
Some Java
Fundamentals

Chapter 2

Chapter Contents

Chapter Objectives
2.1 Example: A Payroll Program
2.2 Types, Variables, and Constants
Part of the Picture: Data Representation
2.3 Some Basic Program Features
2.4 Java Documentation
2.5 Introduction to GUIs: A GUI Greeter

Chapter Objectives
Observe Java primitive types and
their literals
Explain Java syntax rules
Contrast primitive types and
reference types
Study variables and constants
Investigate internal representation
of primitive types

Chapter Objectives
Observe the structure and
declaration of classes
Discover need for import
statements
Note how to use methods
Study Java API organization
Look at designing and building
simple GUI applications

2.1 Example: A
Payroll Program

Computerize the calculation of employee
wages.

Employees are paid a fixed hourly rate
They can work any number of hours
No overtime is paid

Use object-oriented design
Describe behavior
Identify objects
Identify operations
Organize objects & operations in an algorithm

Behavior
Display on the screen a prompt for …

hours worked
hourly rate

Enter values via keyboard
Compute wages
Display calculations with descriptive
label

Objects
Description of

object
Type kind Name

the program ?? ?? ??

screen Screen variable theScreen

prompt for hrs and rate String constant none

number hrs worked double variable hoursWorked

hourly pay rate double variable hourlyRate

keyboard Keyboard variable theKeyboard

wages double variable wages

descriptive label String constant none

Operations

Display strings (prompts) on screen
Read numbers for hours and rate
(restrict to non negatives)
Compute wages
Display real value (wages) and a
string on screen

Algorithm
1. Construct theScreen and theKeyboard
2. Ask theScreen to display prompt for hours
3. Ask theKeyboard to read value and store in

hoursWorked
4. Ask theScreen to display prompt for rate
5. Ask theKeyboard to read value and store in

hourlyRate
6. Compute wages = hoursWorked x

hourlyRate
7. Ask theScreen to display wages and

descriptive label

Coding, Testing,
Maintenance

Note Figure 2.1
Code
Sample runs

Maintenance
Enhance to include overtime wages
Display output using $999.99 style
format

Note revision Figure 2.2

2.2 Types, Variables,
and Constants

Types of objects must be declared
before they are used
Declaration of variables requires a
certain syntax
In declaration, the name of a
variable is associated with a type

Types
 void

denotes the absence of any type
 String []

in general, a sequence of characters
 Keyboard, Screen

associated to the Input and Output (I/O)
devices normally used

 double
associated with real (numbers with
fractions) values

Primitive Types
 byte, short, int, and long

for integer values of various sizes
 float and double

for real (rational) values of differing
accuracy

 boolean
for logical (true/false) values

 char
for individual characters

Reference Types
Built of other types

Example: String, Screen, Keyboard
Also considered “class types”
Reference types

begin with uppercase letter
not known to Java compiler, must be
explained

Contrast primitive types
begin with lower case letter
are known to Java compiler

Literals – Examples
Integers

 4 19 -5 0 1000
Doubles

 3.14 0.0 -16.123
Strings

 "Hi Mom" "Enter the number : "
Character

 'A' 'X' '9' '$' '\n'
Boolean

 true false

Identifiers
Names given to variables, objects,
methods
Must not be a Java keyword

See Appendix B for list of keywords
May begin with a letter or the underline
character _
Followed by any number of characters,
digits, or _ (note, no blanks)
Identifiers should be well chosen

use complete words (even phrases)
this helps program documentation

Conventions for
Identifiers

Classes
Names given in lowercase except for
first letter of each word in the name

Variables
Same as classes, except first letter is
lowercase

Constants
All caps with _ between words

Methods
like variable names but followed by
parentheses

Declaration Statements
Purpose is to provide compiler with
meaning of an identifier
Accomplished in declaration statement
Some declarations (classes and methods)
are provided and must be imported
import ann.easyio.*;
Variables to store values must be declared

they can be initialized at time of declaration
initialized with a literal or even with keyboard
input
if not explicitly initialized, the default initial
value is zero

Values Held by
Variables

Primitive-type variables
store a value of the specified type (int,
double)

Reference-type variables
store an address of memory location
where value is stored
thought of as a handle for the object
that actually stores the values

Variable Declaration
Syntax

Syntax:
type variable_name;
or
type variable_name = expression;
Note

 type must be known to the compiler
 variable_name must be a valid identifier
 expression is evaluated and assigned to
variable_name location
 In the first form, a default value is given (0,
false, or null, depending on type)

Constants
Value of object cannot be changed

for oft used math values such as PI
for values which will not change for a given
program
improve readability of program
facilitate program maintenance

Declaration syntax:
final type CONSTANT_NAME = expression;

 final is a Java keyword, makes a constant
 type must be known by compiler
 CONSTANT_NAME must be valid identifier
 expression evaluated
should be placed at beginning of class or
method

Part of the
Picture: Data

Representation
How literals of the primitive types are
represented and stored in memory.

Representing Integers
Binary digits used to represent base 10
numbers
58ten = 111010two

The 1s and 0s are stored as binary digits in
specified number of bits (32 shown in text)

Negative numbers often stored in “two's
complement” representation

Invert values, switch 1s for 0s and 0s for 1s
Leading bit specifies the sign (0 for +, 1 for -)

If a number is too large for the number of
bits allocated, the condition is overflow

Representing Reals
Consider
22.62510 = 10110.1012= 1.01101012 x 24

The 1.0110101 is stored as the “mantissa”
The 4 is stored as the exponent or
“characteristic”

IEEE format
Leftmost bit is sign for mantissa
8 bits for exponent
Rightmost 23 bits store mantissa

Problems include
Overflow – number too large for exponent
Underflow – number too small for exponent
Roundoff error – conversion between decimal &
binary

Representing
Characters

A numeric code is assigned to each
symbol to be represented
ASCII uses 8 bits

Very common for programming
languages
Limited to 128 characters

Unicode uses 16 bits
newer, used by Java
Allows 65,536 different symbols

Representing
Booleans

Only two possible values
 true and false

Only need two possible numbers,
0 and 1
Single bit is all that is needed

2.3 Some Basic
Program Features

Comments and documentation
Classes
Importing packages
Using Methods

Comments and Opening
Documentation

Opening documentation should include:
description of what program does
input needed, resulting output
special techniques, algorithms used
instructions for use of program
Name of programmer, date, modification
history

Opening documentation is multiline
between /* */ character pairs

Inline comments
following // double slashes

Comments ignored by compiler

Classes
Classes built for real world objects that
cannot be represented using available
types
A class is an “extension” of Java
Definition of class: “a group or category
of things that have a set of attributes in
common.”
In programming: a pattern, blueprint, or
template for modeling real world
objects which have similar attributes

Class Declaration
Syntax:
class className extends existingClassName
{
// Attributes (variables & constants)
// and behaviors (methods)
}
Where

 className is the name of a new reference type
 existingClassName is any class name known
to the compiler

 { and } mark the boundaries of the
declaration

Purpose of Class
Declaration

Creates a new type that the
compiler can use to create objects
This new type inherits all attributes
and behaviors of
existingClassName
Note:

 Object is often used for
existingClassName
in this case the extends object may be
omitted

Importing Packages
Related classes grouped together into a
container called a “package”

program specifies where to find a desired class
Fully-qualified name
package_name1.ClassName or
package_name1.package_name2.ClassName
By using the import package_name1 the
prefixes using the dot notation can be
omitted
Syntax
import package_name.* ; or
import package_name.ClassName;

where ClassName is any class stored with
package_name

Using Methods
Call, invoke, or send a message to
the method of an existing object
 theScreen.print(" … ");

 theScreen is the object
 print() is the method being called

Syntax of the call:
the name of the object
the dot ‘.’
the name of the method
arguments

Value Returning
Methods

Some methods return a value
Programmer must also do something with
the value to be returned

assign the value to a variable
variable_name = objectName.methodName(arguments);

send the value to another method as the
parameter

2.4 Java
Documentation – API

Note the sample programs so far …
For several tasks, we found a Java method to
solve it
Other times the programmer writes the class and
methods required

Java designers have provided over 1600
classes

Called the Java Application Programmer's
Interface or API
Each class provides variety of useful methods
Classes grouped into packages

API Documentation
Finding needed package or class
Hypertext-based documentation
system, accessible on World Wide
Web
First page of web site has 3 frames

Alphabetical list of packages
Alphabetical list of classes
A “main” frame that initially lists the
Java packages

Web Based
Documentation

Clicking on the name of the package
in the “main” frame produces a list
of the classes in that package
Click on name of a class displays
information about that class

List of fields (variables, constants)
List of methods for the class

Click on a method for a detailed
description of the methods

2.5 Introduction to GUIs:
A GUI Greeter

Problem Scenario
Write a program with graphical user
interface that

displays a window with prompt for name
box to enter name
OK and Cancel buttons
User enters name, clicks OK
Second window gives greeting, uses
name, displays a button for terminating
program

Objects
Description
of Object

Type Kind Name

the program ?? ?? GUIgreeter

window for
prompt input dialog

prompt for
user’s name

String constant

window for
greeting message dialog

user’s name String varying name

personalized
greeting

String varying

Operations
Display a window containing a
prompt and a text box
Read a String from the window's
text box
Hide the window
Display second window with
personalized greeting
Terminate program

Coding in Java

Note source code in Figure 2.3
Application GUIGreeter
Note run of program

Window for prompt and input
Window for Greeting

Note improved version, Figure 2.4

Input Dialog
Input dialogs are GUI widgets

used to get text input from user
Example
showInputDialog(prompt);

 prompt can be
a string
a graphic image
another Java Object

Message Dialog

A GUI widget for displaying information
Example

showMessageDialog(null, message, title, messageKind);

Message kind
can be: error, information, warning, question,
or plain
used by interface manager to display proper
icon

