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“EPISIMS ” UNLE A SHE S V IR T UA L PL AGUE S IN RE A L CITIE S TO SEE HOW SOCI A L 
NE T WORK S SPRE A D DISE A SE. TH AT K NOW LEDGE MIGHT HELP S TOP EPIDEMIC S

SIMUL ATING the social interactions that 
spread disease shows the course a 
pathogen might take from an individual 
(circled) through a population.

SMALLPOXSMALLPOX
STRIKESSTRIKES  

PORTLANDPORTLAND  ......
BY CHRIS L. BARRETT, STEPHEN G. EUBANK AND JAMES P. SMITH
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SS uppose terrorists were to release 
plague in Chicago, and health 
offi cials, faced with limited re-
sources and personnel, had to 

quickly choose the most effective re-
sponse. Would mass administration of 
antibiotics be the best way to halt an 
outbreak? Or mass quarantines? What 
if a chance to nip a global infl uenza pan-
demic in the bud meant sending nation-
al stockpiles of antiviral drugs to Asia 
where a deadly new fl u strain was said 
to be emerging? If the strategy succeed-
ed, a worldwide crisis would be averted; 
if it failed, the donor countries would be 
left with less protection. 

Public health offi cials have to make 
choices that could mean life or death for 
thousands, even millions, of people, as 
well as massive economic and social dis-
ruption. And history offers them only a 

rough guide. Methods that eradicated 
smallpox in African villages in the 
1970s, for example, might not be the 
most effective tactics against smallpox 
released in a U.S. city in the 21st century. 
To identify the best responses under a 
variety of conditions in advance of disas-
ters, health offi cials need a laboratory 
where “what if” scenarios can be tested 
as realistically as possible. That is why 
our group at Los Alamos National Lab-
oratory (LANL) set out to build Epi-
Sims, the largest individual-based epide-
miology simulation model ever created. 

Modeling the interactions of each in-
dividual in a population allows us to go 
beyond estimating the number of people 
likely to be infected; it lets us simulate the 
paths a disease would take through the 
population and thus where the outbreak 
could be intercepted most effectively. 

The networks that support everyday life 
and provide employment, transportation 
infrastructure, necessities and luxuries 
are the same ones that infectious diseases 
exploit to spread among human hosts. By 
modeling this social network in fi ne de-
tail, we can understand its structure and 
how to alter it to disrupt the spread of 
disease while infl icting the least damage 
to the social fabric. 

Virtual Epidemiology
long before the germ theory of dis-
ease, London physician John Snow ar-
gued that cholera, which had killed tens 
of thousands of people in England dur-
ing the preceding 20 years, spread via 
the water supply. In the summer of 1854 
he tested that theory during an outbreak 
in the Soho district. On a map, he marked 
the location of the homes of each of the 
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500 victims who had died in the preced-
ing 10 days and noted where each victim 
had gotten water. He discovered that ev-
ery one of them drank water from the 
Broad Street pump, so Snow convinced 
offi cials to remove the pump handle. His 
action limited the death toll to 616. 

Tracing the activities and contacts of 
individual disease victims, as Snow did, 
remains an important tool for modern 
epidemiologists. And it is nothing new 
for health authorities to rely on models 

when developing policies to protect the 
public. Yet most mathematical models 
for understanding and predicting the 
course of disease outbreaks describe 
only the interactions of large numbers of 
people in aggregate. One reason is that 
modelers have often lacked detailed 
knowledge of how specifi c contagious 
diseases spread. Another is that they 
have not had realistic models of the so-
cial interactions in which people have 
contact with one another. And a third is 
that they have not had the computation-
al and methodological means to build 
models of diseases interacting with dy-
namic human populations.

As a result, epidemiology models 
typically rely on estimates of a particular 
disease’s “reproductive number”—the 
number of people likely to be infected by 
one contagious person or contaminated 
location. Often this reproductive num-

ber is a best guess based on historical 
situations, even though the culture, 
physical conditions and health status of 
people in those events may differ greatly 
from the present situation. 

In real epidemics, these details mat-
ter. The rate at which susceptible people 
become infected depends on their indi-
vidual state of health, the duration and 
nature of their interactions with conta-
gious people, and specifi c properties of 
the disease pathogen itself. Truer models 

of outbreaks must capture the probabil-
ity of disease transmission from one per-
son to another, which means simulating 
not only the properties of the disease and 
the health of each individual but also de-
tailed interactions between every pair of 
individuals in the group. 

Attempts to introduce such epide-
miological models have, until recently, 
considered only very small groups of 
100 to 1,000 people. Their size has been 
limited because they are based on actual 
populations, such as the residents, visi-
tors and staff of a nursing home, so they 
require detailed data about individuals 
and their contacts over days or weeks. 
Computing such a large number of inter-
actions also presents substantial techni-
cal diffi culties. 

Our group was able to construct this 
kind of individual-based epidemic model 
on a scale of millions of people by using 

high-performance supercomputing clus-
ters and by building on an existing mod-
el called TRANSIMS developed over 
more than a decade at Los Alamos for 
urban planning [see “Unjamming Traffi c 
with Computers,” by Kenneth R. How-
ard; Scientific American, October 
1997]. The TRANSIMS project started 
as a means of better understanding the 
potential effects of creating or rerouting 
roads and other transportation infra-
structure. By giving us a way to simulate 
the movements of a large population 
through a realistic urban environment, 
TRANSIMS provided the foundation we 
needed to model the interactions of mil-
lions of individuals for EpiSims. 

Although EpiSims can now be adapt-
ed to different cities, the original TRAN-
SIMS model was based on Portland, Ore. 
The TRANSIMS virtual version of Port-
land incorporates detailed digital maps 
of the city, including representations of 
its rail lines, roads, signs, traffi c signals 
and other transportation infrastructure, 
and produces information about traffi c 
patterns and travel times. Publicly avail-
able data were used to generate 180,000 
specifi c locations, a synthetic population 
of 1.6 million residents, and realistic dai-
ly activities for those people [see box on 
opposite page].

Integrating all this information into 
a computer model provides the best esti-
mate of physical contact patterns for 
large human populations ever created. 
With EpiSims, we can release a virtual 
pathogen into these populations, watch 
it spread and test the effects of different 
interventions. But even without simulat-
ing a disease outbreak, the model pro-
vides intriguing insights into human so-
cial networks, with potentially impor-
tant implications for epidemic response. 

Social Networks
to understa nd what a social net-
work really is and how it can be used for 
epidemiology, imagine the daily activi-
ties and contacts of a single hypothetical 
adult, Ann. She has short brushes with 
family members during breakfast and 
then with other commuters or carpool-
ers on her way to work. Depending on 
her job, she might meet dozens of people 

■   Epidemiological simulations provide virtual laboratories where health 
offi cials can test the effectiveness of different responses in advance of 
disease outbreaks. 

■   Modeling the movements of every individual in a large population produces a 
dynamic picture of the social network—the same network of contacts used 
by infectious diseases to spread among human hosts.

■   Knowing the paths a disease could take through society enables offi cials to 
alter the social network through measures such as school closings and 
quarantines or by targeting individuals for medical treatment.

Truer models must capture the 
probability of disease transmission 

from one person to another.
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at work, with each encounter having a 
different duration, proximity and pur-
pose. During lunch or a shopping trip 
after work, Ann might have additional 
short contacts with strangers in public 
places before returning home. 

We can visually represent Ann’s con-
tacts as a network with Ann in the center 
and a line connecting Ann to each of 
them [see box on next page]. All Ann’s 
contacts engage in various activities and 
meet other people as well. We can repre-
sent these “contacts of contacts” by 
drawing lines from each—for example, 
Ann’s colleague named Bob—to all his 
contacts. Unless they are also contacts of 
Ann, Bob’s contacts are two “hops” away 
from Ann. The number of hops on the 
shortest path between people is some-
times called the graph distance or degree 
of separation between those people. 

The popular idea that everyone on 
the earth is connected to everyone else 
by at most six degrees of separation 
means that if we continued building our 
social network until it included everyone 
on the planet, no two people would be 
more than six hops from one another. 
The idea is not strictly true, but it makes 
for a good story and has even led to the 
well-known game involving the social 
network of actors who have appeared in 
fi lms with Kevin Bacon. In academic 
circles, another such social network 
traces mathematicians’ co-authorship 
connections, with one’s “Erdös num-
ber” defi ned by graph distance from the 
late, brilliant and prolifi c Paul Erdös. 

Other types of networks, including 
the Internet, the links among scientifi c 
article citations and even the interactions 
among proteins within living cells, have 

been found to display this same tendency 
toward having “hubs”: certain locations, 
people or even molecules with an unusu-
ally high number of connections to the 
rest of the network. The shortest path be-
tween any two nodes in the network is 
typically through one of these hubs, 
much as in a commercial airline’s route 
system. Technically, such networks are 
called “scale-free” when the number of 
hubs with exactly k connections, N(k), is 
proportional to a power of k [see “Scale-
Free Networks,” by Albert-László 
Barabási and Eric Bonabeau; Scientifi c 
American, May 2003]. 

Because a scale-free network can be 
severely damaged if one or more of its 
hubs are disabled, some researchers 
have extrapolated this observation to 
disease transmission. If infected “hub” 
individuals, such as the most gregarious 

CRE ATING THE EPISIMSCRE ATING THE EPISIMS
The original EpiSims model was based on Portland, Ore., but 
gathering suffi ciently detailed information about 1.6 million 
real people and their activities would have been diffi cult and 

intrusive. A synthetic population, statistically indistinguishable 
from the real one, could nonetheless be constructed and 
given realistic daily lives using publicly available data. 

SYNTHETIC HOUSEHOLDS 
The U.S. Census Bureau provided 
demographic information, such as age, 
household composition and income, 
for the entire city as well as 5 percent of 
its complete records for smaller study 
areas of a few square blocks. 
Through a statistical technique called 
iterative proportional fi tting, these two 
data sets were combined to create 
households and individuals with 
statistically correct demographics 
and geographic distribution.

ACTIVITIES 
Most metropolitan planning offi ces conduct detailed traveler 
activity surveys for small population samples of a few thousand. 
These logs track the movements of each household member over the 
course of one or more days, noting the time of each activity. By 
matching the demographics of survey respondents to the entire 
synthetic population, realistic daily activities can be generated for 
every synthetic household member. 

LOCATIONS 
Setting the population in motion requires assigning locations to every 
household’s activities. Land-use data for buildings, parking lots, 
parks and other places were associated with 180,000 locations in the 
model, providing estimates of the number of people performing 
various types of activities there. Activities were anchored to 
individuals’ work or school locations, and then places were chosen for 
additional activities, such as grocery shopping or recreation, taking 
into account their distance and other measures of their appeal.
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BUILDING SOCIAL NE T WORK SBUILDING SOCIAL NE T WORK S
T YPICAL HOUSEHOLD’S CONTACTS
Constructing a social network for a household of two adults and 
two children starts by identifying their contacts with other people 
throughout a typical day. 

Long-distance 
connections

a

b

c

d

Work
Lunch Work

Car pool

Car pool

HomeHome
Car Car

Shopping

Day care

School bus School
School bus

LOCAL SOCIAL NETWORK
A social network emerges by drawing lines to represent 
connections within the household (a) and from the 
household members to their direct contacts (b). 
Connecting those individuals to their own circle of contacts 
(c) and those to the next generation of contacts (d) 
enlarges the network. Long-distance connections show 
contacts who also know each other. Yet no one in this 
network has more than 15 direct contacts, 
meaning none is a highly connected “hub” 
of society. One insight from this work is that 
so many alternative paths can connect 
any pair of people, isolating only hub 
individuals would do little to restrict 
the spread of infectious disease 
through this population. 

This diagram shows where the household members go and what they 
do all day but reveals little about how their individual contacts might 
be interconnected or connected to others.

EXPANDER GRAPH
The shape of this small 
network expands with each 
generation of contacts. 
A disease moving through 
such a population therefore 
infects rising numbers 
of people in each 
generation of transmission.  
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people in a population, could somehow 
be identifi ed and treated or removed 
from the network, the reasoning goes, 
then an epidemic could be halted with-
out having to isolate or treat everyone in 
the population. But our analyses of the 
social networks used by EpiSims sug-
gest that society is not so easily disabled 
as physical infrastructure.

The network of physical locations in 
our virtual Portland, defi ned by people 
traveling between them, does indeed ex-
hibit the typical scale-free structure, 
with certain locations acting as impor-
tant hubs. As a result, these locations, 
such as schools and shopping malls, 
would be good spots for disease surveil-
lance or for placing sensors to detect the 
presence of biological agents. 

The urban social networks in the city 
also have human hubs with higher than 
average contacts, many because they 
work in the physical hub locations, such 
as teachers or sales clerks. Yet we have 
also found an unexpectedly high number 
of “short paths” in the social networks 
that do not go through hubs, so a policy 
of targeting only hub individuals would 
probably do little to slow the spread of a 
disease through the city. 

In fact, another unexpected property 
we have found in realistic social networks 
is that everyone but the most devoted re-
cluse is effectively a small hub. That is to 
say, when we look at the contacts of any 
small group, such as four students, we 
fi nd that they are always connected by 
one hop to a much larger group. Depict-
ing this social network structure results 
in what is known as an expander graph 
[see box on opposite page], which has a 
cone shape that widens with each hop. Its 
most important implication for epidemi-
ology is that diseases can disseminate ex-
ponentially fast because the number of 
people exposed in each new generation of 
transmission is always larger than the 
number in the current generation. 

Theoretically, this should mean that 
whatever health offi cials do to intervene 
in a disease outbreak, speed will be one 
of the most important factors determin-
ing their success. Simulating disease out-
breaks with EpiSims allows us to see 
whether that theory holds true.

Smallpox Attack
after we began developing EpiSims 
in 2000, smallpox was among the fi rst 
diseases we chose to model because gov-
ernment offi cials charged with bioterror-
ism planning and response were faced 
with several questions and sometimes 
conflicting recommendations. In the 
event that smallpox was released into a 
U.S. population, would mass vaccination 
be necessary to prevent an epidemic? Or 
would targeting only exposed individu-
als and their contacts for vaccination be 
enough? How effective is mass quaran-
tine? How feasible are any of these op-

tions with the existing numbers of health 
workers, police and other responders? 

To answer such questions, we con-
structed a model of smallpox that we 
could release into our synthetic popula-
tion. Smallpox transmission was particu-
larly diffi cult to model because the virus 
has not infected humans since its eradica-
tion in the 1970s. Most experts agree, 
though, that the virus normally requires 
signifi cant physical contact with an infec-
tious person or contaminated object. The 
disease has an average incubation period 
of approximately 10 days before fl ulike 
symptoms begin appearing, followed by 
skin rash. Victims are contagious once 
symptoms have appeared and possibly 
for a short time before they develop fever. 
Untreated, some 30 percent of those in-
fected would die, but the rest would re-
cover and be immune to reinfection. 

Vaccination before exposure or with-
in four days of infection can stop small-

pox from developing. We assumed in all 
our simulations that health workers and 
people charged with tracking down the 
contacts of infected people had already 
been vaccinated and thus were immune. 
Unlike many epidemiological models, 
our realistic simulation also ensures that 
the chronology of contacts will be con-
sidered. If Ann contracted the disease, 
she could not infect her co-worker Bob a 
week earlier. Or, if Ann does infect Bob 
after she herself becomes infected and if 
Bob in turn infects his family member 
Cathy, the infection cannot pass from 
Ann to Cathy in less than twice the min-

imum incubation period between disease 
exposure and becoming contagious.

With our disease model established 
and everyone in our synthetic population 
assigned an immune status, we simulated 
the release of smallpox in several hub lo-
cations around the city, including a uni-
versity campus. Initially, 1,200 people 
were unwittingly infected, and within 
hours they had moved throughout the 
city, going about their normal activities. 

We then simulated several types of 
offi cial responses, including mass vacci-
nation of the city’s population or contact 
tracing of exposed individuals and their 
contacts who could then be targeted for 
vaccination and quarantine. Finally, we 
simulated no response at all for the pur-
pose of comparison.

In each of these circumstances, we 
also simulated delays of four, seven and 
10 days in implementing the response 
after the fi rst victims became known. In 

CHRIS L. BARRETT, STEPHEN G. EUBANK and JAMES P. SMITH worked for fi ve years to-
gether at Los Alamos National Laboratory (LANL) to develop the EpiSims simulation. 
Barrett, who oversaw a predecessor project, TRANSIMS, is a bioinformatics specialist 
who now directs the Simulation Science Laboratory at the Virginia Bioinformatics Insti-
tute (VBI) in Blacksburg. Eubank, a physicist, is deputy director of the VBI simulation lab 
and was EpiSims team leader at Los Alamos. Smith, also a physicist, continues to work 
with simulations related to TRANSIMS as the project offi ce leader for Discrete Simulation 
Science in the LANL Computer and Computational Sciences Division.
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disabled as infrastructure.
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EpiSims animations depict simulated outbreaks and the effects 
of offi cial interventions. In the still frames below, vertical lines 
indicate the number of infected people present at a location, and 
color shows the percentage of them who are contagious. In both 
scenarios shown, smallpox is released at a university in central 
Portland, but the attack is not detected until victims start 
experiencing symptoms 10 days later. The left-hand images 

show no public health response as a baseline. In the right-hand 
images, infected and exposed individuals are targeted for 
vaccination and quarantine. Results from a series of such 
simulations (bottom) show that people withdrawing to their 
homes early in an outbreak makes the biggest difference in 
death toll. The speed of offi cial response, regardless of the 
strategy chosen, proved to be the second most important factor.

DAY 1: UNDETECTED SMALLPOX RELEASE 

INFECTED: 1,281
DEAD: 0

INFECTED: 1,281  
QUAR ANTINED: 0
VACCINATED: 0
DEAD: 0

INFECTED: 23,919
DEAD: 551

INFECTED: 2,564  
QUAR ANTINED: 29,910
VACCINATED: 30,560
DEAD: 312

DAY 35: SMALLPOX EPIDEMIC

INFECTED: 380,582
DEAD: 12,499

INFECTED: 2,564  
QUAR ANTINED: 36,725
VACCINATED: 37,207
DEAD: 435

DAY 70: EPIDEMIC UNCONTAINED OR CONTAINED

50

0

25

Contagious 
percentage

NO RESPONSE  TARGETED 
VACCINATION AND 
QUARANTINE 
STARTING DAY 14

RESPONSE EFFECTIVENESS
Simulations allowed people to withdraw to their 
homes because they felt ill or were following 
offi cials’ instructions. Withdrawal could be “early,” 
before anyone became contagious, or “never,” 
meaning people continued moving about unless they 
died. “Late” withdrawal, 24 hours after becoming 
contagious, was less effective than early 
withdrawal, which prevented an epidemic without 
other intervention. Offi cial responses included doing 
nothing, or targeted vaccination and quarantine with 
unlimited personnel, or targeted vaccination limited 
by only half the necessary personnel being 
available, or mass vaccination of the entire 
population. The interventions began four, seven or 
10 days after the fi rst victims became symptomatic.
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addition, we allowed infected individu-
als to isolate themselves by withdrawing 
to their homes.

Each simulation ran for a virtual 100 
days [see box on opposite page], and the 
precise casualty fi gures resulting from 
each scenario were less important than 
the relative effect different responses had 
on the death tolls. The results upheld our 
theoretical prediction based on the ex-
pander-graph structure of the social net-
work: time was by far the most impor-
tant factor in limiting deaths. The speed 
with which people withdrew to their 
homes or were isolated by health offi cials 
was the strongest determinant of the out-
break’s extent. The second most infl uen-
tial factor was the length of the delay in 
offi cials’ response. The actual response 
strategy chosen made little difference 
compared with the time element.

In the case of a smallpox outbreak, 
these simulations indicate that mass vac-
cination of the population, which carries 
its own risks, would be unnecessary. Tar-
geted vaccination would be just as effec-
tive so long as it was combined with rapid 
detection of the outbreak and rapid re-
sponse. Our results also support the im-
portance of measures such as quarantine 
and making sure that health offi cials give 
enforcement adequate priority during 
highly infectious disease outbreaks. 

Of course, appropriate public health 
responses will always depend on the dis-
ease, the types of interventions available 
and the setting. For example, we have 
simulated the intentional release of an in-
halable form of plague in the city of Chi-
cago to evaluate the costs and effects of 
different responses. In those simulations 
we found that contact tracing, school clo-
sures and city closures each incurred eco-
nomic losses of billions of dollars but did 
not afford many health benefi ts over vol-
untary mass use of rapidly available anti-
biotics at a much lower economic cost. 

Most recently, as part of a research 
network organized by the National In-
stitute of General Medical Sciences 
called the Models of Infectious Disease 
Agent Study (MIDAS), we have been 
adapting EpiSims to model a naturally 
occurring disease that may threaten the 
entire planet: pandemic infl uenza. 

Flu and the Future
over the past yea r , a highly vir-
ulent strain of influenza has raged 
through bird populations in Asia and 
has infected more than 40 human be-
ings in Japan, Thailand and Vietnam, 
killing more than 30 of those people. 
The World Health Organization has 
warned that it is only a matter of time 
before this lethal fl u strain, designated 
H5N1, more easily infects people and 
spreads between them. That develop-
ment could spark a global fl u pandemic 
with a death toll reaching tens of mil-
lions [see SA Perspectives, Scientifi c 
American, January]. 

MIDAS collaborators will be study-
ing the possibility that an H5N1 virus 
capable of spreading in humans might 
be contained or even eradicated by rap-
id intervention while it is still confi ned 

to a small population. To simulate the 
appropriate conditions in which the 
strain would likely emerge among hu-
mans, we are constructing a model rep-
resenting a hypothetical Southeast 
Asian community of some 500,000 
people living on farms and in neighbor-
ing small towns. Our model of the infl u-
enza virus itself will be based both on 
historical data about pandemic flu 
strains and information about the 
H5N1 virus, whose biology is currently 
a subject of intense investigation. 

We know, for example, that H5N1 
is sensitive to antiviral drugs that inhib-
it one of its important enzymes, called 

neuraminidase. In our simulations, we 
will be able to use neuraminidase inhib-
itors as both treatment and prophylaxis. 
(A vaccine against H5N1 has been de-
veloped and recently began clinical tri-
als but because the vaccine is not yet 
proven or available, we will focus our 
simulations on seeing whether the anti-
viral drugs together with traditional 
public health measures might stop an 
epidemic.)

Preliminary results announced in late 
February are reported at www.sciam.
com. In April, we will complete similar 
fl u pandemic simulations in the EpiSims 
Portland model. 

Our hope is that the ability to realisti-
cally model populations and disease out-
breaks can help health offi cials make dif-
fi cult decisions based on the best possible 
answers to “what if” questions. 

The creation of models such as 
TRANSIMS that simulate human move-
ments through urban environments was 
the computational breakthrough that 
made EpiSims possible, and epidemiol-
ogy is only one potential application for 
this kind of individual-based modeling. 
We are also in the process of creating and 
linking simulations of other sociotechni-
cal systems, including environmental 
and atmospheric pollution, telecommu-
nications, transportation, commodity 
markets, water supplies and power grids, 
to provide virtual laboratories for ex-
ploring solutions to a wide variety of 
real-world problems.  
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A sample EpiSims animation and additional data from the Portland smallpox simulations can be 
viewed at http://episims.lanl.gov 

The actual response chosen 
made little difference compared 
with the time element.
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