
NetLogo Tutorial Series:
Langton's Ant

Nicholas Bennett
nickbenn@g-r-c.com

February 2013

Copyright and License

Copyright © 2013, Nicholas Bennett. All rights reserved.

“NetLogo Tutorial Series: Langton's Ant” by Nicholas Bennett is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Permissions beyond the scope of this license may be available; for more information,
contact nickbenn@g-r-c.com.

See the accompanying NetLogo models for the source code copyright and license
information.

Acknowledgments

Development of this curricular material and the accompanying NetLogo models was
funded in part by:

• Santa Fe Institute Summer Internship/Mentorship (SIM) and Summer
Complexity and Modeling Program (CaMP) for high school students;

• New Mexico Supercomputing Challenge;

• Project GUTS;

• New Mexico Computer Science For All.

Participants in the above programs have also provided invaluable feedback on earlier
versions of this material.

mailto:nickbenn@g-r-c.com
http://www.projectguts.org/
http://www.supercomputingchallenge.org/
http://www.santafe.edu/education/schools/summer-camp/
http://www.santafe.edu/education/schools/summer-camp/
http://www.santafe.edu/education/schools/summer-camp/
http://www.santafe.edu/
mailto:nickbenn@g-r-c.com
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.g-r-c.com/tutorials/netlogo/
http://creativecommons.org/licenses/by-nc-sa/3.0/

Introduction

One condition which sometimes produces complex behavior is high throughput. This
throughput can be the product of a large number of agents acting and interacting
simultaneously; a large amount of some physical material or property (e.g. electrical
charge, fluid, gas molecules) acting in a constrained space or medium; or even a much
smaller number of agents repeating simple behaviors a large number of times in a finite
space, with feedback.

In this activity, we’ll build a NetLogo model with unpainted (black) and painted
patches,1 inhabited by one or more ants2 that follow a simple rule. In each time step,
each ant will perform the following actions:

1. If the patch where the ant is standing is not painted (i.e. it's black), then:

a. Turn right 90°.

b. Paint the patch the color of the ant itself.

Otherwise:

a. Turn left 90°.

b. Clear the patch (i.e. change its color it black).

2. Move forward one patch.

This virtual ant is known as Langton's ant, after its inventor Christopher Langton, a
pioneer in the field of artificial life [1][2].

We'll begin with a single ant, starting at the center of the NetLogo world. Then, we'll
extend the model by adding more ants at different initial positions.

1. What pattern will result from a single ant with the behavior described above?

2. How many repetitions of the above steps will it take for a pattern to emerge?

3. Will the combined behavior be different with two or more ants, instead of one?

We could try to answer the above questions by doing the exercise on paper, but it
would become very tedious, very quickly – probably long before the result is clear.

1 In Langton's original description of his ant behaviors, white spaces – instead of black – are considered
unpainted.

2 Although the agents in this model don't behave like real ants, that's what we'll call them. Logo agents
that move are generically called turtles; we'll use ants and turtles interchangeably in this exercise.

NetLogo Tutorial Series: Langton's Ant 3

Task 1: Getting Started

(Before following the steps below, consider reading “Introduction and Core Concepts –
The NetLogo Coordinate System”. Even if you've read it already, it might be useful to
review it.)

1. From the Macintosh Applications folder, or from the Windows Start/All
Program/NetLogo menu, launch the NetLogo application3 (not NetLogo 3D).

2. Because we want to give our ants lots of room to maneuver, and because
NetLogo colors an entire patch at once, let's set up the NetLogo world with a
large number of very small patches. To do this, click the Settings… button, near
the top of the NetLogo window, and make these changes in the Model Settings
dialog:

a. Leave Location of origin set to center.

b. Set the max-pxcor value to 250.

c. Set the max-pycor value to 250.

d. Make sure the World wraps horizontally checkbox is checked.

e. Make sure the World wraps vertically checkbox is checked.

f. Set the Patch size value to 1.0.

g. Uncheck the Show tick counter checkbox.

3 This tutorial was originally written for NetLogo v4.x, then updated for and tested with NetLogo v5.0-
v5.0.3. Though we recommend completing this tutorial with NetLogo v5.x, it should work with any
4.x or 5.x version. There are some slight differences in user interface and terminology between the
versions, however. For example, there are some checkboxes and other inputs in the Model Settings
and Buttons dialogs of NetLogo v5.x that aren't present in the NetLogo v4.x dialogs; these can be
safely ignored when using this tutorial with NetLogo v4.x.

4 NetLogo Tutorial Series: Langton's Ant

The World & View window should now look like this:

3. Click the OK button; we now have a world that's 501 patches tall and 501 patches
wide, with each patch displayed as a single pixel. Adjust the size and position of
the NetLogo application window, as necessary, to display the entire world.

4. Save your model using the File/Save menu command. (You should do this after
completing each task in this activity.)

NetLogo Tutorial Series: Langton's Ant 5

Task 2: Setting Up the Model

Since we typically run a model several times in a single session, without closing and re-
opening the model (or closing and re-opening NetLogo itself), we need a way to clean
up anything left over from a previous run (if any), and prepare the model for a new
run. By convention, when building NetLogo models, we usually refer to this cleanup
and preparation operation as the model's setup; our immediate task is to teach NetLogo
how to perform this operation for our ant model.

To teach NetLogo to perform an operation, we instruct it in much the same way we
would a very literal-minded person: “To do X, first do A, then do B, then …”, with each
step spelled out unambiguously. In this case, the first thing we'll tell NetLogo to do is
remove any previously created ants, and reset all of the patches to black. Then, we'll tell
it to create a single ant, at the origin.

(Before following these steps, we recommend you read “Introduction and Core
Concepts – Programming in NetLogo”, if you haven't already done so.)

1. In NetLogo, click on the tab or button labeled Code. Here you see a blank area
for writing the instructions that NetLogo uses to execute the logic of the model.

2. Write the following in the space provided:

breed [ants ant]

to setup
 clear-all
 set-default-shape ants "bug"
 create-ants 1
 [
 set color red
 set size 15
 set heading 0
]
end

6 NetLogo Tutorial Series: Langton's Ant

The code starts by declaring a breed of turtle agents called ants. It then tells
NetLogo that the following steps make up a procedure named setup:

a. Execute the clear-all command. Among other things, this removes all turtle
agents, and sets the color of all the patches to black.

b. Set the shape named “bug” as the default shape for the ants breed. (To
review the shapes available for use, select the Tools/Turtle Shapes Editor
menu option.)

c. Create a single ant. In the create-ants command (like the more generic
create-turtles command), the numeric value following the command is the
number of agents to be created, and the subsequent set of square brackets
contains a list of commands that the newly-created agents are asked to
execute. In this case, we are asking our single ant to do the following:

i. Set its color to red. NetLogo uses a spectrum in which each color is
identified by a number from 0 to 139.9; however, there are some symbolic
constants – such as red – which are preassigned to the correct number
value, so we usually don't have to remember the numbers themselves. (To
see the entire NetLogo color spectrum, select the Tools/Color Swatches
menu option.)

ii. Set its size to 15 times the default size. Without this, we wouldn't be able
to see the bug shape we've selected for our ant, since we've configured the
NetLogo world to use only 1 pixel for each patch, and a turtle of size 1 (the
default size) fits inside a single patch.

iii. Set its initial heading to 0 (i.e. up or north).

Note that we didn't include any instructions for setting the initial location of
the ant. We'll learn how to do that soon enough – for now, we'll take
advantage of the fact that NetLogo initially places turtles at the coordinates
(0, 0) – i.e. the origin in the Cartesian coordinate system.

We now need to create a button to execute the new setup procedure:

3. Click on the Interface tab/button, so that the NetLogo world is visible again.

4. On the toolbar at the top of the Interface pane, select Button from the pull-down
menu (next to Add); then click on the white space to the right or left of the
NetLogo world.

NetLogo Tutorial Series: Langton's Ant 7

http://ccl.northwestern.edu/netlogo/docs/dict/heading.html
http://ccl.northwestern.edu/netlogo/docs/dict/size.html
http://ccl.northwestern.edu/netlogo/docs/dict/colorconstants.html
http://ccl.northwestern.edu/netlogo/docs/dict/colorconstants.html
http://ccl.northwestern.edu/netlogo/docs/dict/color.html
http://ccl.northwestern.edu/netlogo/docs/dict/create-turtles.html
http://ccl.northwestern.edu/netlogo/docs/dict/create-turtles.html
http://ccl.northwestern.edu/netlogo/docs/dict/clear-all.html
http://ccl.northwestern.edu/netlogo/docs/dict/breed.html

5. In the Button properties dialog that appears, make the following changes (as
necessary):

a. From the pull-down menu labeled Agent(s), select Observer.

b. Make sure that the Forever and Disable until ticks start checkboxes are not
checked.

c. In Commands, type setup.

d. If desired, type the text that you want to appear as the button title in Display
name (by default, whatever you have typed in Commands will be used as a
button title).

e. If desired, specify in Action key a shortcut letter that can be used to invoke
the button commands with the keyboard.

Except for possible differences in the optional items, you should now have
something like this:

6. Click the OK button; you now see your new button in the NetLogo interface.

7. To test your work so far, click the button you created; you should see a single ant
in the middle of the NetLogo world.

8 NetLogo Tutorial Series: Langton's Ant

Task 3: Teaching Our Ant How to Behave

Now we'll write a procedure implementing the ant behavior described at start of this
document. By convention, we often call the procedure containing or invoking the main
behaviors of our turtles the go procedure.

1. Click the Code tab/button.

2. After the end that marks the end of the setup procedure, add these lines to your
code:

to go
 ifelse (pcolor = black)
 [
 right 90
 set pcolor color
]
 [
 left 90
 set pcolor black
]
 forward 1
end

Be sure to put a space before and after the equals sign in the line that begins with
ifelse – those spaces, like many in NetLogo, are essential!

This code tells NetLogo that in order to go, a turtle must follow these steps:

a. If the color of the patch (pcolor) where the turtle is standing is black, then:

i. Turn right 90°.

ii. Set the patch's color (pcolor) to be the color of the turtle (color).

Otherwise:

i. Turn left 90°.

ii. Set the patch color (pcolor) to black.

b. Move forward a distance of 1.

NetLogo Tutorial Series: Langton's Ant 9

http://ccl.northwestern.edu/netlogo/docs/dict/forward.html
http://ccl.northwestern.edu/netlogo/docs/dict/colorconstants.html
http://ccl.northwestern.edu/netlogo/docs/dict/pcolor.html
http://ccl.northwestern.edu/netlogo/docs/dict/left.html
http://ccl.northwestern.edu/netlogo/docs/dict/color.html
http://ccl.northwestern.edu/netlogo/docs/dict/pcolor.html
http://ccl.northwestern.edu/netlogo/docs/dict/right.html
http://ccl.northwestern.edu/netlogo/docs/dict/pcolor.html

Now that we have a procedure containing the steps that we want our ant to follow, let's
create a button to tell the ant to execute that procedure repeatedly:

3. Switch back to the Interface pane.

4. Follow the same steps as those you previously followed to create the Setup
button; this time, we'll create a Go button.

5. In the button definition dialog that appears, specify the following:

a. Select Turtles from the Agent(s) pull-down menu.

b. Select/check the Forever checkbox. (This tells NetLogo to hold the button
down when it's clicked, and to ask the specified agents to execute the
specified commands repeatedly while the button is down.)

c. Leave Disable until ticks start unchecked.

d. In Commands, type go.

e. If desired, specify a Display name.

f. If desired, specify in Action key a shortcut key that can be used to execute the
button commands with the keyboard.

You should now have something like this (again, the Display name and Action
key values are optional; the important parts are the Agent(s) selection, the
Forever and Disable until ticks start checkboxes, and the Commands):

10 NetLogo Tutorial Series: Langton's Ant

6. Click the OK button to place your Go button in the NetLogo interface.

Task 4: Check For Errors – and Fix Them

If the titles of either of the buttons you've created are displayed in red text, that means
that NetLogo's telling you there's an error in the button definition, or that the
commands specified for the button aren't valid for the type of agent specified. Similarly,
if a yellow bar appears at the top of the Code window when you switch to another
window or when you click the Check button, this means that one or more procedures
has an error. Pay very close attention to spelling: computers aren't very good at
understanding that you meant “turtles”, if you wrote “trutles” (for example). Also, note
that square brackets and parentheses are not interchangeable in NetLogo; the same goes
for dashes, underscores, and spaces (e.g. NetLogo understands clear-all, but not
clear_all, nor clear all).

If you see an error message, read it carefully, then use the message and the highlighted
code to locate and correct the problem.

Task 5: The Moment of Truth – Running the Model

1. Click the Setup button you created, to prepare your model for execution.

2. Click the Go button to execute the model. (You may want to use the speed slider,
located at the top of the NetLogo world, to slow execution down, so that you can
see what's happening more easily.)

NetLogo Tutorial Series: Langton's Ant 11

http://ccl.northwestern.edu/netlogo/docs/dict/clear-all.html

Questions for Discussion

1. Are the results what you expected?

2. How would you characterize the results?

3. Were you able to identify different kinds of patterns in the result? Did the ant
behavior seem to be more orderly at some times than at others?

4. Did knowing exactly what the ant is doing in each iteration help you to predict
what the accumulated effect of thousands of iterations would be?

5. We've configured the NetLogo world as a torus; given that, what do you think
would change – in the long-term behavior – if the ant were to start in a different
initial position, or face in one of the other three primary directions?

6. Do you think adding a second ant to the model would make the overall behavior
more predictable, or less so?

Task 6: Adding a Second Ant to the Model

Before modifying the model, use the File/Save As… menu command to save it under a
new name; this will ensure that any changes won't result in breaking the model that
was working correctly at the end of the last task. (This is a good practice to follow when
making a significant change to any working computer program.)

Let's add a second ant to the model. (This time, the code to do this is left up to you.) For
now, the new ant should be placed as far as possible from the first. Clearly, the patches
located at the four corners of the NetLogo world are as far as it's possible to get from the
center patch. Pick any one of these four corner patches, and figure out its X and Y
coordinates in terms of the built-in reporters, min-pxcor, min-pycor, max-pxcor, and
max-pycor. (A reporter is simply an instruction that returns a value that can be used in
your code. The reporters mentioned here can be found in the World section of the
NetLogo Dictionary [3].)

Make the necessary additions to the setup procedure to create a second ant, with the
color of your choice, located in the corner you selected, facing south.

Remember that the rules to be followed by the second ant are the same as those
followed by the first. Given that, do you think we need any changes to the go
procedure? Do we need a second procedure with the same instructions?

12 NetLogo Tutorial Series: Langton's Ant

http://ccl.northwestern.edu/netlogo/docs/dict/max-pxcor.html
http://ccl.northwestern.edu/netlogo/docs/dict/max-pxcor.html
http://ccl.northwestern.edu/netlogo/docs/dict/min-pxcor.html
http://ccl.northwestern.edu/netlogo/docs/dict/min-pxcor.html

Review the definition of the Go button by right-clicking (or ctrl-clicking) on it, and
selecting Edit… from the pop-up menu. Do you think that when this button is pressed,
only the first ant will execute the go procedure, or will all ants do so?

Once you've completed the necessary changes to the model (and ensured that two ants
are created correctly when you click the Setup button), save and run the modified
model. Observe the model for several minutes (if necessary), until you're reasonably
confident that you can describe the effect of combining the behavior of two ants.

Questions for Discussion

1. Were the results what you expected?

2. Did the combined behavior differ from that observed with only one ant? If so, in
what ways did it differ?

3. Do you think the combined behavior would be affected by changing the relative
starting positions and headings of the two ants? (See if you can test your
predictions.)

Task 7: Giving Each Ant a Random Color, Location, and Heading

In preparation for creating a user-specified number of ants (in the next task), let's create
a version of the model we created in task 6 – but this time with random colors, random
locations, and random headings for both ants.

If you previously had two create-ants 1 commands in your setup, combine them now
into a single create-ants 2 command. In the command block following
create-ants 2, use setxy with the random-pxcor and random-pycor reporters to place
each ant on a random patch. For assigning a random color, use the one-of reporter to
select a random color from the base-colors list. For a random heading, you could use
arithmetic to transform the value of the random reporter to obtain one of the four values
{0, 90, 180, 270}; alternatively, you could construct a list of the possible headings, and
use one-of to select a random item from that list. For now, don't worry about the
possibility that the randomly selected colors, locations, or headings are the same for
both ants.

After dealing with any syntax error messages that appear, save and run the modified
model. You may need to let it run for some time to for the outcome to become apparent.

NetLogo Tutorial Series: Langton's Ant 13

http://ccl.northwestern.edu/netlogo/docs/dict/one-of.html
http://ccl.northwestern.edu/netlogo/docs/dict/random.html
http://ccl.northwestern.edu/netlogo/docs/dict/one-of.html
http://ccl.northwestern.edu/netlogo/docs/dict/random-pxcor.html
http://ccl.northwestern.edu/netlogo/docs/dict/random-pxcor.html
http://ccl.northwestern.edu/netlogo/docs/dict/setxy.html
http://ccl.northwestern.edu/netlogo/docs/dict/create-turtles.html
http://ccl.northwestern.edu/netlogo/docs/dict/create-turtles.html
http://ccl.northwestern.edu/netlogo/docs/dict/create-turtles.html
http://ccl.northwestern.edu/netlogo/docs/dict/create-turtles.html
http://ccl.northwestern.edu/netlogo/docs/dict/create-turtles.html

Questions for Discussion

1. Were the results what you expected?

2. Did the combined behavior appear to depend on the relative placement and
headings of the turtles?

14 NetLogo Tutorial Series: Langton's Ant

Task 8: Up to 14 Ants with Random Colors, Locations, Directions

Now that we've seen how to create two ants with random starting locations and
headings, we'll create a new version of the model that supports up to 14 ants.

Start by adding a slider to allow the user to set the number of ants to create. The
properties of this slider should be similar to these:

Next, modify your setup procedure to create the specified number of ants, and to place
those ants on distinct, randomly chosen patches, with each ant facing one of the four
main compass directions, chosen at random. Also, give the ants distinct colors, selected
at random from the NetLogo base-colors list.

There are multiple ways to complete this task. To place the turtles on distinct patches,
you could select a set of patches at random using n-of and the patches set. You could
then ask each of those patches to create a single ant, using sprout-ants. Alternatively,
you could use setxy to place each ant on a random patch, and repeat the placement
(with while) until the ant is on a patch by itself. For assigning distinct random colors,
the simplest approach is to use one-of to select a random item from a list of colors; one
complication is that you'll need to find a way to remove each from the list as it's
assigned to an ant. NetLogo won't let you modify the base-colors list, but you can put
a copy of that list into a variable you define, and then modify your copy of the list.

Questions for Discussion

1. After previously seeing the results with 1 and 2 ants, were the results with 3 or
more ants what you expected?

2. Even though each ant is a different color, their behavior is still conditioned only
on whether a patch is black or not. Can you think of some changes to the
behavior that would take different patch colors into account? What kinds of
patterns might result?

NetLogo Tutorial Series: Langton's Ant 15

http://ccl.northwestern.edu/netlogo/docs/dict/base-colors.html
http://ccl.northwestern.edu/netlogo/docs/dict/one-of.html
http://ccl.northwestern.edu/netlogo/docs/dict/while.html
http://ccl.northwestern.edu/netlogo/docs/dict/setxy.html
http://ccl.northwestern.edu/netlogo/docs/dict/sprout.html
http://ccl.northwestern.edu/netlogo/docs/dict/ask.html
http://ccl.northwestern.edu/netlogo/docs/dict/patches.html
http://ccl.northwestern.edu/netlogo/docs/dict/n-of.html
http://ccl.northwestern.edu/netlogo/docs/dict/base-colors.html

Challenge Tasks: Topology, Manners, and Color Awareness

Topology

So far, our ants have been moving on a toroidal terrain. Are there other topologies that
can be modeled in NetLogo, that can be used for Langton's ant? For example, if we
disable horizontal wrapping, vertical wrapping, or both, we might implement
“bouncing” off the resulting walls: when a step forward is not possible because an ant is
at the edge of the world's bounding box, the ant could “bounce” off the wall, and end
the step forward exactly where it started, but facing the opposite direction. Could this
be implemented as a version of our model? Can you predict the long-term effects of this
change, if any? (Before building a NetLogo model to answer the question, try it with
pencil, paper, and logic. Consider a short sequence of iterations moving away from the
wall vs. the sequence that brought the ant to the wall.)

Manners

Even though it appears that all of the ants are moving at the same time, they're actually
taking turns: NetLogo instructs one ant to execute its instruction up to a certain point; it
then does the same with the next ant, then the next ant, and so on. Since every ant is
repeating a virtually identical sequence of operations (test, turn, paint, move), and since
we're using a turtle button to invoke the go procedure – which causes the turtles agent
set to be shuffled only when the button is pressed, rather than every iteration – the ants
are taking turns in a mostly consistent, mostly predictable fashion.4

On the other hand, in models where an observer forever button invokes a procedure
with an ask turtles (or, in this case, ask ants), the order in which turtles take turns
changes from iteration to iteration. Would changing our model to work that way (which
would have the positive side effect of making it easier to keep a tick count, update plots,
etc.) affect the results obtained from 2, 3, or more ants? Is there anyway to have the
observer run the go procedure and still ensure that the agents always take turns in
exactly the same order?

Imagine that 2 ants end their respective turns standing on the same unpainted patch.
During the next turn, according to the protocol implicit in NetLogo's simulated

4 Actually, when we have a button that is addressed to agents other than the observer, the button is
roughly equivalent to an ask-concurrent. Given that, it's inadvisable to assume anything about how
NetLogo switches execution contexts among the agents – even if the agents are all executing the same
commands, there's no guarantee that NetLogo is passing control from one agent to another at exactly
the same point each time.

16 NetLogo Tutorial Series: Langton's Ant

http://ccl.northwestern.edu/netlogo/docs/dict/turtles.html
http://ccl.northwestern.edu/netlogo/docs/dict/ask.html

concurrency, one of the 2 ants will first flip the state of the patch from unpainted to
painted; the other will then flip it back to unpainted. In other words, even though the 2
ants end a turn on an unpainted patch, that patch will still be unpainted at the end of
the next turn. Is this appropriate? Can the model be modified to implement cooperation
between 2 or more ants starting a turn on the same patch, so that the painted vs.
unpainted state of the patch at the end of the turn will be the same as if only 1 ant were
on the patch? Will this affect the outcome?

Color Awareness

In the models we've built so far, the ants only distinguish between painted and
unpainted patches. Could the models (the single ant model and/or the multi-ant model)
be modified so that the ants distinguish colors from an ordered sequence of N colors
(including black/unpainted), with a corresponding rule sequence of N characters, each
of which is either “L” or “R”: the kth character of the sequence would indicate whether a
left or right turn should be taken when on the ant is on a square of color k; after turning,
the ant would paint the patch with color (k + 1). What would be the effect? (In this
alternative, any ant can paint a patch with any of the N colors; thus, the color of the ants
themselves are unimportant – indeed, it might be best in this case to hide the ants
altogether.)

NetLogo Tutorial Series: Langton's Ant 17

References

[1] A. Gajardo, “The Industrious Ant of Langton”, Mar. 2002. [Online]. Available:
http://www.ing-mat.udec.cl/~anahi/langton/. [Accessed: 26 Jan. 2013].

[2] “Christoper Langton”, Wikipedia, Jan. 2013. [Online]. Available:
http://en.wikipedia.org/wiki/Christopher_Langton. [Accessed: 26 Jan. 2013].

[3] NetLogo Dictionary, Oct. 2012. [Online]. Available:
http://ccl.northwestern.edu/netlogo/docs/index2.html. [Accessed: 26 Jan. 2013].

18 NetLogo Tutorial Series: Langton's Ant

http://ccl.northwestern.edu/netlogo/docs/index2.html
http://en.wikipedia.org/wiki/Christopher_Langton
http://www.ing-mat.udec.cl/~anahi/langton/

	NetLogo Tutorial Series: Langton's Ant
	Copyright and License
	Acknowledgments
	Introduction
	Task 1: Getting Started
	Task 2: Setting Up the Model
	Task 3: Teaching Our Ant How to Behave
	Task 4: Check For Errors – and Fix Them
	Task 5: The Moment of Truth – Running the Model
	Task 6: Adding a Second Ant to the Model
	Task 7: Giving Each Ant a Random Color, Location, and Heading
	Task 8: Up to 14 Ants with Random Colors, Locations, Directions
	Challenge Tasks: Topology, Manners, and Color Awareness
	References

