
151

 11 S-expressions, the Syntax of Lisp

Chapter

Objectives
The Lisp, s-expression introduced
 Basic syntactic unit for the language
Structures defined recursively
The list as data or function
 quote
 eval
Creating new functions in Lisp:
 defun
Control structures in Lisp
 Functions
 cond
 if
 Predicates
 and
 or
 not

Chapter
Contents

11.1 Introduction to Symbol Expressions
11.2 Control of Lisp Evaluation: quote and eval
11.3 Programming in Lisp: Creating New Functions
11.4 Program Control in Lisp: Conditionals and Predicates

 11.1 Introduction to Symbol Expressions

The S-
expression

The syntactic elements of the Lisp programming language are symbolic
expressions, also known as s-expressions. Both programs and data are
represented as s-expressions: an s-expression may be either an atom or a list.
Lisp atoms are the basic syntactic units of the language and include both
numbers and symbols. Symbolic atoms are composed of letters, numbers,
and the non-alphanumeric characters.

Examples of Lisp atoms include:
3.1416
100
hyphenated-name
some-global
nil

A list is a sequence of either atoms or other lists separated by blanks and
enclosed in parentheses. Examples of lists include:

(1 2 3 4)
(george kate james joyce)
(a (b c) (d (e f)))
()

Note that lists may be elements of lists. This nesting may be arbitrarily

152 Part II: Programming in Lisp

deep and allows us to create symbol structures of any desired form and
complexity. The empty list, “()”, plays a special role in the construction
and manipulation of Lisp data structures and is given the special name
nil. nil is the only s-expression that is considered to be both an atom
and a list. Lists are extremely flexible tools for constructing
representational structures. For example, we can use lists to represent
expressions in the predicate calculus:

(on block-1 table)
(likes bill X)
(and (likes george kate) (likes bill merry))

We use this syntax to represent predicate calculus expressions in the
unification algorithm of this chapter. The next two examples suggest ways
in which lists may be used to implement the data structures needed in a
database application.

((2467 (lovelace ada) programmer)
 (3592 (babbage charles) computer-designer))
((key-1 value-1) (key-2 value-2) (key-3 value-3))

An important feature of Lisp is its use of Lisp syntax to represent
programs as well as data. For example, the lists,

(* 7 9)
(– (+ 3 4) 7)

may be interpreted as arithmetic expressions in a prefix notation. This is
exactly how Lisp treats these expressions, with (* 7 9) representing the
product of 7 and 9. When Lisp is invoked, the user enters an interactive
dialogue with the Lisp interpreter. The interpreter prints a prompt, in our
examples “>”, reads the user input, attempts to evaluate that input, and, if
successful, prints the result. For example:

> (* 7 9)
63
>

Here, the user enters (* 7 9) and the Lisp interpreter responds with 63,
i.e., the value associated with that expression. Lisp then prints another
prompt and waits for more user input. This cycle is known as the read-eval-
print loop and is the heart of the Lisp interpreter.

When given a list, the Lisp evaluator attempts to interpret the first element
of the list as the name of a function and the remaining elements as its
arguments. Thus, the s-expression (f x y) is equivalent to the more
traditional looking mathematical function notation f(x,y). The value
printed by Lisp is the result of applying the function to its arguments. Lisp
expressions that may be meaningfully evaluated are called forms. If the user
enters an expression that may not be correctly evaluated, Lisp prints an
error message and allows the user to trace and correct the problem. A
sample Lisp session appears below:

> (+ 14 5)
19
> (+ 1 2 3 4)
10
> (– (+ 3 4) 7)
0

 Chapter 11 S-expresssions, the Syntax of Lisp 153

> (* (+ 2 5) (– 7 (/ 21 7)))
28
> (= (+ 2 3) 5)
t
> (> (* 5 6) (+ 4 5))
t
> (a b c)
Error: invalid function: a

Several of the examples above have arguments that are themselves lists, for
example the expression (– (+ 3 4) 7). This indicates the
composition of functions, in this case “subtract 7 from the result of adding
3 to 4”. The word “result” is emphasized here to indicate that the
function—is not passed the s-expression “(+ 3 4)” as an argument but
rather the result of evaluating that expression.

In evaluating a function, Lisp first evaluates its arguments and then applies
the function indicated by the first element of the expression to the results
of these evaluations. If the arguments are themselves function expressions,
Lisp applies this rule recursively to their evaluation. Thus, Lisp allows
nested function calls of arbitrary depth. It is important to remember that,
by default, Lisp evaluates everything. Lisp uses the convention that
numbers always evaluate to themselves. If, for example, 5 is typed into the
Lisp interpreter, Lisp will respond with 5. Symbols, such as x, may have a
value bound to them. If a symbol is bound, the binding is returned when the
symbol is evaluated (one way in which symbols become bound is in a
function call; see Section 13.2). If a symbol is unbound, it is an error to
evaluate that symbol.

For example, in evaluating the expression (+ (* 2 3) (* 3 5)),
Lisp first evaluates the arguments, (* 2 3) and (* 3 5). In
evaluating (* 2 3), Lisp evaluates the arguments 2 and 3, which return
their respective arithmetic values; these values are multiplied to yield 6.
Similarly, (* 3 5) evaluates to 15. These results are then passed to the
top-level addition, which is evaluated, returning 21. A diagram of this
evaluation appears in Figure 11.1.

Figure 11.1. Tree representation of the evaluation of a simple Lisp function

In addition to arithmetic operations, Lisp includes a large number of
functions that operate on lists. These include functions to construct and
combine lists, to access elements of lists, and to test various properties. For
example, list takes any number of arguments and constructs a list of
those elements. nth takes a number and a list as arguments and returns

154 Part II: Programming in Lisp

the indicated element of the list. By convention, nth begins counting with
0. Examples of these and other list manipulation functions include:

> (list 1 2 3 4 5)
(1 2 3 4 5)
> (nth 0 ‘(a b c d))
a
> (nth 2 (list 1 2 3 4 5))
3
> (nth 2 ‘((a 1) (b 2) (c 3) (d 4)))
(c 3)
> (length ‘(a b c d))
4
> (member 7 ‘(1 2 3 4 5))
nil
> (null ())
t

S-expressions
Defined

DEFINITION
S-EXPRESSION
An s-expression is defined recursively:

An atom is an s-expression.

If s1, s2, …, sn are s-expressions, then so is the list (s1 s2
… sn).

A list is a non-atomic s-expression.

A form is an s-expression that is intended to be evaluated. If it is a
list, the first element is treated as the function name and the
subsequent elements are evaluated to obtain the function
arguments.

In evaluating an s-expression:

If the s-expression is a number, return the value of the number.

If the s-expression is an atomic symbol, return the value bound to
that symbol; if it is not bound, it is an error.

If the s-expression is a list, evaluate the second through the last
arguments and apply the function indicated by the first argument
to the results.

Lisp represents both programs and data as s-expressions. Not only does
this simplify the syntax of the language but also, when combined with
the ability to control the evaluation of s-expressions, it makes it easy to
write programs that treat other Lisp programs as data. This simplifies the
implementation of interpreters in Lisp.

 11.2 Control of Lisp Evaluation

Using quote
and eval

In the previous section, several of the examples included list arguments
preceded by a single quotation mark: ‘. The ‘, which can also be
represented by the function quote, is a special function which does not
evaluate its argument but prevents evaluation, often because its argument is
to be treated as data rather than as an evaluable form.

 Chapter 11 S-expresssions, the Syntax of Lisp 155

When evaluating an s-expression, Lisp will first try to evaluate all of its
arguments. If the interpreter is given the expression (nth 0 (a b c
d)), it will first try to evaluate the argument (a b c d). This
attempted evaluation will result in an error, because a, the first element of
this s-expression, does not represent any known Lisp function. To prevent
this, Lisp provides the user with the built-in function quote. quote
takes one argument and returns that argument without evaluating it. For
example:

> (quote (a b c))
(a b c)
> (quote (+ 1 3))
(+ 1 3)

Because quote is used so often, Lisp allows it to be abbreviated by a
single quotation mark. Thus, the preceding examples could be written:

> ‘(a b c)
(a b c)
> ‘(+ 1 3)
(+ 1 3)

In general, quote is used to prevent the evaluation of arguments to a
function when these arguments are intended to be treated as data rather
than evaluable forms. In the earlier examples of simple arithmetic, quote
was not needed, because numbers always evaluate to themselves. Consider
the effect of quote in the following calls to the list function:

> (list (+ 1 2) (+ 3 4))
(3 7)
> (list ‘(+ 1 2) ‘(+ 3 4))
((+ 1 2) (+ 3 4))

In the first example, the arguments are not quoted; they are therefore
evaluated and passed to list according to the default evaluation scheme.
In the second example, quote prevents this evaluation, with the s-
expressions themselves being passed as arguments to list. Even though
(+ 1 2) is a meaningful Lisp form, quote prevents its evaluation. The
ability to prevent evaluation of programs and manipulate them as data is an
important feature of Lisp.

As a complement to quote, Lisp also provides a function, eval, that
allows the programmer to evaluate an s-expression at will. eval takes one
s-expression as an argument: this argument is evaluated as is usual for
arguments to functions; however, the result is then evaluated again and this
final result is returned as the value of eval. Examples of the behavior of
eval and quote:

> (quote (+ 2 3))
(+ 2 3)
> (eval (quote (+ 2 3))) ;eval undoes the effect of quote
5
> (list ‘* 2 5) ;this constructs an evaluable s-expression
(* 2 5)
> (eval (list ‘* 2 5)) ;this constructs and evaluates the s-
expression
10

156 Part II: Programming in Lisp

The eval function is precisely what is used in the ordinary evaluation of
s-expressions. By making quote and eval available to the programmer,
Lisp greatly simplifies the development of meta-interpreters: variations on the
standard Lisp interpreter that define alternative or extended behaviors for
the Lisp language. This important programming methodology is illustrated
in the “infix-interpreter” of Section 15.2 and the design of an expert system
shell in Section 17.2.

 11.3 Programming in Lisp: Creating New Functions

Using defun Common Lisp includes a large number of built-in functions, including:
- A full range of arithmetic functions, supporting integer, rational, real

and complex arithmetic.
- A variety of looping and program control functions.
- List manipulation and other data structuring functions.
- Input/output functions.
- Forms for the control of function evaluation.
- Functions for the control of the environment and operating system.

Lisp includes too many functions to list in this chapter; for a more detailed
discussion, consult a specialized Lisp text, the manual for your particular
implementation, or see Chapter 20.

In Lisp, we program by defining new functions, constructing programs
from this already rich repertoire of built-in functions. These new functions
are defined using defun, which is short for define function. Once a function
is defined it may be used in the same fashion as functions that are built into
the language.

Suppose, for example, the user would like to define a function called
square that takes a single argument and returns the square of that
argument. square may be created by having Lisp evaluate the following
expression:

(defun square (x)
 (* x x))

The first argument to defun is the name of the function being defined;
the second is a list of the formal parameters for that function, which must
all be symbolic atoms; the remaining arguments are zero or more s-
expressions, which constitute the body of the new function, the Lisp code
that actually defines its behavior. Unlike most Lisp functions, defun does
not evaluate its arguments; instead, it uses them as specifications to create a
new function. As with all Lisp functions, however, defun returns a value,
although the value returned is simply the name of the new function.

The important result of evaluating a defun is the side effect of creating a
new function and adding it to the Lisp environment. In the above example,
square is defined as a function that takes one argument and returns the
result of multiplying that argument by itself. Once a function is defined, it
must be called with the same number of arguments, or “actual parameters,” as
there are formal parameters specified in the defun. When a function is
called, the actual parameters are bound to the formal parameters. The body of
the function is then evaluated with these bindings. For example, the call

 Chapter 11 S-expresssions, the Syntax of Lisp 157

(square 5) causes 5 to be bound to the formal parameter x in the body
of the definition. When the body (* x x) is evaluated, Lisp first evaluates
the arguments to the function. Because x is bound to 5 by the call, this leads
to the evaluation of (* 5 5).
More concisely, the syntax of a defun expression is:

(defun <function name>

 (<formal parameters>) <function body>)

In this definition, descriptions of the elements of a form are enclosed in
angle brackets: < >. We use this notational convention throughout this
text to define Lisp forms. Note that the formal parameters in a defun are
enclosed in a list.

A newly defined function may be used just like any built-in function.
Suppose, for example, that we need a function to compute the length of
the hypotenuse of a right triangle given the lengths of the other two sides.
This function may be defined according to the Pythagorean theorem, using
the previously defined square function along with the built-in function
sqrt. We have added a number of comments to this sample code. Lisp
supports “end of line comments”: it ignores all text from the first “;” to
the end of the same line.

(defun hypotenuse (x y) ;the length of the hypotenuse is
 (sqrt (+ (square x) ;the square root of the sum of
 (square y)))) ;the squares of the other sides.

This example is typical in that most Lisp programs are built up of relatively
small functions, each performing a single well-defined task. Once defined,
these functions are used to implement higher-level functions until the
desired “top-level” behavior has been defined.

 11.4 Program Control in Lisp: Conditionals and Predicates

Using cond Lisp branching is also based on function evaluation: control functions
perform tests and, depending on the results, selectively evaluate alternative
forms. Consider, for example, the following definition of the absolute-
value function (note that Lisp actually has a built-in function, abs, that
computes absolute value):

(defun absolute-value (x)

 (cond ((< x 0) (– x)) ;if x < 0, return –x
 ((>= x 0) x))) ;else return x

This example uses the function, cond, to implement a conditional branch.
cond takes as arguments a number of condition–action pairs:

(cond (< condition1 > < action1 >)

 (< condition2 > < action2 >)

 …

 (< conditionn > < actionn >))

Conditions and actions may be arbitrary s-expressions, and each pair is
enclosed in parentheses. Like defun, cond does not evaluate all of its
arguments. Instead, it evaluates the conditions in order until one of them
returns a non-nil value. When this occurs, it evaluates the associated action

158 Part II: Programming in Lisp

and returns this result as the value of the cond expression. None of the
other actions and none of the subsequent conditions are evaluated. If all of
the conditions evaluate to nil, cond returns nil.
An alternative definition of absolute-value is:

(defun absolute-value (x)

 (cond ((< x 0) (– x)) ;if x < 0, return –x
 (t x))) ;else, return x

This version notes that the second condition, (>= x 0), is always true if
the first is false. The “t” atom in the final condition of the cond
statement is a Lisp atom that roughly corresponds to “true.” By
convention, t always evaluates to itself; this causes the last action to be
evaluated if all preceding conditions return nil. This construct is
extremely useful, as it provides a way of giving a cond statement a default
action that is evaluated if and only if all preceding conditions fail.

Lisp Predicates Although any evaluable s-expressions may be used as the conditions of a
cond, generally these are a particular kind of Lisp function called a
predicate. A predicate is simply a function that returns a value of either true
or false depending on whether or not its arguments possess some property.
The most obvious examples of predicates are the relational operators
typically used in arithmetic such as =, >, and >=. Here are some examples
of arithmetic predicates in Lisp:

> (= 9 (+ 4 5))
t
> (>= 17 4)
t
> (< 8 (+ 4 2))
nil
> (oddp 3) ;oddp tests whether or not its argument is odd
t
> (minusp 6) ;minusp tests whether its argument < 0
nil
> (numberp 17) ;numberp tests whether its argument is numeric
t
> (numberp nil)
nil
> (zerop 0) ;zerop is true if its argument = 0, nil otherwise
t
> (plusp 10) ;plusp is true if its argument > 0
t
> (plusp –2)
nil

Note that the predicates in the above examples do not return “true” or
“false” but rather t or nil. Lisp is defined so that a predicate may return
nil to indicate “false” and anything other than nil (not necessarily t) to
indicate “true.” An example of a function that uses this feature is the
member predicate. member takes two arguments, the second of which
must be a list. If the first argument is a member of the second, member
returns the suffix of the second argument, containing the first argument as
its initial element; if it is not, member returns nil. For example:

 Chapter 11 S-expresssions, the Syntax of Lisp 159

> (member 3 ‘(1 2 3 4 5))
(3 4 5)

One rationale for this convention is that it allows a predicate to return a
value that, in the “true” case, may be of use in further processing. It also
allows any Lisp function to be used as a condition in a cond form.
As an alternative to cond, the if form takes three arguments. The first is
a test. if evaluates the test; if it returns a non-nil value, the if form
evaluates its second argument and returns the result, otherwise it returns
the result of evaluating the third argument. In cases involving a two-way
branch, the if construct generally provides cleaner, more readable code
than cond. For example, absolute-value could be defined using the
if form:

(defun absolute-value (x)

 (if (< x 0) (– x) x))

In addition to if and cond, Lisp offers a wide selection of alternative
control constructs, including iterative constructs such as do and while
loops. Although these functions provide Lisp programmers with a wide
range of control structures that fit almost any situation and programming
style, we will not discuss them in this section; the reader is referred to a
more specialized Lisp text for this information.

One of the more interesting program control techniques in Lisp involves
the use of the logical connectives and, or, and not. not takes one
argument and returns t if its argument is nil and nil otherwise. Both
and and or may take any number of arguments and behave as you would
expect from the definitions of the corresponding logical operators. It is
important to note, however, that and and or are based on conditional
evaluation.

In evaluating an and form, Lisp evaluates its arguments in left-to-right
order, stopping when any one of the arguments evaluates to nil or the
last argument has been evaluated. Upon completion, the and form returns
the value of the last argument evaluated. It therefore returns non-nil only
if all its arguments return non-nil. Similarly, the or form evaluates its
arguments only until a non-nil value is encountered, returning this value
as a result. Both functions may leave some of their arguments unevaluated,
as may be seen by the behavior of the print statements in the following
example. In addition to printing its argument, in some Lisp environments
print returns a value of nil on completion.

> (and (oddp 2) (print “eval second statement”))
nil
> (and (oddp 3) (print “eval second statement”))
eval second statement
> (or (oddp 3) (print “eval second statement”))
t
> (or (oddp 2) (print “eval second statement”))
eval second statement

Because (oddp 2) evaluates to nil in the first expressions, the and
simply returns nil without evaluating the print form. In the second
expression, however, (oddp 3) evaluates to t and the and form then

160 Part II: Programming in Lisp

evaluates the print. A similar analysis may be applied to the or
examples. It is important to be aware of this behavior, particularly if some
of the arguments are forms whose evaluations have side effects, such as the
print function. The conditional evaluation of logical connectives makes
them useful in controlling the flow of execution of Lisp programs. For
example, an or form may be used to try alternative solutions to a problem,
evaluating them in order until one of them returns a non-nil result.

 Exercises

 1. Which of the following are legitimate s-expressions? If any is not,
explain why it isn’t.

(geo rge fred john)
(a b (c d (e f (g h)))
(3 + 5)
(quote (eval (+ 2 3)))
(or (oddp 4) (* 4 5 6)

 2. Create a small database in Lisp for some application, such as for
professional contacts. Have at least five fields in the data-tuples where at
least one of the fields is itself a list of items. Create and test your own
assess functions on this database.

 3. Create a cond form that uses and and or that will test the items in the
database created in exercise 2. Use these forms to test for properties of the
data-tuples, such as to print out the name of a male person that makes
more than a certain amount of money.

 4. Create a function called my-member that performs the function of the
member example that was presented in Section 11.4.

