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Abstract—

Non-negative Matrix factorization (NMF) has in-
creasingly been used as a tool in signal processing
in the last couple of years. NMF, like independent
component analysis (ICA) is useful for decomposing
high dimensional data sets into a lower dimensional
space. Here, we use NMF to learn the features of
both structural and functional magnetic resonance
imaging (sMRI/fMRI) data. NMF can be applied to
perform group analysis of imaging data and we apply
it to learn the spatial patterns which linearly covary
among subjects for both sMRI and fMRI. We add
an additional contrast term to NMF (called co-NMF)
to identify features distinctive between two groups.
We apply our approach to a dataset consisting of
schizophrenia patients and healthy controls. The re-
sults from co-NMF make sense in light of expectations
and are improved compared to the NMF results. Our
method is general and may prove to be a useful tool
for identifying differences between multiple groups.

I. INTRODUCTION

Non-negative matrix factorization (NMF) is a tool

to split the given data matrix into a product of two

non-negative matrix factors. This process can be used

to identify useful features in the dataset. Another

tool used commonly to find features is independent

component analysis (ICA) [1]. ICA assumes that the

features found are statistically independent [2]. We

will explore the potential of NMF to model spatio-

temporal features across subjects. The use of NMF

is attractive for analysis as it naturally incorporates

the non-negativeness of the images and is quite easily

adapted to learn across subjects. Also, the constraint

of independence among the learnt features is not re-

quired for NMF . This strong assumption of ICA is

thus relaxed for NMF. Adding different constraints to

NMF is relatively straightforward as can be seen by

the wide range of NMF extensions. For example, [3]

extends plain NMF by having the learnt factors to be

convolutive instead of being bilinear and [4] adds a

sparsity constraint on one of the learnt factors.

Our main motivation is to find distinctive features

by group analysis of MRI data using NMF. Its exten-

sion, non-negative tensor factorization (NTF) [5], is

a rich framework to model spatio-temporal patterns

across subjects . NMF algorithms have been previously

applied to fMRI data in [6]. They use it to find a

suitable representation of the data to detect task-

related brain activations. Our goal is to identify fea-

tures distinctive between healthy controls and patients

who have been diagnosed with schizophrenia using a

version of NMF where we explicitly optimize for this.

We call this approach contrast NMF or co-NMF.

Schizophrenia is a disease that involves disruption

of a variety of cognitive functions such as memory,

perception, executive function and emotion. It can

be characterized by disturbances in thought, disor-

ganized speech with poor content, delusions, hallu-

cinations, impairment of personal/occupational rela-

tionships, poor self-care and impersistence at work.

Currently, diagnoses for major psychiatric disorders

like schizophrenia are based solely on clinical man-

ifestations and observed psycho-social impairments.

Biological indices, if they can be discovered, would

be beneficial in providing more objective methods of

classification.

In the following sections we present NMF and co-

NMF along with their corresponding update rules.

Then, we apply the algorithms on both sMRI and fMRI

datasets. In the discussion section, we summarize the

results and future work to be done.

II. NMF MODEL

Given a non-negative matrix X of size M × N , the

task is to split it into a product of two non-negative

matrices W ∈ R≥0,M×R and H ∈ R≥0,R×N . That is,



X ≈ WH (1)

Lee and Seung [7] gave two different update rules for

miniziming ‖X−WH‖ corresponding to two different
cost functions. Here, we use the Euclidean distance as

the cost function. The function and its update are given

by:

E = ‖X − WH‖F (2)

W = W ⊗
XH

⊤

WHH⊤
(3)

H = H ⊗
W

⊤
X

W⊤WH
(4)

Here, ⊗ is used to represent element-wise multi-
plication. Also, the division in the above equations is

element-wise. It should be noted that the cost function

to be minimized is convex in eitherW or H but not in

both. The rank parameter R on which the sizes of both

the matrices W,H depend is usually based on prior

knowledge of the data being decomposed. In practice,

the matrices W,H are initialized to positive random

matrices.

III. CO-NMF

We now introduce a variation of standard NMF. The

motivation comes from a brain imaging problem where

we are given images of two groups namely healthy

controls and patients with schizophrenia. NMF can be

used to represent the data. However, we are looking for

features that not only represent the data but also max-

imize the difference between the two groups thereby

identifying the differences. This is accomplished by in-

troducing an additional constraint that the difference

of mean activations of two groups in the learnt factor

is maximized.

This is given by the following objective :

min
W,H1,H2

1

2
‖X1 − WH1‖

2
F +

1

2
‖X2 − WH2‖

2
F

−‖λ ⊗ (µ(H1) − µ(H2))‖1

(5)

The matrices X1,X2 correspond to the observation

data from two groups,W is the common feature space

of the groups and H1,H2 the corresponding activa-

tions. The function µ computes the mean activation

by taking a matrix of column vectors and producing

a single column vector by averaging across the entire

group.

We use the following update equations to minimize

the objective:

W = W − η[−X1H
⊤
1 − X2H

⊤
2

+WH1H
⊤
1 + WH2H

⊤
2 ] (6)

H1 = H1 ⊗
W

⊤
X1 + ((λ ⊗ d)1)−

W⊤WH1 + ((λ ⊗ d)1)+
(7)

H2 = H2 ⊗
W

⊤
X2 + ((λ ⊗ d)1)+

W⊤WH2 + ((λ ⊗ d)1)−
(8)

where 1 is row vector of ones of appropriate dimen-

sion, λ is the weight vector and d is the mean(along

columns) difference of matrices H1,H2 . We use ±
in the superscript to denote the absolute values of

positive and negative elements of matrix with the rest

set to zero respectively. As has already been noted in

[4], the objective function in our case is also not scale

free. Therefore, we use gradient descent for updating

W and then rescale its column vectors to norm unity.

We note that multiplicative update rules for W could

have been employed as in [8].

IV. METHODS

We now apply the NMF and co-NMF algorithms on

structural and functional MRI datasets.

A. Group analysis

Group analysis of fMRI is important to study specific

clinical or experimental conditions within or between

groups of subjects. In [9] , a method to do group

ICA was introduced and has been implemented in

a user-friendly environment (GIFT). It can be found

at http://icatb.sourceforge.net. GIFT has already been

used to study structural MRI datasets [10] . There has

to date been no application of NMF to group brain

imaging data.

Group analysis using NMF is done as follows. We

stack the preprocessed datasets(one image per subject)

for each subject column wise to get the new dataset.

This gives us a common image of gray matter concen-

tration or activation for each subject.

In the following experiments, X1 and X2 correspond

to the set of images from healthy controls and patients.

H1,H2 represennt their corresponding activations and

W the learnt features.

B. Structural MRI

Structural MRI scans of 136 healthy controls

and 133 schizophrenia patients were taken at

the John Hopkins University. The scans were

taken on a single 1.5T scanner with the imaging

parameters( 35mm TR , 5ms TE , matrix size of

256 × 256 ) . We segment these images into gray
matter, white matter and cerebral spinal fluid

images, using the the software program SPM5

(http://www.fil.ion.ucl.ac.uk/spm/software/spm5/),

followed by spatial smoothing with a Gaussian kernel



of 10 × 10 × 10 mm. This results in images which are
105 × 127 × 46, with each voxel containing a value
between 0 and 1. We use the gray matter concentration
images to create the matrices X1 and X2 from the

resulting 136 and 133 segmented images each of which
is 105× 127× 69. We then analyzed this dataset using
both NMF and co-NMF. We plot sample images and

plot the feature which have the maximum difference

between the control and patients. The number of

components extracted in both cases is 9.

C. Functional MRI

We utilized the MIND clinical imaging consortium

research data to analyze differences in brain activ-

ity for first episode and chronic schizophrenia pa-

tients versus healthy controls. The analysis involves

a dataset of fMRI images totaling 74 consisting of
38 healthy controls and 36 patients with schizophre-
nia. Each test subject underwent an fMRI scan on

a Siemens 1.5T Sonata scanner while performing an

auditory ’oddball’ task. The auditory stimuli consisted

of a standard tone (1000Hz), a target tone (1200Hz)

and novel complex complex generated tones. fMRI data

were preprocessed with the SPM5 software. Data for

each subject were analyzed by multiple regression

incorporating regressors for the novel, target and stan-

dard stimuli and their temporal derivatives plus an in-

tercept term. Regressors were created by modeling the

stimuli as delta functions convolved with the default

SPM hemodynamic response function. Only correct

responses were modeled. The target versus standard

contrast image was used in the NMF analyses. We

create the matrices X1 and X2 from the 38 healthy
controls and 36 patients images respectively, each with
dimension 53 × 63 × 46.

D. Preprocessing

The datasets of both structural and functional MRI

images were processed in a similar manner as follows.

A brain mask was created by selecting only those

voxels with value greater than 0.1. For the structural
images, the average across subjects was taken and

removed from the images. The images were then kept

non-negative by subtracting the least value among

them. A brain mask was created by selecting only

those voxels with value greater than 0.1. The param-
eter λ was arbitrarly chosen to be 0.04.
For the functional images, brain mask was limited

to in-brain voxels and provided with SPM software.

Also, the mean was not removed though the least value

among them was subtracted across all subjects. Each

individual subject has the same preprocessing done

separately.

V. RESULTS

We now present the results from both the sMRI and

fMRI datasets.

A. Structural MRI

We now show the feature which has the largest

mean difference between patients and controls as

found by both co-NMF and NMF.

There are a couple important points to note about

the results. First, as shown in Figure 3 (left) the

difference between patients and controls is larger for

the co-NMF results, as expected. Also, the difference

appears to be evenly spread in all the features. In

Figure 1, both algorithms are finding regions in frontal

and temporal lobe (known to be affected in schizophre-

nia). However the co-NMF results shows much more

temporal lobe area and also has a maximum in the

anterior cingulate, another regions often implicated

in schizophrenia. These results are encouraging and

suggest that co-NMF is more sensitive to the expected

difference in controls versus patients.

Fig. 1. Left corresponds to NMF applied to sMRI data and right
corresponds to co-NMF and in both we plot the feature which has
the maximum mean difference of activation between controls and
patients

B. Functional MRI

We do the same for the fMRI dataset i.e. the feature

with the largest mean difference between the groups.

For the fMRI results, as shown in Figure 3, the

difference between patients and controls are plotted.

Figure 2 again show more regions concentrated in the

temporal lobe area for co-NMF compared to NMF.

Fig. 2. NMF feature which shows most difference between controls
and patients(left) and corresponding co-NMF learnt feature (right)
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Fig. 3. Comparision of difference of mean activations of 9 features
using NMF and co-NMF ,where the left figure is that of sMRI data
and the right to that of fMRI data.

The difference between groups was more significant

for co-NMF than NMF for both sMRI and fMRI.

We did a t-test comparing the mean values of the

loading parameters for controls and patients. The p

value for the feature identified by co-NMF is 1.22e−15
and that for NMF is 6.91e − 07.

VI. CLASSIFICATION

We also applied a classification method to the acti-

vations learnt by both co-NMF and NMF. Since, the

dataset is small, we used the leave-one-out method.

NMF and co-NMF were applied on the fMRI dataset

to obtain the corresponding activations. R is chosen as

before to be 9. Classification rate of 55% and 68% were
obtained respectively. Nearest neighbours algorithm

was used for classification. We choose the vote based

on 5 nearest neigbours.

VII. DISCUSSION AND FUTURE WORK

We have shown NMF to be an effective tool for use

in both sMRI and fMRI data analysis. In this paper,

we focused upon the difference between NMF and

co-NMF which was adapted to maximize the patient

versus control differences. NMF is easily adapted to

add additional constraints and not be restricted to the

components being independent.

We also relax the constraint that the features learnt

are independent as is required by ICA. It is possi-

ble that you have multiple features with statistical

dependency that account for the data in physically

meaningful manner. In contrast, ICA assumes spatial

independence for the learnt sources . The other ad-

vantage of NMF is that it assumes the data is an

additive mixture of the features which corresponds

to different parts of the brain activating. Drawing a

similar analysis with ICA is not straightforward.

In future work, it would be interesting to compare

NMF with the more widely used ICA. We would also

like to model fMRI data time series using non-negative

tensor factorization (NTF) which would allow for a

richer set of parameters and incorporation of prior

information into the modeling process. The choice of

λ and factorization rank of W matrix from data is

another direction for research.
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