at depth i, and label each leaf
“good” or “bad.” Let M be the average depth of the good leaves, and let P be their total probability. Then
there are at least P 2M good leaves.

11

Proof of Lemma 3.1. Let N be the number of good leaves; we prove the lemma by induction on the size
of the tree. For the base case, a tree consisting of a single vertex has P = 1, M = 0 and N = 1 if it is good,
and P = 0 and N = 0 if it is bad.

Now assume inductively that the lemma is true for T ’s subtrees. Let N` and Nr denote the number of
good leaves of the left and right subtrees, M` and Mr their average depth (measured from the subtrees’
roots) and P` and Pr their conditional probabilities. Then we have N = N` + Nr, P = (P` + Pr)/2, and

M =
P`M` + PrMr

2P
+ 1 .

Let p, q ≥ 0 and p + q = 1. Then for any A, B ≥ 0 we have

pA + qB ≥ ApBq (15)

i.e., the weighted arithmetic mean is at least as large as the weighted geometric mean. Then taking p =
P`/(2P) and q = Pr/(2P), we have

N = N` + Nr

≥ P` 2M` + Pr 2Mr

≥ (2P) 2(P`M`+PrMr)/(2P)

= P 2M .

�

Lemma 3.1 and the above arguments imply that with probability q1 − o(1), A will backtrack at least
Pc(0) 2αn−o(n) = 2αn−o(n) times. Taking any q < q1 and any β < α completes the proof for A.

The proof for algorithm B is similar. We remove the condition on ∆’s indices (removing the factor of 1/8
from m above). However, the branches of T can now fail either because

1. 3-gl creates a 0-color vertex while running on G′′, or

2. the algorithm chooses to branch on one of ∆’s vertices.

Let smin
2 = mint1≤t≤t2 s2(t). Then the probability that one of ∆’s vertices is chosen on a given step is with

high probability at most 3/(smin
2 n+o(n)), and the probability a branch fails for the second reason is at most

3t2/smin
2 + o(1). The probability of the good leaves is then P ≥ Pc(0) − 3t2/smin

2 − o(1), and by taking t2
sufficiently small we can ensure that P > 0. Thus B also backtracks 2αn−o(n) times with probability q1−o(1).
We again take q < q1 and β < α, and the proof is complete.

4 Discussion

We have shown that DPLL algorithms take exponential time with positive probability for random graphs
G(n, c/n), even in the “easy” range 1 < c < 3.847... where with positive probability they color the graph
with no backtracking at all. This happens because the events that different branches of the search tree fail
are far from independent; since a single bad triangle ∆ dooms an entire subtree to failure, the probability all
its branches fail is positive even though a random branch succeeds with positive probability. The algorithm
then tries to 2-color ∆ an exponential number of times, naively hoping that recoloring other vertices will
render ∆ 2-colorable. In terms of restarts, once ∆ has “spoiled” an entire section of the search space, it
makes more sense to start over with a new random branch.

Experimentally, Figure 1 shows that the distribution of the number of backtracks follows a power law
Pc(b) ∼ b−1. It might be possible to strengthen Theorem 1.1 to prove this power-law behavior in the following
way: suppose for the sake of argument that ∆ appears at a uniformly random depth d between 1 and n, and
that the running time b is exactly 2Ad for some A. Then the probability that b is between 2Ad and 2A(d+1) is

12

1/n, giving a probability density Pc(b) = 1/(2Ad(2A − 1)n) ∼ 1/b. Of course, d is not uniformly distributed,
but any distribution which varies slowly from Θ(1) to Θ(n) would give the same qualitative result. The
difficulty is determining how d is distributed, and then better understanding the distribution of b: however,
bounding b’s variance, say, seems quite challenging. We propose this as a direction for future work.

Acknowledgments

We are grateful to Dimitris Achlioptas, Sinan Al-Saffar, Paul Beame, Tracy Conrad, Michael Molloy, Remi
Monasson, Bart Selman and Vishal Sanwalani for helpful comments and conversations. This work was
supported by NSF grant PHY-0200909 and the Los Alamos National Laboratory. H.J. is supported by a
NSF Graduate Research Fellowship.

References

[1] Dimitris Achlioptas, Paul Beame, and Michael Molloy, “A sharp threshold in proof complexity.” J.
Comp. & Sys. Sci., extended abstract in Proc. 33rd Symp. on Theory of Computing (STOC 2001)
337–346.

[2] D. Achlioptas and M. Molloy, “Analysis of a list-colouring algorithm on a random graph.” Proc. 38th
Foundations of Computer Science (FOCS 1997) 204–212.

[3] D. Achlioptas and C. Moore, “Almost all graphs of degree 4 are 3-colorable.” J. Comp. & Sys. Sci.
67 (2003) 441–471. Extended abstract in Proc. 34th Symp. on Theory of Computing (STOC 2002)
199–208.

[4] P. Beame, J. Culberson, D. Mitchell, and C. Moore, “The resolution complexity of random graph
k-colorability.” Discrete Applied Mathematics, to appear.

[5] H. Chen, C.P. Gomes and B. Selman, ”Formal models of heavy-tailed behavior in combinatorial search.”
Proc. 7th Intl. Conf. on the Principles and Practice of Constraint Programming (CP 2001) 408–422.

[6] C. Coarfa, D.D. Demopoulos, A. San Miguel Aguirre, D. Subramanian, and M.Y. Vardi, “Random
3-SAT: the plot thickens.” Proc. 6th Intl. Conf. on Principles and Practice of Constraint Programming
(CP 2000) 143–159.

[7] S. Cocco and R. Monasson, “Analysis of the computational complexity of solving random satisfiability
problems using branch and bound search algorithms.” Eur. Phys. J. B 22 (2001) 505–531.

[8] A. Davenport and E.P.K. Tsang, ”An empirical investigation into the exceptionally hard problems.”
Proc. Workshop on Constraint-based Reasoning (Florida AI Research Symposium 1995) 46–53.

[9] C. Deroulers and R. Monasson, “Critical behaviour of combinatorial search algorithms, and the unitary-
propagation universality class.” Preprint, cond-mat/0405319.

[10] L. Ein-Dor and R. Monasson, “The dynamics of proving uncolourability of large random graphs I:
symmetric colouring heuristic.” J. Phys. A: Math. Gen. 36 (2003) 11055–11067.

[11] I. Gent, and T. Walsh, “Easy problems are sometimes hard.” Artificial Intelligence 70 (1993) 335–345.

[12] C.P. Gomes, B. Selman and N. Crato, ”Heavy-Tailed Distributions in Combinatorial Search.” Proc.
3rd Intl. Conf. on Principles and Practices of Constraint Programming (CP97) (1997) 121–135.

[13] C.P. Gomes, B. Selman and H.A. Kautz, ”Boosting combinatorial search through randomization.”
Proc. 15th Natl. Conf. on Artificial Intelligence (AAAI) (1998) 431–437.

13

[14] T. Hogg and C.P. Williams, ”The hardest constraint problems: a double phase transition.” Artificial
Intelligence 69(1-2) (1994) 359–377.

[15] M. Luby, A. Sinclair, and D. Zuckerman, “Optimal speedup of Las Vegas algorithms. Info. Proc. Lett.
(1993) 173–180.

[16] B. Selman, H. Kautz, and B. Cohen, “Local search strategies for satisfiability testing.” In D. Johnson
and M. Trick, Eds., DIMACS Series in Discrete Mathematics and Theoretical Computer Science 26
(1993) 521–532.

[17] N.C. Wormald, “Differential equations for random processes and random graphs.” Ann. Appl. Probab.
5(4) (1995) 1217–1235.

14

