
Using Control
Structures in

Methods

Chapter 5

Chapter Contents
Objectives
5.1 Example: Improved Payroll Program
5.2 Methods That Use Selection
5.3 Methods That Use Repetition
5.4 Graphical/Internet Java:
 Old MacDonald … Applet Revisited
PART OF THE PICTURE:
 Computability Theory
PART OF THE PICTURE:
 Numerical Computing

Objectives
Give problem example requiring new
control structures
Take first look at basic control structures

sequential
selection
repetition

Study the if statement used for selection

Objectives
See use of for statement for counter-
controlled repetitions
See use of for statement used as
“forever” loops
Give applet example to generate output
Brief indication of area of computability
theory
Describe use of numerical methods

5.1 Example:
Improved Payroll

Program
Previous program (Figure 2.1) now
must be upgraded
Need capability of including
overtime pay
Desire for program to handle
multiple employees, not just one

Additional Objects
Objects Type Kind Name

In addition to previous objects …

regular wages double variable regularPay

overtime pay
factor

double constant OVERTIME_FACTOR

overtime wages double variable overtimePay

copmbined wages double variable wages

Additional Operations

Previous Operations …
 … plus …
Compute regularPay, overtimePay,
wages

Display real values (wages)
Repeat steps for each employee

Calculating Wages
More complicated than before:
if hoursWorked ≤ 40, calculate:
 regularPay = hoursWorked x
 hourlyRate;
 overtimePay = 0;
Otherwise, calculate:
 regularPay = 40 x hourlyRate
 overtimePay = OVERTIME_FACTOR x
 (hoursWorked – 40) x
hourlyRate
wages = regularPay + overtimePay

● Construct Screen
 and Keyboard objects
● Display prompt for
 number of employees
● Read integer into
 numEmployees
● Loop from 1 through
 numEmployees

Algorithm for New
Payroll Program

● For each employee …
 ● Display prompts for
 hours, rate
 ● Read doubles into
 hoursWorked,
 hourlyRate
 ● Calculate wages
 according to previous
 algorithm
 ● Display results with
 message

Coding and Testing
Note source code Figure 5.1

looping structure
for(int count = 1 ;
 count <= numEmployees ;
 count++)
 { … }
Selection structure
if(hours worked <= 40)
 { … }
else
 { … }
Note sample runs

5.2 Methods That Use
Selection

Problem:
Given two real values, return the
minimum of the two values
Behavior for our method

receive two real values from caller
if first less than second, return first
otherwise return second

Objects

Object Type Kind Movement Name

1st value double variable received first

2nd value double variable received second

minimum
value

double variable returned

Operations
Receive two real values from
method's caller
Compare the two values to see if
one is less than the other
Do one (but not both of the
following)

Return the first value
Return the second value

View Algorithm in
Source Code

public static double minimum
(double first, double second)
{
 if (first < second)
 return first;
 else
 return second;
}

Note driver program source code
with sample runs, Figure 5.3

Programming
Structures

Sequential Execution
Like traveling down a straight road
Pass through a sequence of points or
locations

Selective Execution
Like coming to a fork in the road
We either take one direction or the
other

Programming
Structures

Selective Execution

Sequential
Execution

Statement

Statement

Statement Stmt 1

?

Stmt 2

true false

Selective
Execution

Alternate Graphical
Representation

?true false

Statement
1
Statement

2

Statement
1

Statement
2

Statement
n

...

Sequential
Execution

Selective
Execution

IF Statement
Two basic forms

if(boolean_expression)
 statement

if(boolean_expression)
 statement1
 else
 statement2

Statement is only executed
if boolean_expression is
true

Statement1 is executed if
boolean_expression is
true; otherwise statement2
is executed

Blocks
An if statement may need to control
several statements
A group or “block” of statements can
be specified with braces
{
 statement1
 statement2
 . . .
}

Note use in wage calculation

Checking Preconditions
Some algorithms work correctly only if
certain conditions are true

no zero in a denominator
non negative value for square root

 if statement enables checking
public static double f(double x)
{ if (x >=0)
 return 3.5*Math.sqrt(x);
 else {
 System.err.println("invalid x");
 return 0.0;
 }
}

Style
Key issue is how well humans (not
computers) can read the source
code
Form for if statements

Align the if and the else
Use indentation to mark statements
being selected (controlled) by the if
and else

Nested ifs

Note the syntax of the if statement
it controls whether a statement will be
executed
this statement could be another if

Referred to as a “nested” if
if(boolean_expression1)
 statement1
else if(boolean_expression2)
 statement2

Method Signature
Signature (unique identification) of a
method made up of

the name of the method
the list of the types of parameters

This means we could have two methods
with the same name but different types
and/or numbers of parameters
public static double minimum
 (double first, double second) …
public static int minimum
 (int first, int second)

Method Overloading

Two different methods with the
same name are said to be
“overloaded”
The name of a method can be
overloaded, provided no two
definitions of the method have the
same signature

5.3 Methods That Use
Repetition

Problem: Computing factorials

Write a method that given an integer
n >= 0, computes n factorial (n!)

n! =

{
1 n = 0

1 × 2 × . . . × n n > 0

Object-Centered
Design

Behavior– repeated multiplication
Objects

Object Type Kind Movement Name

integer >=0 variable int received n

running product variable int returned product

counter variable int (local) count

Operations
1. Check precondition (n >= 0)
2. Define, initialize two integer variables

 product and count
3. Multiply product x count, assign

result to product
4. Increment count
5. Repeat 3. and 4. so long

as count <= n

Algorithm
Receive n from caller, check
precondition
Initialize product to 1
Repeat following for each value of
count in range 2 through n
 Multiply product by count
Return product

Coding
Note factorial () method,
Figure 5.4 in text
Note Driver for Method factorial
(), Figure 5.5 in text
Note test runs

with legal arguments
with invalid argument

Repeated Execution:
The for Statement
Make analogy to a roadway

Think of a race track
Enter the track
Circle for a set number of times
Leave the track

Three parts to the repetition
mechanism

Initialization
Repeated execution
Termination

Flow Graph Example
/* given */
for (int count=2; count <= n; count++)
 product *= count

product *= count;

count <= n

true

false

int count = 2

count++;

Definite iteration

while count <= n

int count = 2

product *= count;

count++;

for Statement Syntax
for (initExpression;
 booleanExpression;
 stepExpression)
 statement;
for is a keyword
initExpression: usually an
assignment
booleanExpression: usually a
comparison (think “while”)
stepExpression: usually an increment

Typical for Execution

1. Loop control variable given initial value
2. booleanExpression checked

1. If it is true, statement executed
2. If false, loop terminates

3. Increment of loop control variable
4. Back to step 2

for (initExpression;
 booleanExpression
 stepExpression)
 statement;

Alternate Version of
for

Specifications inside the
parentheses are not required

only the two semicolons
for (; ;)
 {. . .
 if (…) break;
 }
break statement jumps flow of
control out of for loop (See Figure
5.6 in text)

Termination or
exit condition

Indefinite iteration

Sentinel Based Loop
Often user asked to enter a sentinel value
When sentinel value found in if (),
loop terminates

for (; ;)
 {. . .
 if (value is sentinel) break;
 }

Called “sentinel-based” input processing

Forever Loops
Using for ()
for (; ;)
 { . . .
 if (booleanExpression) break;
 . . . }
Using while ()
 while (true)
 { . . .
 if (booleanExpression) break;
 . . . }
Note: something in the loop must cause
booleanExpression to evaluate to true

Otherwise the loop does go forever

Testing, Maintaining
factorial()

Method works correct for values 1 –
12
Incorrect value for 13!

Algorithm is correct
Problem is use if type int
13! exceeds maximum int value

Solution is to change type returned
(and received) by the method to
Note new version and test runs,
Figure 5.7 of text

5.4 Graphical/Internet
Java: Old MacDonald…

Applet Revisited
Write versions of the applet using
more flexible structure
Write for () loop to receive inputs
from user

name of animal
sound of animal

See source code Figure 5.8, Text

Part of the Picture:
Computability Theory

Note the capabilities now available to us
sequential execution
selection (branching)
repetition (looping)

Operations with

repetition,

selection, and

sequence

Operations with

selection and

sequence

Operations with

sequence only

provide more
capability

Computability Theory
Considerations

What kinds of operations can/cannot
be computed?
How can be operations be classified

What relationships exist among classes
What is most efficient algorithm for
solving a particular problem

Computability Theory

Represent programs abstractly
use mathematical model

Provides language and hardware
independence

gives theory with timelessness

Part of the Picture:
Numerical Methods

Mathematical models used to solve
variety of problems

Often involve solutions to different
kinds of equations

Examples
Curve fitting
Equation solving
Integration
Differential equations
Solving linear systems

Trapezoid Method for
Approximating Areas

The sum of the areas of these trapezoids is approximately
the area under the graph of f(x) between the points x0 and

xn. The approximation improves as dx gets smaller

x0 xn!x

f(x)

Trapezoidal Method

area = ∆x

(
f(x0) + f(xn)

2
+

n−1∑
i=1

f(xi)

)
x0 xn!x

f(x)

Use this formula as an
algorithm for calculating
approximation of area.

TrapezoidalArea()

Method
Note source code Figure 5.9 in text
Tasks

screen prompts for y values
inside for() loop sums the successive f(x)
values
calculates and returns total area under curve

Method applied to road construction
determine total volume of dirt removed for
highway (Figure 5.10, text)
cross section is trapezoid

