
1

2/23/2017

CS 351
Design of Large Programs

Zombie House

Instructor: Joel Castellanos

e-mail: joel@unm.edu

Web: http://cs.unm.edu/~joel/

Office: Electrical and
Computer Engineering
building (ECE).

Room 233

2

Overview

 Group project: Three students per team.

 Tuesday March 21 in class (week after spring break).

 Third person, single player cooperative game with JavaFX
for 3D rendering with texture, lighting and material effects.

 Player is:
 Player is in a house full of zombies.
 Must find exit before his or her brain is eaten.

 Game contains procedurally generated house.

 If the player's brain is eaten, the level is restarted back in
time, but splits with his or her past self. All past instances of
the player repeat the past with the new instance controllable
by the player.

2

Past and Present Self (1 of 2)

1) The player will need to cooperate with his or her past self.

2) Your past selves have no AI. Each does exactly what it did
before up to the moment of its death. At that point, it falls to
the floor.

a) Sometimes this might mean that your past self is
swinging at a zombie and/or takes damage from a
zombie that is not present.

b) Sometimes this might mean that your past self walks
right through a present zombie.

3

Past and Present Self (2 of 2)

 Zombies attack your past and present selves following the
same AI rules with no distinction between the two.

 Your past selves do not take damage.

 Your past selves attack as they did in life. If and only if a
zombie or your present self is in range, it takes damage.

4

3

Sample view of Exit with Player Light

5

Procedural Generation

 In computing, procedural generation is the method
of creating data algorithmically rather than
manually.

 In computer graphics it is commonly used for
creating textures.

 In video games it is used for creating various kinds
of content such as items, quests or level geometry.

 Procedural generation is a stochastic process that
uses random number generators, yet is not simply
random.

6

4

Procedurally Generated House

7

Each new level and each time the program runs, the game
must procedurally generate a “House” that:

1) Has a rectangular perimeter with a 2D floorplan.

2) Is connected (every location is reachable).

2) Has exactly 1 exit in a procedurally generated location
along an outer wall.

3) Has at least n rectangular rooms, m hallways and p
obstacles (square pillars, mid-room walls, …) in
procedurally generated locations, with procedurally
generated connections and procedurally generated sizes.

4) Is space filling (no interior unreachable places).

5) Has no doors.

The House

 The house is one level.

 Each level must use a number of visually different floor and
wall textures.

 All floor tiles of the same texture must be connected.

 All paths from the player spawn spot to the exit must pass
through at least one tile of at least three distinct texture
region.

 Every gap between walls/objects must be large enough for
any moving elements to pass through.

 Player always spawns in a hallway.

 Zombies never span in hallways.

8

5

Example Floor Plan for 31 Room House

9

House (& rooms) must be rectangular.

Obstacles cannot completely divide a
room.

Which hallways are legal player
spawns?

Shortest Path: Zombies Have Size > 0

10

6

Game Attribute Settings

 Where attributes are specified, they must be
followed. Where variables are given (such as the
house must have n rooms), it is left to each
development team to choose values that 1) make it
possible to meet other requirements and 2) make a
fun and balanced game.

 "Fun" and "balanced" are, within limits subjective.
Some of you will like harder / more complex
settings then others. However, there is a wide
acceptable range, it is far from infinite.

11

Update and deltaSeconds

 The “main game loop” must execute at no less than 30
Frames per Second (fps) on a 3rd floor ECE
computer.

 Ideally (for full credit), the main game loop should
execute at 60 fps. Do not run faster than 60 fps, even
if you can.

 These are average times. The actual time between
updates will fluctuate with processor load.

 deltaSeconds is the actual change in wall-clock
seconds between the current and the pervious frames.

12

7

Attribute: Player Hearing, Default = 20

1) Whenever a zombie walks, if the player is within a Euclidean
distance of PlayerHearing tiles, then sound effects must
be played (some mix of footsteps, sliding, bumping, dragging
and/or groaning). Calculate the Euclidean distance ignoring
objects and walls .

2) The volume of the loudest channel of the sound effect must
decrease with distance.

3) The difference in volume between the left and right channel,
both for zombie footsteps and wall hits, must follow an
algorithm chosen by the group to the effect of indicating the
direction from the player to the reporting zombie.

4) If multiple zombies are making noise within hearing, merge
the individual contributions before playing the sound.

13

Attribute: Player Speed, Default = 2.00

1) The player's movement must be controlled by ASWD.

2) The camera direction must be controlled by the mouse.

3) The player's walking speed is playerSpeed tiles per sec.

4) The player moves only while one or more movement keys
are depressed.

5) If playerSpeed = 1.0, and the player depresses the W key
for 1.23 seconds, then, assuming there is not an obstacle in
the player's way, the player moves forward 1.23 tiles.

6) If more than one movement key is pressed, the player's
movement direction is the vector sum of the component
movements, but the magnitude must still be playerSpeed.

7) The player stops when colliding with a wall or object. 14

8

Attribute: Player Stamina, Default = 5.00
Player Regen, Default = 0.20

1) While moving, if the player presses the 'shift' key, then
the player moves playerSpeed  2.0 tiles per second.

2) While running, the playerStamina is decreased by the
elapsed time in seconds.

3) The player stops running when:
a) The 'shift' key is released, or

b) No movement keys are pressed, or

c) playerStamina reaches 0.

4) When not running, playerRegen  deltaTime is added
to playerStamina up to a maximum of the original
playerStamina attribute for the level.

15

Attribute: Zombie Spawn, Default = X

1) While generating a level, each empty room floor tile has a
change of spawning a zombie. On a given empty room floor
tile, a zombie is spawned if a uniformly distributed random
number on the interval [0.0, 1.0) is less than zombieSpawn.

2) Zombies do not spawn on hallway tiles.

3) If a zombie spawns on a location there is a 50% chance that
it will be a Random Walk zombie. Otherwise it is a Line Walk
zombie.

16

9

Attribute: Zombie Speed, Default = 0.5

1) Each zombie moves every update along its current
heading a distance equal to:
zombieSpeed  deltaSeconds tiles.

2) Each zombie starts the game not moving and with a
random heading.

17

Attribute: Zombie Decision Rate, Default = 2.0

1) While a zombie moves every update, it may only change its
heading once every zombieDecisionRate seconds.

2) This is not effected by the zombie smelling a player nor by the
player moving so that what was the shortest path on a past
turn is no longer the shortest path. Zombie brains only
evaluate shortest path on a decision frame.

18

10

Attribute: Zombie Smell, Default = Y

1) If a zombie's distance from the player is  zombieSmell,
then the zombie can smell the player. This distance is the the
shortest-path distance (NOT the Euclidean distance ignoring
objects and walls as is the player hearing).

2) If a zombie can smell a player, then the zombie "knows" the
player's exact location and the shortest path, avoiding all
obstacles, to the player.

3) If either a Random Walk or Line Walk zombies smells a
player, then on the next decision update, the zombie will
calculate the shortest path and adjust its heading to match.

19

Attribute: Health and Damage

1) The zombies attack with hands and/or clubs.

2) The player attacks with some hand weapon of your choice
(knife, club, mace, sword, staff, nunchucks, gun...).

3) Each type of zombie and the player has a start health and a
damage / second. (where the actual damage per update us
based on the delta wall-clock time).

4) Each developer team must discover values for these
numbers which work well with the various other parameters
the team has chosen.

5) During each timeline in the game, damage done is
permanent. Each time the timeline resets, all health of all
game elements is restored.

6) When a player or zombie reaches zero health, it falls over,
explodes, or whatever, but it must stop moving and damage.20

11

Random Walk Zombie Intelligence

1) If a Random Walk zombie does not smell the player, then, on each
decision step, the zombie will choose, with uniformly distributed
probability, a heading 0.0 through 360.0 degrees from east.

2) After choosing a heading, the zombie will continue to move in that
heading until the next decision update.

3) When a zombie collides with a wall or obstacle, the collision
detection must stop the zombie at the wall. However, the zombie
will continue to attempt to walk in that same direction until its next
decision update.

4) On a decision update, if a Random Walk zombie had on the
previous update hit a wall, then the zombie will not choose to
move in that same direction.

5) On a decision update, it a Random Walk zombie is adjacent to a
wall, but did not hit that wall on the previous update, then the
zombie will not favor nor disfavor that direction.21

Line Walk Zombie Intelligence

1) On a decision update, if a Line Walk zombie smells the
player, then it will set its heading to the shortest path to the
player.

2) On a decision update, if a Line Walk zombie hit a wall or
obstacle on the previous update, then it will choose a
uniformly distributed random heading different from its
current heading.

22

12

Master Zombie

 Every level must include exactly one Master
Zombie placed during the procedural level
generation.

 Whatever any zombie detects the player, the
master zombie also detects the player.

 The master zombie has one or more other special
skills as defined by each group that perhaps varies
with different levels.

23

Miscellaneous Requirements (1 of 3)

1) Graphics must be smooth and without flickering.

2) When the player walks, a soft walking sound must be
heard.

3) When the player runs, a slightly louder running sound must
be heard.

4) The game must use different sound effect for zombie and
player walks.

5) The zombies are blind and deaf.

6) Neither zombies nor the player can pass through or
occupy the same place as one another, walls or objects.

7) You may add additional key bindings. 24

13

Miscellaneous Requirements (2 of 3)

8) The game is third person and therefore, the player is a 3D
model with articulated joints.

9) The zombies must be a 3D model with articulated joints.

10) There must be a noticeable difference in appearance
between the three zombie types (could be just color).

11) All sound and graphic elements may be created by you or
may be produced by a third party offering them free for
non-commercial use. Of course, list the source of any third
party material.

25

Miscellaneous Requirements (3 of 3)

12) When presenting in the classroom, the room sound system
will be used. When I am grading sound effect details, I will
use Bose SoundLink Around-Ear Headphones so I will be
able to hear subtle directional effects you take the time to
code.

26

14

JavaDoc for non-private classes

1) Program Level: Overall design and of each subsystem.

2) Class Level:
a) What does this class do?

b) How is it used by other classes?

c) How does it use other classes?

3) Method Level:
a) What does it do?

b) What inputs (both arguments and global)?

c) What assumptions does the method make (i.e. what are
the expected ranges of inputs)?

d) What return values and/or side effects?

e) If nontrivial, what algorithm does the method use?27

Quiz: The Strategy Pattern

What is the Strategy Pattern?

28

The Strategy Pattern defines a family of
algorithms, encapsulates each one and makes
them interchangeable. Strategy lets the algorithm
vary independently from clients that use it.

15

Derived Requirements

Derived Requirement are requirements that are implied
or transformed from higher-level requirement. For example,
an explicate stakeholder requirement for long range or
high speed may result in a derived design requirement
for low weight.

29

Should the development team be
sure to clarify all derived
requirements with the
stakeholders so as to document
them as part of the formal
requirements document?

When, if ever, is it safe to assume?

Zombie House: Derived Requirements

 At least 3 diff't regions

 Some attack input mechanism or intuitive attack
condition

 Limited resource-intensive functions (to meet
60fps)

 Zombies have reasonable HP

 Reasonable game length

 Display of player/zombie stats

30

16

Coding Style

 As much as reasonable, code must be "self-
documenting".

 Only use non-private methods and fields when there is
good reason.

 Create well named methods for all logical units.

 Minimize code duplication.

 Have well defined and minimal ways in which objects
interact.

31

 All code authored by members of a
single group must follow a consistent
set of formatting standards.

Grading Rubric: 450 points (150 / member)

32

You are given existing code that, already meats many of
your requirements.

You may or may not choose to use any or all of that code,
but the grading rubric will be weighted toward the new
requirements:

Adding polish to path finding, Zombie AI, player
movement, procedural generation, ...)

Adding the single-player co-operative elements.

17

Grading Rubric: 450 points (150 / member)

33

150 Points: Past lives work within bounds of
specifications.

150 Points: Graphics and Sound are smooth and
significantly improved / extended from given
code.

150 Points: Game mechanics are polished and
significantly improved / extended from given
code.

Additional Grading

 Self/Peer Evaluation Form (10 participation points
for completeness and accuracy). This also effects
the member distribution of project points.

 Oral Presentation (40 participation points person).

 Periodic Code-walk through and design
presentation. Some during lab, some during
lecture (10 participation points each).

34

18

Oral Presentation

 Tell us who you are.

 One person "drive" while other(s) talk. Optional: Swap roles.

 Demo the running game.

 Tell us what works and what does not work.

 Explain how you verified you meet the requirements of the:

1) Floor plan.

2) Zombies (random walk, line walk, shortest path, smell
distance and collision).

3) Sound effects.

 Tell of anything you are particularly proud.

35

